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密度泛函理论在当代电子结构计算中占据主流地位, 然而其计算复杂度随体系规模呈立方增长, 制约了

在复杂体系或高精度计算中的应用. 近年来, 机器学习与第一性原理计算的结合, 为这一问题提供了新的解

决方案. 本文对机器学习加速电子结构计算的方法进行了综述, 重点讨论现有研究在加速材料电子结构计算

中所取得的重要进展. 此外, 对未来研究中基于机器学习技术进一步克服电子结构计算的精度和效率瓶颈、

扩展适用范围、实现在大尺度材料体系中计算模拟与实验测量的深度融合做了展望.
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 1   引　言

在物理、化学与材料科学领域, 电子结构计算

始终是核心.  密度泛函理论 (density  functional

theory, DFT)[1,2] 作为当前主流的电子结构计算方

法, 为理解物质的电子特性、揭示及预测材料性能

提供了重要的理论支撑. 尽管 DFT在诸多研究领

域得到广泛应用, 但其理论框架本身存在固有局限

性 [3,4](例如仅适用于基态, 难以精确描述激发态与

强关联体系). 为克服这些限制, 研究者发展了多

种改进方法, 如含时密度泛函理论 [5–7]、多体微扰方

法 [8,9] 和动力学平均场理论 [10,11](dynamical mean

field theory, DMFT)等. 然而, 这些方法在提升计

算精度的同时, 往往伴随着显著增加的计算需求,

使得 DFT在实际应用中面临计算效率与计算精度

难以兼顾的问题. 即便是最新最快的 DFT技术,

也将大部分时间花在形成哈密顿量和自洽求解基

态电子特征态上 [12]. 尽管 DFT在处理小型体系

(如晶胞较小的固体, 原子数少于 500)时具有良好

O(N3)

的计算效率与精度, 在处理复杂体系 (例如大尺度

缺陷和界面体系)时, 其计算成本仍然随体系原子

数 N 呈   增长 [13], 这构成了一个显著的计算

挑战.

现代机器学习 (machine learning, ML)技术 [14]

(如神经网络)的飞速发展, 使其在图像识别、自然

语言处理等领域展现出强大能力; 在物理与化学领

域, ML虽具悠久历史 [15,16], 但长期主要应用于分

类任务 (如光谱分析 [17]、结合位点预测 [18]、定量构

效关系建模 [19]), 直至近年来才融入计算科学的核

心领域. 这一进程最初相对缓慢, 原因在于理论物

理学家和化学家对这类具有黑箱特性的方法持审

慎态度, 其更习惯物理意义明确、近似可控的模型.

ML自身成熟度近年因与广泛商业需求驱动得以

提升, 同时计算机能力的飞速提升, 加之材料基因

组计划的推动 [20], 显著改变了材料研究范式. 目前,

材料研究的工作重心, 从手动进行少量计算转向了

自动化、大规模的高通量模拟 [21]. 然而, 尽管单次

计算过程得到优化加速, 但计算任务数量累加所耗

费的时间仍然成为一个新的瓶颈, 限制了整体研究
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效率的进一步提升. 同时, 由于材料化学组成的多

样性及体系尺寸的增大导致构型空间呈指数级增

长, 该复杂性严重限制了基于电子结构计算的高通

量材料筛选效率. ML作为强大工具正能填补此空

白, 通过分析现有数据、揭示未知关联并识别潜力

新材料, 为理性材料设计提供新途径.

本综述聚焦于 ML方法在电子结构预测中的

应用.  通过梳理该领域近年来的发展 ,  阐释了

ML技术加速电子结构及相关功能性质预测的必

要性与先进性, 并提出了未来的挑战与发展方向.

全文结构安排如下: 第 2节以时间线概述了ML加

速电子结构计算在分子研究领域的发展; 第 3节以

三大典型方法为例, 详细介绍了该领域在固体电子

结构研究中的最新进展; 第 4节将讨论若干具有代

表性的应用案例; 第 5节总结并展望了这一快速发

展领域当前面临的挑战与机遇. 本文旨在系统综

述ML加速电子结构计算的原理、方法、应用进展

以及挑战, 为该领域的研究人员提供全面深入的参

考, 以促进这一跨学科前沿领域的发展.

