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Fig. 1. Development timeline for machine learning-accelerated electronic structure calculation models (2017-2025), with sources
compiled from Ref. [22,26-29,31-41]. In the figure, F, orbital energy; H, Hamiltonian matrix; MAE, mean absolute error; GNN,
graph neural network; DTNNs, deep tensor neural networks; GPR, Gaussian process regression; HOMO/LUMO, highest occupied

molecular orbital/lowest unoccupied molecular orbital; LHC, light-harvesting complex; KRR, kernel ridge regression; GTO, Gaussi-

an orbital.
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Fig. 2. Timeline (2022-2025) of machine-learning-accelerated electronic-structure models in solid systems, compiled from the works
of Xu Yong (2022-2025), Xiang Hongjun (2023-2025), Gu Qianggiang (2024, 2025) and Refs. [44-55].
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Fig. 3. Architecture evolution of deep electronic structure prediction models of DeepH: (a) Universal framework: structure — fea-
ture embedding — message passing — Hamiltonian matrix — property output; (b) DeepH: LCNN-based LCMP message passing;
(¢) XDeepH: dual-input extension (crystal + magnetic structures); (d) neural network architecture of DeepH-E3; (e) network archi-
tecture of DeepH-2; (f) architecture and implementation of neural-network DFT of DeepH-zero; (g) development history and tech-

nological breakthroughs; compiled from the works of Xu Yong (2022-2025) [44-49].
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VIR, FFSe e R s IR 25 0F T, BT AHE
IfREZ DFT 19 0.1%. SR10, T3l Je AR R A2
3 N LSS, UL NS RN XM i
IXBRT/INRL R I 2R 450 (4. TR, Bt R 450
I, F o ORI N, I B SR T U 2R AR
TE ORI S 8058 B A RE SE BN 1 B (PR RE. LA,
TEXTFRIEAERF IS, AEHIERE G (spin-orbit
coupling, SOC) BI5 | AFfA LIPS 7 2052 8L,

2023 4F, 38 32 PR I S P R AR R TR AL T 1%
HEZR: xDeepH!™, — Fh 1 i % 4 i 45 44 DFT 04
BT IR B2 2 7 vk, T RAEZR AL 3(c) FR.
xDeepH i i 14 £ 4% 4G E(3)x {1, TYX PR
(T8 5 R L B A5 A8 48 5 A5 ] g 3 ) 1) 1% B 4 728 ot
2 M4 (equivariant neural networks, ENN)PY,
UK G F O RE 5 D 45 0 2 [R] 9 A 25 ]
Hppr({R},{M}) Byma. 35 Clebsch-
Gordan F2 £ 00 LRIpHS 250 (1 e | -8 Sl
SO PR, B AE 3 R R S sub-
meV ZKBE: A IR (NiBry) M % i [ MAE
12.0.56 meV; JEILLERERI AL (Crly KA “FifiZh
ey 5 B MAE 4 0.36 meV, YIZREE K5
1 (16, 16) 99K L5 R AEH 12 25 <1 meV; TERETE
Wi B TR ZR (Moiré Crly) Hoks M2 63.48°H
e Y Ry P S e e i i R = PSP Ve M AN 3
FFb-r TSR A B OV, FEORIERE kG BE 1 R
A5 MR B $2 T DeepH-E319 jE— 254
HEHR R R 2 M B(3) A7 A 102, 307 vk I AE
ZRnIE 3(d) s, HomabRe a2k e 505
15 B2 4 B Sy AN (] ff 2l 2 B R ) 45 AR AR AR, SE
Wigner-Eckart/® 2 5 Clebsch-Gordan/®! g & 7

