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Fig. 1. (a) Top and side views of single-layer MoSSe and (b) g-C3N,. The black box indicates the unit-cell structure of MoSSe and
g-C3Ny; (c) top view and side view of different stacking configurations of SMoSe/g-C3N, (A1-A6) and SeMoS/g-C3;N, (B1-B6).
Among them, A2-A6 and B2-B6 are heterostructures obtained by rotating the MoSSe layers of A1 and B1 clockwise by 60° respect-
ively (the smallest computational supercell is indicated by the black dashed box, and the shadows on A2 and B2 highlight the
stacked configuration with the lowest binding energy); Phonon spectrum of (d) A2 and (e) B2 heterostructure; AIMD simulation
results for (f) the A2 and (g) B2 heterostructure.
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# 1  SMoSe/g-C5N, (A1—A6) Fl SeMoS/g-CyN, (B1—B6) ANl SA 8 1 Zh R T

Table 1. Adhesion energies for different stacking configurations of SMoSe/g-C3N, (A1-A6) and SeMoS/g-C3N, (B1-B6).
B Al A2 A3 A4 A5 A6
FbHTI /() m?) 0.135213 0.135218 0.135108 0.135205 0.134514 0.134329
Mg Bl B2 B3 B4 B5 B6
T/ (J- m?) 0.167633 0.167926 0.167737 0.167705 0.167188 0.167301

Energy/eV

Energy/eV

Energy/eV

& 2 (a) HLJZ MoSSe il (b) g-C3N, IHETT; (c) A2 F1 (d) B2 MIFEREH (PR KREHINT RN 0); (e) A2 1 () B2 ML A%
Fig. 2. Energy band structures of single-layer (a) MoSSe and (b) g-C3N,; projected energy bands of (¢) A2 and (d) B2 (Fermi levels
have all been set to 0); projected densities of states of (e) A2 and (f) B2.
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Fig. 3. (a), (c) Differential charge density diagrams for top view and side view of A2; (b), (d) differential charge density diagrams

for top view and side view of B2 (yellow indicates positive, representing electron accumulation; blue indicates negative, represent-

ing electron consumption); (e), (f) the electrostatic potential of the single-layer MoSSe and g-C3Ny; (g), (h) the electrostatic poten-

tials of A2 and B2.
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Fig. 4. Band edge positions of MoSSe, g-C3Ny, A2 and
B2 heterostructures at different pH values.
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Abstract

Constructing van der Waals (vdW) heterostructures has emerged as an effective strategy for enriching the
physical properties of two-dimensional materials and optimizing their optoelectronic performance. In this work,
we systematically investigate the electronic properties and biaxial strain modulation of Janus MoSSe/g-C3N,
heterostructures with two distinct interfacial configurations—SMoSe/g-CsN, and SeMoS/g-CsN,—by means of
first-principles simulations. Binding energy comparisons and AIMD simulations are performed to determine the
most stable stacking pattern of each type of the heterostructure. The analyses of the electrostatic potential and
work function reveal that the intrinsic dipole of MoSSe layer and the interfacial electric field in the SMoSe/g-
CsN, heterostructure undergo a constructive superposition. This enhances the overall built-in electric field,
which points from g-C3N, layer to MoSSe layer, resulting in a type-I band alignment. In contrast, in the
SeMoS/g-C3N, configuration, the two fields oppose each other, leading to a net electric field directed from
MoSSe to g-C3N, layer. This leads to a type-II band alignment, which facilitates spatial carrier separation and
significantly enhances photocatalytic water-splitting activity. Furthermore, this study also demonstrates that
biaxial strain can effectively modulate the electronic band structures of both types of heterostructures. In
particular, the SeMoS/g-C3N, system exhibits a reversible transition between type-I and type-II band
alignments under specific compressive (—4%) and tensile (+5%) strain states. The underlying mechanism is
elucidated by the difference charge density calculations. This study provides theoretical insights into the role of
interfacial and intrinsic dipoles combined with strain engineering, offering a viable route for designing efficient
MoSSe/g-C3N,-based photocatalysts and optoelectronic devices.

Keywords: heterostructure, electronic band structure, strain engineering, first-principles simulations

DOI: 10.7498 /aps.75.20251158 CSTR: 32037.14.aps.75.20251158

* Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 2208085MA17).

1 Corresponding author. E-mail: xiaobaoli@hfut.edu.cn

010702-9


http://doi.org/10.7498/aps.75.20251158
https://cstr.cn/32037.14.aps.75.20251158
mailto:xiaobaoli@hfut.edu.cn
mailto:xiaobaoli@hfut.edu.cn
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

Chinese Physical Society

%ﬂ *ﬁActa Physica Sinica

Institute of Physics, CAS

Janus MoSSe/g—CqN i 5 Hty b 714 57 B S XU B3R 4%
Wtk FFE EEF
Electronic properties and biaxial strain regulation of Janus—MoSSe/g—C;N, heterostructures

HU Dong LI Xiaobao ~ WANG Meigin

5] F{5 &, Citation: Acta Physica Sinica, 75, 010702 (2026) DOI: 10.7498/aps.75.20251158
CSTR: 32037.14.aps.75.20251158

TELR T View online: https://doi.org/10.7498/aps.75.20251158

IS View table of contents: http://wulixb.iphy.ac.cn

LT BRI HAN SCEE
Articles you may be interested in
GaS/Mg(OH), 57 STt 25 v 525 KA (4 25— PR U BRI

First—principles study on electronic structure of GaS/Mg(OH), heterostructure

PyFEEEAR. 2024, 73(13): 137103 hitps:/doi.ore/10.7498/aps.73.20231979

HLIA GaN/g—CyN 57t [ 45 HL T S R RGPk o R 1) 25 — P B 5

First—principles study of influence of electric field on electronic structure and optical properties of GaN/g-C;N, heterojunction

PFEEEAR. 2022, 71(9): 097301  hitps:/doi.org/10.7498/aps.71.20212261

ERAERP L A 25 5] AR T4
Engineering of properties of low—dimensional materials via inhomogeneous strain

PFEEEAR. 2022, 71(12): 127307 https:/doi.org/10.7498/aps.71.20220085

IEMINet—Y 2K ) LTS5 A8 SAUBOT S5 A4 0 A8 8 12 800

Strain engineering of electronic structure and mechanical switch device for edge modified Net—Y nanoribbons

YrH2E . 2022, 71(4): 046102  https:/doi.org/10.7498/aps.71.20211748

B FEL AR P P X e S o 2 v R R A £

Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization

YIBR2A . 2022, 71(17): 177303 hitps://doi.org/10.7498/aps.71.20220815

IO SV B B A A L ; OCL R 2 R RIS 5
Strain—tuned electronic structure and optical properties of anti—perovskite Li;OCl

YrHE2E 4. 2025, 74(17): 177101 https://doi.org/10.7498/aps.74.20250588


https://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.75.20251158
http://wulixb.iphy.ac.cn
https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.73.20231979
https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.73.20231979
https://doi.org/10.7498/aps.73.20231979
https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.71.20212261
https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.71.20212261
https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.71.20212261
https://doi.org/10.7498/aps.71.20212261
https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.71.20220085
https://doi.org/10.7498/aps.71.20220085
https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.71.20211748
https://doi.org/10.7498/aps.71.20211748
https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.71.20220815
https://doi.org/10.7498/aps.71.20220815
https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.74.20250588
https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.74.20250588
https://doi.org/10.7498/aps.74.20250588

	1 引　言
	2 计算方法
	3 结果与讨论
	3.1 晶体结构与电子性质
	3.2 应变调控

	4 结　论
	参考文献

