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Fig. 1. Optimized structures of SmN,C (2 4 y = 4, 6) catalysts and the relative energy, for the isomers, order them from lowest to

highest energy, brown, silver and blue spheres represent C, N and Sm atoms, respectively.
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Fig. 2. Formation energy versus solvation potential for
SmN,Cy(z + y = 4, 6) catalysts: (a) SmN,C(z + y = 4)
catalysts; (b) SmN,C,(x + y = 6) catalysts.
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Fig. 3. (a)—(e) PDOS for SmN,Cy-1, SmNCj5, SmN3C3-2, SmN,C,-3 and SmN;3Cs-1, respectively, the Fermi level is at 0 eV; (f) the

corresponding integrals in the —1-1 eV energy window.
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Fig. 4. (a) Top and side views of Li;O, molecule adsorption on SmN3;Cs-1 (SmN3Cs-1-LiyO,), green and red small balls represent Li
and O atoms, respectively; (b) charge density difference of SmN;3;Cs-1-Li;O,, arrow indicates the direction of charge transfer, yellow
and blue represent charge accumulation and depletion, respectively; (c), (d) projected density of states of SmN3;Cs-1 and SmN;Cjy-1-
Li,0,, the isosurface value is set to 0.004 e/A3.
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Fig. 5. (a), (b) Gibbs free energy profiles of Li,O, molecule dissociation on the SmN3Cs-1 catalyst without and with implicit solvent;

(c) Gibbs free energy profiles of Li,O, molecule dissociation on the SmN3Cs-2 catalyst without implicit solvent.
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Abstract

Lithium-oxygen batteries (LOBs) are renowned for their ultrahigh theoretical energy densities. However,
their practical applications are significantly limited by sluggish oxidation kinetics and elevated charge
overpotentials. Most single-atom catalysts (SACs) utilized in LOBs are predominantly based on transition
metals, which feature unsaturated d-orbital coordination. In contrast, the rare-earth element samarium (Sm)
possesses a rich array of 4f-orbital electrons. Recent studies have demonstrated that Sm SACs can effectively
enhance the conversion of polysulfides in lithium-sulfur batteries (LSBs) and achieve remarkable cycling
stability in full-cell experiments. Inspired by the work, we systematically design and optimize 17 configurations

of Sm SACs for LOBs by using first-principles calculations, which are denoted as SmN,C, (z + y = 4 or 6).
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Through comprehensive screening for stability and catalytic activity, we identify the SmN3;Cs-1 catalyst as an
optimal candidate for LOBs. The catalytic mechanism of the SmN3Cs-1 SAC over the oxygen evolution reaction
of the Li,Oy molecule is investigated. The Gibbs free energy of the two-electron dissociation process indicates
that the second step of the reaction is the rate-determining step (RDS). At the equilibrium potential, the charge
overpotential is 0.52 V. Furthermore, mechanistic analysis reveals that the d-f-p orbital hybridization in
SmN;Cs-1 effectivelyreduces the shielding effect on the Sm 4f orbitals, facilitates interfacial charge transfer, and
significantly improves the catalytic performance of the Li,O, oxidation. This study provides novel insights into

the potential of rare-earth-based SACs for improving the performance of LOBs.

Keywords: lithium-oxygen batteries, oxygen evolution reaction, Sm single-atom catalyst, first-principles

calculations
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