A8 G SOC A AR, I 1 Hhfs e B
BUR S RN BTN, FkE T 5 22 2%t
BXEGSL AN, FE T — 440 E3 LayerNorm HY
IH—Ab 77 %8 (%07 R PSRN Z i g HEdE
A R B SERN Jr 22, SR XTRRIE 1) s A T —
Ak, TRl ORAFR AR 1Y S5 A8 V) 45 G T8 B AL s LI,
el A5 A (ACHE S0 B A% 78 4 4 WO L BLAS X1k 1 2512
T, SEPHR R 2 B PR . TR A R R
fii 15 DeepH #H [ I 2k 5 VI 25, DeepH-E3 #5144
T 5% A WU A7 55 06 1Y e 8 U T MAE
0.2—0.3 meV, E£ILH b DeepH B AFFIPERE, 11
FERT 48 250 GPU 20809, F H T3 FERT bifi iy ot
FEARZR (Moiré fiffl) RO AIG K B ZPE TR . X
— “FERHHEZR-E Y -SOC i b i+ A P 2R
1, DeepH M RIFF AR BRI HE R xDeepH 1Y
WEHEHRE, 1 DeepH-E3 BYSFAR ik AR H | 58— T
e e 24 o 55 ik () B 3 X B, (3 P4 38 DA LA
BHA R 2 R Fh 5 SOC Moiréfk R | 1T E LR
M 10% 5, K RESETHEE I~

2024 4, Wang 4§ ' 38 i3 5] A Transformer
Ak 6 DeepH J5 i 1 (1) JRy B AL b R AR 1 5
DeepH-E3 J5 i AR 2 48 4545, T2 AT []
Atk AR 20 5 | B[R] S 5 SOC U 1Y 53
P2 DeepH-2 (& 3(e)). # B AIL DeepH #2
Ft— =% (F MAE M 1 meV 2 AL E
0.1 meV) H GPU F| Fl R K ig 42 7. tbsh, RO
DeepH-2 5 i Il 25 Z: 8%k f [k DeepH-E3 £ T
— AN (10 48F), FLUI Sk BE B SR, 4
XZ A S, B UIZREEIR (epoch) FITAE 9 1 Hsf 1]
M 200 s i %5 2 100 s, SORBIRG. 7RI L
i —~ DeepH i I #1 BHE A (DeepH universal
materials model, DeepH-UMM) !, ffi ] )\ Materials
Project 2040 & i 1 11 12062 Flik 25 J& 101 2% /i
44778 (1—4 JAI, HERREIE 48 Sc—Ni JTR)
AR M B AR B R ES H, JE T BT ATIDA (=il i
THAAESL B 5 — P IR B 8F OpenMX, 158
THHR Y DFT iR s B I R4, (1] NVIDIA
A100 GPU 1% 207 h (£ 8.6 d) 15 F| (AL Al 4k
RTINS IR FE N E 2 RHA R, IF
FERP R BT 5 TR R Tt ARG R, SEE T
R (L RENLEEE 20% B RLEEHY) T2
80% I 45 #4) M5 % 1l it MAE < 2.2 meV, {{f
1.4% 45K MAE > 10 meV. 238 FHAS A AT i
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T Rk 2 R, S0 E T AR S (6 i 3
PERE.

2024 4% 8 A, Li &8 W I & T 4 ) DeepH-
zero Ji % (B 3(f)), FAEAEZINGREIRE 15 E T F1
FHHEA Wy P B 52 DeepH AL ) . %07 B8
T A 22 R 245 i AN RLIN | 5 800 0 Ao 22 ) 5%
572545y DFT B35 00 45 5 Ul T —Fh 44 o0 “pili &2
Mz DFT” Y TG Wi B % > HE 22 . DeepH-zero [
ZOAE b 7 3 DA SR 5 0 2% 1 2 24 2] (DeepH) ] 42
Jr Rl Tz bR AR I AU BR AR, T AR A HE AR
(E[H] = E[H] + ||H — H||*) i i 7] 8 > g F2, 52
PR 7 2 2 55 A 2 I 2% (1) PR IR AR AL, A 7Y
75 HyO 43 FHiAE] 0.013 peV AUAERRE B (B
W22 60 £%).

