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Fig. 1. (a) Schematic diagram of photoionization from the 50 orbital of CO molecule; (b) differential photoionization cross section

and corresponding (c) differential photoionization time delay for the 50 — ko channel at the equilibrium internuclear distance

R =1.13 A. The photoelectron energy ranges from 1.5 eV to 60 eV.
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Fig. 2. Angle- and energy-resolved differential photoionization cross sections (a)—(e) and time-delay (f)—(j) maps of the 50 — ko
channel in CO at various internuclear distances R = 1.05, 1.08, 1.11, 1.13, 1.15, and 1.18 A.
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Fig. 4. Partial-wave (a) photoionization cross sections and (b) photoionization time delays for the CO molecule at the equilibrium
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ergy. In panel (a), the red and black curves correspond to the differential cross sections for photoelectrons emitted along the C and
O ends, respectively; in panel (b), the red and black curves correspond to the photoionization time delays for emission along the C

and O ends, respectively.
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Fig. 5. (a) Photoionization cross section and (b) photoionization time delay of the | = 3 partial wave as functions of photoelectron
energy at different internuclear distances; (c) effective potentials composed of the static exchange-correlation model potential and
the centrifugal potential for the [ = 3 partial wave, as functions of the radial coordinate r at different internuclear distances.
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Abstract

Photoionization time delay in atoms and molecules is a fundamental phenomenon in attosecond physics,
encoding essential information about electronic structure and dynamics. Compared with atoms, molecules
exhibit anisotropic potentials and additional nuclear degrees of freedom, which renders the explanation of
molecular photoionization time delays more complicated but also more informative. In this work, we investigate
the dependence of the photoionization time delay on the internuclear distance in the 50—ko ionization channel
of carbon monoxide (CO) molecules. The molecular ground state is obtained using the Hartree-Fock method,
and the photoionization process is treated within quantum scattering theory based on the iterative Schwinger
variational principle of the Lippmann-Schwinger equation. Numerical calculations are performed with the
ePolyScat program to obtain molecular-frame differential photoionization cross sections and time delays at
various internuclear distances. Our results show that the extrema of the photoionization time delay occur near
the peaks and dips of the differential cross section and shift toward lower energies as the internuclear distance R
increases. At low energies, the time delay at the O end increases with R, while it decreases at the C end. This
behavior is attributed to the asymmetric charge distribution and the resulting short-range potential difference
between the two atomic sites. Around the shape-resonance energy region, both cross section and time delay
display pronounced peaks associated with an [ = 3 quasi-bound state. As R increases, the effective potential
barrier broadens, the quasi-bound state energy moves toward lower values, and its lifetime becomes longer,
leading to enhanced resonance amplitude and increased time delay. In the high-energy region, opposite-sign
peaks of time delay are found along the O and C directions, corresponding to minima in the cross section. These
features are well explained by a two-center interference model, where increasing R shifts the interference
minima and the associated time-delay peaks toward lower energies. This study provides deeper insights into the
photoionization dynamics of CO molecules, explains the role of nuclear motion, and provides valuable references
for studying the photoelectron dynamics of more complex molecular systems.
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