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Fig. 1. The electron impact ionization cross section of beryllium-like ions as a function of incident electron energy for the isolation
ion: (a) The case of C?*; (b) the case of N**; (c) the case of O*". The black squares with error barsl” represent the experimental
measurements by Fogle et al.. The red solid and green dotted lines represent the theoretical results calculated by Fogle et al. by us-
ing the CADW approximation® and the RMPSFS approximation, respectively. The blue dashed, orange dotted-dashed, and violet
dotted-dotted-dashed lines represent the theoretical results calculated in this paper using the DW, CBE, and BED approximation,

respectively.
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Fig. 2. Radial wave function of the 2s bound electron in the 1s22s2 1Sg configuration of C** in hot dense plasmas: (a) Variation of
the radial wave function with the plasma density at 7 = 100 eV; (b) variation of the radial wave function with plasma temperature

at n, = 9x10% cm 3. The black solid line represents the result calculated for the isolated case.
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Fig. 3. Electron impact ionization cross section of 1s22s2 1Sy — 1s22s! of (2t as a function of incident electron energy.

(a) The collision ionization cross sections with temperature 7 of 100 eV and different electron densities; (b) the collision ionization

cross sections with electron density ne = 9 x 1022 cm 3 and different temperatures. The black solid line represents the result calcu-

lated for the isolated case.
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Fig. 4. The electron impact ionization cross sections of carbon under isolated conditions and at the solar radiation/convection zone
boundary (T = 180 eV, ne = 9 x 1022 cm?) as functions of incident electron energy: (a) Black, red, and green lines represent the
calculated results for C*, C?*, and C3*, respectively; (b) blue and orange lines correspond to C** and C*', respectively. Here, the
solid line represents the calculation results in the isolated case, the dashed line represents the calculation results considering the
screening effect at the boundary of the solar radiation/convective region, and the dotted line represents the calculation results fur-

ther considering the ionization potential depression on the basis of the dashed line.
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Fig. 5. Electron impact ionization cross sections for nitrogen and oxygen at the solar radiation/convection zone boundary

(T =180 eV, ne =9 x 1022 cm®) as functions of incident electron energy: (a) Results for N+, N2t N3+ and N**, respectively;
(b) results for O*, 0%, O**, O*t, and O°*, respectively; (c) results for N°+, N6+ O%+ and O™, respectively.
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Electron impact ionization of C, N, and O at boundary
of solar radiation/convection zone’
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Abstract

The solar radiation-convection boundary (T ~180 eV, ne~9x10%? cm™? ) marks the transition from radiative
to convective energy transport, serving as a natural laboratory for hot dense plasmas. Its physical properties are
crucial for stellar evolution and energy transport models, yet how electron-impact ionization (EII) is influenced
by hot-dense environment effects—such as electron screening and ion correlation—remains unclear. To address
this, we systematically calculate EII cross sections for C, N, and O ions under realistic solar boundary
conditions, focusing on the role of environmental effects. We develop a novel computational framework that
integrates hot-dense environment effects into atomic structure calculations: the Flexible Atomic Code (FAC) for
atomic structure is combined with the Hypernetted-chain (HNC) approximation to capture electron—electron,
electron-ion and ion-ion correlations, enabling self-consistent treatment of electron screening and ion
correlation. Atomic wave functions are derived by solving the Dirac equation within the ion-sphere model, using
a modified central potential that combines both free-electron screening and ion—ion interactions. EII cross
sections are then computed via the distorted-wave (DW) approximation in FAC. The results demonstrate that
the hot-dense environment effects significantly enhance the electron-impact ionization cross sections of C, N,
and O, compared with those calculated under the free-atom model. Additionally, a notable reduction in the
ionization threshold energy is observed. These effects are attributed to the overlap of atomic potentials due to
strong ion coupling and the shift in bound-state energy levels caused by free-electron screening. For instance,
under solar boundary conditions, the ionization cross section of C* is increased by up to 50%, with the
ionization threshold decreasing from about 24 eV (isolated) to 18 eV (with screening). Similar enhancements are
observed for nitrogen and oxygen ions across various charge states. By establishing updated ionization cross
sections for C, N, and O ions under realistic solar interior conditions, this work provides fundamental
parameters for improving radiation transport models, ionization balance calculations, and equation-of-state
models in stellar interiors. The results underscore the necessity of incorporating hot-dense environment effects in
the calculations of atomic processes in hot dense plasmas, which is of great significance for astrophysics and
inertial confinement fusion research.

Keywords: radiation/convection zone boundary, environment effect, electron impact ionization, hypernetted-

chain approximation
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