WK 3(g) Fizs, DeepH 5 5 H 37 M ) 4244
HEFEAE, M DeepH I1JmiB Ak il B AZ38 (El 3(b)),
#| xDeepH BRI AREY & (] 3(c)), Fi#l DeepH-
E3 BY3KiE &2 M2 (&1 3(d)), JF@ad 5] A Trans-
former 2244, BRI —SARFH T DeepH Jriki1id H
PERRZALRE ), #EH T DeepH-2 J5% (K 3(e)),
23| DeepH-zero TG 2= I HEZR (18] 3(f)). X
— RYJFEE TG —ra R B AL FIAE LR (& 3(a)),
Fm AR a5 S AR A L RRIE IR A | 0T B AL i
Do 265 | Ay %8R R A, T 2 A 2 3 I 1Y
SE B A B 3X — 0 O AR ) AR S B TR B 4R T
(MAE: 1 meV —10 % meV)., & & EHALIEZ

(a) BIHE(3) 5L HEL

PR T N HTE R, MAIER B b A AR ) 2 2
PEIR R 5 SOC %545 237 5.

3.2 HamGNN: if &=t & i iEZR

2023 4F-, Zhong 5 [P0 J 85 AR Pt 25 ) 45 ) g
TN E(3) BESFAR M S ARG R i R HE AR
HamGNN, H il F E(3) S5 A8 HEZL W& 4(a) BT
. AL 3.1 A4 DeepH-E3 AN al—5
H FEAKHE Wigner-Eckart J2 55 88 e £k /0 2% 512 81
50 A5 R RIS i A 285 i 27 ~) . HamGNN T JA
FERAE 3 I I 2 R R A P R P R
HA B A 2 i B DRITERR p; py AN AT 298K 5K
O ﬂnplpf;,lj , JEFIH Clebsch-Gordan Z (it
TR G, INIMTAEE S b ™ EA S 23 (] v ) R R 4l
W . X — i 7 24 I AT 2
ARAELLI Q0T Y EAVE R, Bk T IS
TEERE FNFHRAS T ™A% S5 AR P, (R 3245 (B
25 W2 T A5 B E A AN AR M. BEAh, A Hbp i
B AR D F T OCITS SU(2) A8 AR T 7)) A
T TE RS EUZ A= B B[R] B DR A 4 B R
T ICHEAR LTI A5 A48 KB RIS (anf&] 4(b) Fr
IR, SEEE T AT/ AR 2 R 2 I S ) e R
S, TR Z AR Z v J 3 R Y R - 45 A L fig
1, B X QM9 ML B(10000 43F) ARG i
FEFE T MAE = 1.49 meV; 78 B AR R, B/
fE A2 RIBAR I Si0, A4 MAE 43518

N E@)#A AR BT AL ISTAR HYH
s it i SKiB et/ A et H 4K
iy Alij
00000 ® = | 0000
1=0,1, 2 [ ]
RRMSE: BGERFESEE - QUDEER - MRGBIG - MRREMITE - DPTARIE - At
(b) HamG N N-ifll FH H 745 H4 Tt 444 (c) HamGNN-Q-7i HLERFE M
5 LN M B
& BUEHBH SRR 0. R ; 244y
) . 2. S N . (% Qi R} (3R e
o WA
e © 6 0 oesee
B G AR

Pl 4  HamGNN TR B HL 7258 3900 A5 R4 2044 X L

(a) HamGNN Hl HamGNN-Q i [l E(3) 78 28 F9 #E 22 51; (b) HamGNN #3#

FHIth 4 MBI EY B (c) HamGNN-Q 45 th B0 BUI 4 F 42y o1

Fig. 4. Architecture evolution of deep electronic structure prediction models of HamGNN: (a) Common E(3)-equivariant framework
of HamGNN and HanGNN-QP!; (b) general electronic structure prediction architecture of HamGNNP!; (c) charged defect predic-
tion specialist of HamGNN-Q[4.
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1.55 meV, 2.01 meV F 2.29 meV. Ak, %A
HEARBHRERTEM: &NA 88)FET) 5
MoirétH 5% BUZ A7 8845 (1084 JiF) Fiill MAE X
1.54 meV 5 3.23 meV; i 558 I (4284 J5 1)
HHAFERT 36 s (80 % CPU) RISERGHHE; HIHAUZ
MoS, (1626 JFiT) HF 54 JEFIZk, 345 0.89 meV
K BE, L ik 3500 £ . 7E58® SOC #1 %L BiySe,
(45 JELF) rh, XF SOC i %5 i 2 K 5 000 1) MAE
1R 0.05 meV, B B+ 36 1 25 B2k $r va 4
A ie-sh EBUEFT A (R A e 7 1) 5 Hsh &
J5 1) AR OGHK).

2024 4, Zhong 45 P 3 F HamGNN HE 4Lk
Materials Project %% 4f &= 1 i & 4 25 44, i H
OpenMX #47 5 T J5 ¥ L1 KL 240 1) DFT b %5 it
EHRETE, YIS, SE T — R RENS 5L A
W BT A2 B ] HamGNN HL I 2
i A (Universal HamGNN model, HamGNN-
UHM). Zhong % PU SR ] T — B Re 09 B il 2k +
TR WL N ZRRR T, bRl A T e AIE(E
IR, Ba0% 1B 0 FLIE @ M, BIA] DU —
AR AERR IR TC R ISR F AT T R AR LAY
PR Z5 AT O TR A I 5. AT BT e 2Rl
ARABE 56 TIE T A T o S5 R I HERR A, B
T 52 2R A% 4k b4 BHIN MoS,/ WS, 1 % 5 5t 45 il
Ceo BIFE L atb—25 M, AR BeAT il it 2
MR 25 B RE ). JU N RS2, B R
X1 ZUNRRG (AMEREE 5 ML TR ME SR
4, W HE,ZrgTagTisNb:B;,, HfTaTiB,MoC,,
K;BasLi, AL,BsOoF fhiA), (K8 T HAEAF TR
ZREME AR . it 7 GNoME 4 45 11
el AR, BRI AR 2 HAT T BRR
RE GRS, SEI] T HAE R R R i Ak
. #E—4, 7E HamGNN F5 0 (14368 5 i v 2 4
TSR I, AT IS8 T FAA PRS0k E A
Jit %) B 75 F A (electron-phonon coupling, EPC)
SR AOAESE HamEPCP2, ) Si #1 SiC ], & Bi
HamGNN Fiill () EPC 4 Ff 705 DFT 115 45 5%
B AN, TR T GaAs IR FT#
FRLAS CsV3Shy 52 7% B HL 45 18 o285 H £y 2 82
¥ (charge density wave, CDW) A1V . %77 VA
< 2meV [ MAE KiEEE BT DFT W%, [F]
BB 5 R M R R R 5 S &
W4, Xt CsViShy )-8 S5 AR IR (T,) A

R T BT S I Y XU T A5 4. FEHE Y
B, 7 A O 7 pR AL (density func-
tional perturbation theory, DFPT) #£#ik 4 ~%k
SO, HC I T A T AR B
BT I 10000 £ B0, I E R EEEL T AR
972 A~ JRL T i CsV,Sby CDW # fi A% EPC Fii
SRR H i | R A R Bt 1R
PNIITELIGIE SRS

2025 4, Ma %5 3 7£ HamGNN J5 3% 9 2 il
AR T H G 45 A Y AT S AR T AE 4R
HamGNN-Q(I&l 4(c)). EeR ML Z, 1]
FEEG| vy |FAR X 7 1) Gt r ARG FEAE 1) 1 V0|
SRIE R R R S S 22 B AE (multi-
layer perceptron, MLP) J& i £ &% i i 5 & 19 58
HORIFETRIE VO @ Q7 , SEBL T RLAPIRAS i 1
SER Y BRI, X GaAs 1Y 4600 /4544 1A 25 1
I MAE {8 1.013 meV, X R UIZRTE 4
e (A R B R A - GaR ), S TR0 58 22
< 1 meV, s HXFBEE AR R iRz g ). 78
13824 JR T 1Y AsST BBt fa iR R rp, 7R T Hfe
T R A A SE R K], HamGNN-Q it
ARCRE DET 427+ 3 MR %5 RS HEf# T
NERLZS 5 B T S -Gl Ak 1% L A SRy Bl Ae sz, Sy
BB TR S A B HR LR e T A

3.3 DeePTB: =N AESEBEFEH
i

G 45 103 75 ft 28 (o) 2 2 7 L - 235 44 05 1) 1F
SEHE T HIFOIPER) TBworks 7. 7F 2022 4EHY T
YEH AT E U T —Fp AT AR — 1 SRR 5
FIEAE A 2] IR R SRl (tight binding, TB)
W 286 11 o 28 D 8 E B 9% T v e B 2 )
ab initio REI, FEE T — AT He B i e P B KR A
BT SEELT X B A R G0 LT A5 R I R Ak TR
KA. TBworks BN FH T — 2 ¥ far 285 B2 0 41
Carbyne, FEHAFEL T H T35 BRI G2A L §oR
IR T B T - BA I BRI A Y AR 4 T3 )
BN . X IR TAE Ry S SR B e a0 3 FH e )
2 SRR BE S T B A RN T S

2024 4F, Gu 5 PUZE LA R T —A4 3
FUREE 2% 21 1 o 1 S R A 0 0 4 36 i
DeePTB (I 5(a)). 3 iz X FRPE LR AR Sy R 52
R ST F 2 Slater-Koster 241, 28 T BA
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(a) DeePTB-HEHMEIE R NAISKAEM

RS Pu(ri) X L2 (i, D)

L

« 24k ZRTBSH+ WEMBFISIE
o BEAS: JTSUWAMEIE (NiquetZ2at)
+ SOC: Hsoc = 2.i, Mi, Li-S;

el | S FRBEAS ENN
ZRAEE sy el )
wrg B > RS i
(Zy Ry 7 fe2Ers
: RS
: Pk
&

(b) DeePTB-E3-4&alsifb 525484y

4k YA
)gi‘gﬁ% S5 o RN SO(2)%HM
{ Z} { R} B ik '

S HE TR
TR S H, p, S
SRR T

o RS RIBAG BT T RURHE R AR e P B £
 FHEERENA: O(l%a)— O(lhax)
« H—HRSE: SHFERIE A O

¥l 5 DeepTB Fl DeePTB J5 i 194 (a) DeePTB 77 i B4 5% (b) DeePTB-E3 J7 i 1™ # JE B L 554 (SLEM) 4244 159
Fig. 5. Architecture of the DeePTB and DeePTB-E3 method: (a) General architecture of DeePTBP; (b) the strictly localized

equivariant message-passing architecture of DeePTB-E3[%9.

— VI HORG BE Y L i A T, [T RIE T
HRCE. BT DeePTB R IEZCEEA TBER,
AT LA A KHRE TB B (tight-binding propa-
gation method, TBPM®)). 7E I i #', DeePTB
FER/NRSE (I 2x2x2 i) Bl 55— R
PEF B XF L, H AR 00 ) MAE 3% 38 K T
50 meV (FUE A BHT 5, 2580 20—50 meV Z
[E]). [RVEsF, Ah4fE 22/ 7 57~ 250 (108 511
GaP 1) i i 7450715 5 920 45 /A R
U, AT SEBLAS A RUZ Y 7 0 A Y, Hot
RRCREAL G5 — MR AR = 3—5 M.

2025 4F, Zhou Z55) HfEH DeePTB-E3 (I8 5(Db)),
— Pl I T A S 38 55 A 4% (strictly localized
equivariant message-passing, SLEM) i illl Kohn-
Sham I %25 W 5 | %% BEFH I . B 5 0 I 55 1 O 125
SLEM il i3 2R 1 SO(2) il sk e Bz 5 7 2115
THPAR 1 Jmy T B IR, AR T AT
T HE2H T 3R A28 e A N T I 4 v 0 A
JE 5T AR R [ X AR R R g 0 1A
TUR AT, I SRR A AT BT 55 rhovs ok
RSF RGEHATHATHERL. XFHE B R i E
HEFRE, SLEM A X0 AR 5 A2 S8k
(4n Slater-Koster %) MW #LRR 4, LAKK AR 14 B
IELAS (L2 [FIELEE E3 W28 S8 3%) SE T
R UM, DR 2 0 BN B8 P RO PR o
T AR IR R, AN T )RR AE A5 T
GBI ZARRI AT DT R A R R R R ¢
e Ay A AR R, OB B AR 1. AR
TE e 5 0 St 500 J7 11 353 sub-meV & 2% 1K B

FEL 4 P A ) T 5 22 A (~10°9),
HG T SR TR U LA L

3.4 DeepH, HamGNN 5 DeePTB & £
BT EE

£ [7] il T DeepH % %1 . HamGNN % %1 5
DeePTB F %1 =K 9 ML HL, 145 #7500 77 ¥ (1)
RIESFROE, AT EN ORI T R GR
PEEXT LG, QN3 1T R, X SR Y B AR FE AR I
TE L XRR I AL BE | RS f i RS FH TS B 45
{EILRIESD T ML 78 L F450 T3 i 8 2

IS EERE I F, = KISk A
ST FRE Bk A DeepH £ 513 1 Jay & A b 114 B A%
A E(3) S54RI 2% A i e i | VR St [E] i
RN HamGNN R4 117 E(3) 485K 553
fEHESR, SZHE SOC Fial HL ikt f 2245 ; DeePTB N
WRATT™H8 ey 3k 45 A8 B AL FI Slater-Koster 241
b, FELRFE RS BE 0 [R]B S B RE T U FROR. Xt
SRR BRARFAIL ) ANAS 2 S B e A S 000 ) S,
AR RIS 2 | S NREE R G O HES B
FE TSR

FE TR BE 7 18, 25 BOARAE URIR R (nf
Ji5 . ZBRAEH  RESE) TP meV A sub-meV
2 A B0 MAE, #3514 DeepH-E3,
DeePTB-E3 & 7E45 & MK - MAE /NF 0.5 meV,
OB L F WAL S DFT 5 7E 58 37 5
FIAERE TR R, ILAh, M DFET A, RCR4ETH
&, i ik ) 3—5 AN GO, JUHAE TR T
U RAR AR RILGE .
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Characteristics across of capillary of different kind of machine-learning models.

Table 1.

RN ES
L DFTik

BEIRRE

B
OpenMX; Abacus;

RIS
WK R

AR
11164 51

(B f A1 5

MR E (MAE)

i

{XA9: https://github.com/mzjb/DeepH-pack

FHI-aims; SIESTA  #fii: https://doi.org/10.5281/zenodo.6555484

T&/55SOCHk £
WEVE IR

103Gk
%L DFTik

2.1 meV (f1#84%);
1.3 meV (MoS,)
0.36 meV (Crly)
0.56 meV (NiBry)

DeepH

fRA5: https://github.com/mzjb/xDeepH

FHI-aims; SIESTA  %dli: https://doi.org/10.5281/zenodo. 7561013

OpenMX; Abacus;

(LA
LT W N NP

4336 T
(CrI i B )
11164 J5i1

(8 A 17 B

1035 sk
GPU4M
Y

XFHDFT
15350015 mE

xDeepH

f{A5: https://github.com/Xiaoxun-Gong/DeepH-E3

B https://doi.org/10.5281 /zenodo. 7553640

FHI-aims; SIESTA

OpenMX; Abacus;
OpenMX; Abacus;

TRSOCHKZ
ZICME KR |

0.40 meV (7 58J%)

0.37 meV (MoS,)

1.49 meV(QM9)

0.89 meV (MoS,)

DeepH-E3

fRH%: https://github.com/QuantumLab-ZY /HamGNN

¥ https://zenodo.org/records/11171478

SIESTA; HONPAS
OpenMX; Abacus;

ISR
L i R

HamGNN

A{A3: https://github.com/QuantumLab-Z7/HamGNN

¥ https://doi.org/10.5281 /zenodo.8147631

SIESTA; HONPAS

138245 F
(Ases h%)

Wefe ¥

e S
% DFTik

1.013 meV (GaAs)

HamGNN-Q

datasets

2556&pageType=

DeePTBDataSet&id
{{A3: https://github.com/deepmodeling/DeePTB

{{#53: https://github.com/deepmodeling/DeePTB

B https://www.aissquare.com/datasets/detail?

Abacus
name

B FR (10%)

1095+
(GaP)

IRy 1P
(S giiapER

100/ (FHLL

40 meV(Si)

26 meV (1057 GaP)

DeepTB

286

Quantum Operator Dataset&id

Hdi: https://www.aissquare.com/datasets/detail ?pageType

Abacus
datasets&name

TEITHEER

103J8F
(HfO,)

0.34 meV (MoS,)
DeepH-E3)

0.21 meV (GaN)

DeePTB-E3

YT K. FAGE R T IR

T ARG AN 2 5 ISR A TF, FEAHE T Zenodo MR EEFIALS Square ). $iAE £ R FHAHDF5 . npz25 I TR Mk =, T T 2. ik S

FRA PR R A DeepH-2 X DeepH-zero.

FEECHE 7 oK S M T, AN R B 52 9
25, BEICAIFH DeepH 271 0 H M4 T
BRCTA MR A E N 280, A
S AR R T P AR 2R v R S IR R
1) v R BE TO0. 9, 7E A SR E A AT, 3T 270
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Fig. 6. Application examples of machine learning accelerating electronic structure computation in predicting molecular spectroscopy,
reprinted from®): (a) Left to right, schematic structures of cyclohexanone, 2-methylpyrazine, hepta3, 5-diyn-2-one, aniline and
5-methoxy-1, 3-oxazole-2-carbaldehyde; (b) comparison of the DetaNet-predicted (red) UV-Vis spectra with reference data (blue)
for the molecules shown in panel (a); (¢) comparison of the DetaNet-predicted *C NMR spectra with reference data for the mo-
lecules shown in panel (a); (d) comparison of the DetaNetpredicted "HNMR spectra with reference data for the molecules shown in

panel (a).
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Fig. 7. Examples of defect system predictions using machine learning-accelerated electronic structure methods: (a) Band structure

$

A 25 ¥ R R, 7 %5 3 Y% (b) HamGNN-

and charge density of a silicon dislocation predicted by using the HamGNN model®); (b) band structure and charge density of a
charged defect structure in gallium arsenide (GaAs) by using the HamGNN-Q model™.
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Fig. 8. Several examples of machine-learning-accelerated electronic-structure calculations applied to quantum materials: (a) Compar-
ison of the band structure predicted by using the DeepH-E3 model with the DFT-computed band structure for a twisted bilayer
graphene supercell containing 11164 atoms at a twist angle of 1.08°1%; (b) band structure of BiySey thin film with the HamGNN
model compared to DFT results, together with the spin-momentum locking of the unoccupied states near the conduction-band min-

imum®; (c) DeepH-E3 of a topological quantum phase transition driven by varying SOC strength: after gap closure, the gap re-

opens, changing the Zo invariant from 0 to 119,
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Fig. 9. Several examples of machine-learning-accelerated electronic-structure calculations applied to optoelectronic and transport
properties: (a) Complex refractive index of a GaP system with over one million atoms using the DeePTB model, compared with the
experimental data of Aspnes et all®l. Reproduced from Ref. [#]; (b) EPC matrix of SiC computed by Xiang Hongjun et al. with the
HamEPC framework, benchmarked against DFT (OpenMX) resultsP?; (c) GaAs mobility predicted at the HSE level by using
HamEPC, compared with Perturbo calculations at the PBE level®; (d) complete phonon spectrum of the CsV3Shy CDW supercell

and mode and moment-resolved electron-phonon coupling strengths (7,,) quantitatively characterized via the HamEPC framework!52,
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Machine learning empowered electronic structure calculations:
Progress, challenges, and prospects”

LI Yuting YANG Jiong! XI Jinyang!
(Materials Genome Institute, Shanghai University, Shanghai 200444, China)

( Received 12 September 2025; revised manuscript received 27 October 2025 )

Abstract

Density functional theory (DFT) serves as the primary method of calculating electronic structures in
physics, chemistry, and materials science. However, its practical application is fundamentally limited by a
computational cost that scales cubically with system size, making high-precision studies of complex or large-
scale materials prohibitively expensive. This review addresses the key challenge by examining the rapidly
evolving paradigm of integrating machine learning (ML) with first-principles calculations to significantly
accelerate and expand electronic structure prediction. Our primary objective is to provide a comprehensive and
critical overview of the methodological advances, physical outcomes, and transformative potential of this
interdisciplinary field.

The core methodological progress involves a shift from black-box property predictors to symmetry-
preserving, transferable models that learn the fundamental Hamiltonian—the central quantity from which
diverse electronic properties are derived. We detail this evolution, beginning with pioneering applications in
molecular systems by using graph neural networks (e.g., SchNOrb, DimeNet) to predict energies, wavefunctions,
and Hamiltonian matrices with meV-level accuracy. This review then focuses on the critical extension to
periodic solids, where maintaining symmetries such as E(3)-equivariance and handling vast configurational
spaces are of utmost importance. We systematically analyze three leading model families that define the state-
of-the-art: the DeepH series, which uses local coordinate message passing and E(3)-equivariant networks to

achieve sub-meV accuracy and linear scaling; the HamGNN framework, built on rigorous equivariant tensor

decomposition, which excels in modeling systems with
spin-orbit coupling and charged defects; and the
DeePTB approach, which leverages deep learning for
tight-binding Hamiltonian parameterization, enabling
quantum-accurate simulations of millions of atoms.
These methods yield significant physical results
and computational breakthroughs. Key outcomes
include: 1) unprecedented accuracy and speed. Models
consistently achieve Hamiltonian prediction mean
absolute errors (MAE) below 1 meV (e.g., DeepH-E3:
~0.4 meV in graphene; HamGNN: ~1.5 meV in QM9
molecules), along with computational speedups of 3 to

5 orders of magnitude compared with traditional DFT.
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2) Scale bridging. Successful applications now range from small molecules to defect-containing supercells with
over 10000 atoms (e.g., HamGNN-Q on a 13824-atom GaAs defect) and even to millions of atoms for
optoelectronic property simulations (DeePTB). 3) Expanded application scope. This review highlights how these
ML-accelerated tools are revolutionizing research in previously intractable areas: predicting spectroscopic
properties of molecules (e.g., DetaNet for NMR/UV-Vis spectra), elucidating electronic structures of topological
materials and magnetic moiré systems, computing electron-phonon coupling and carrier mobility with DFT-level
accuracy but far greater efficiency (HamEPC framework), and enabling high-throughput screening for materials
design.

In conclusion, ML-accelerated electronic structure calculation has matured into a powerful paradigm,
transitioning from a proof-of-concept to a tool capable of delivering DFT-fidelity results at dramatically reduced
cost for systems of realistic scale and complexity. However, challenges remain, including model interpretability
(“black-box” nature), transferability to unseen elements, and seamless integration with existing plane-wave
DFT databases. Future directions include physics-constrained unsupervised learning (e.g., DeepH-zero),
developing more universal and element-agnostic architectures, and creating closed-loop, artificial intelligence
(AI)-driven discovery pipelines. By overcoming current limitations, these methods have the potential to
fundamentally change the field of materials research, accelerating the process from atomistic simulation to

rational material design and discovery.
Keywords: machine learning, graph neural networks, first-principles, electronic structure
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