 2   分子中的ML加速电子结构计算

ML在加速电子结构计算方面的发展主要兴

起于近十年, 其核心是学习 DFT框架下的哈密顿

量. 从哈密顿量出发, 可以推导出单粒子图像中几

乎所有与电子相关的物理量, 例如电子波函数、电

子能量、Berry-相位和对电磁场的物理响应等. 最

早使用 ML预测电子结构的尝试出现在 2017年,

Hegde和 Bowen[22] 采用核岭回归 [23] (kernel ridge

regression, KRR)及双光谱方法 [24], 成功地预测了

包含旋转不变 s轨道的铜体系的哈密顿矩阵和包

含 s和 p轨道的金刚石半经验紧束缚哈密顿矩阵.

虽然该方法在特定情况下能够高效地替代 DFT计

算, 但实际运用时该模型需要大量的 DFT计算结

果作为初始训练集, 因而前期花费巨大. 另外, 由

于该模型的本质是插值工具, 对于训练集中未覆盖

的原子环境预测不可靠, 且仅适用于静态电子结构

预测, 无法模拟结构随时间的演化.

图 1展示了 ML加速电子结构计算模型在分

子领域发展时间轴 (2017—2025), ML电子结构计

算在分子领域的应用始于图神经网络 [25](graph

neural networks,  GNN)的突破性探索 .  2017年 ,

Schütt等 [26] 首次提出基于连续滤波器卷积的深

度张量神经网络 (deep  tensor  neural  networks,

DTNNs)的架构, 通过高斯函数展开构建原子间距

离与多层相互作用传递角度信息, 实现了有机分子

势能面以及分子能量的高效预测: 涵盖 GDB-7/

GDB-9数据库的 18万个小分子、苯/甲苯等分子

动力学轨迹及 6095个化学式为 C7O2H10 的分子同

分异构体,  能量平均绝对误差 (mean  absolute

error, MAE)仅 1.0 kcal/mol (分子动力学轨迹能

量MAE仅 0.05—0.39 kcal/mol), 单分子能量的

预测时间<1 ms, 为后续分子哈密顿量学习奠定了

基础. 2018年, Wu等 [27] 推出了分子 ML基准框

架MoleculeNet, 整合了 17个公开数据集并建立

标准化评估体系, 系统测试了分子轨道能级与激发

态能量等性质的预测能力.

2019年, Schütt等 [28] 开发了 SchNOrb框架,

引入Wigner-D矩阵增强数据等变性, 首次实现分

子轨道波函数的直接预测. 该框架对水、乙醇、丙二

醛和尿嘧啶等分子的总能量、哈密顿量及重叠矩阵

的预测 MAE分别<2 meV, <8 meV和<1×10–4,

显著提高了ML对量子化学性质预测的精度. 2020

年, Gasteiger等 [29] 提出一种定向消息传递方法,

利用 Bessel径向基函数编码键角信息, 构建了定

向消息传递神经网络, 命名为 DimeNet, 在 QM9

数据集 [30] 上将最高占据分子轨道 (highest occupied

molecular, HOMO)能级和最低未占据分子轨道

(lowest unoccupied molecular orbital, LUMO)能

级的能量预测 MAE降至 30 meV以下, 达到传统

DFT精度. 同年, Bhat等 [31] 基于密度矩阵时间序

列开发了量子 Liouville方程参数化方法, 实现电

场驱动下电子密度演化的准确预测.

γ − learning γ + δ − learning

2021年, Unke等 [32] 构建 SE(3)-等变 PhiSNet

模型, 严格保证波函数与电子密度的物理变换不变

性; Westermayr等 [33] 在此基础上提出 SchNet+H

模型, 通过哈密顿矩阵元间接预测激发态能量 .

2022年, Nigam等 [34] 结合对称性匹配的多中心等

变特征与线性回归,  大幅提升大分子体系哈密

顿量预测精度. 2023年, Cignoni等 [35] 创新性地采

用混合核函数高斯过程回归 (Gaussian  process

regression,  GPR),  成功预测光捕获复合物激子

哈密顿量; Shao等 [36] 提出基于电子约化密度矩阵

QMLearn框架, 包含   和 

两个阶段, 利用高斯型轨道基组 (Gaussian type

orbital, GTO)表示密度矩阵, 该方法在苯和水分
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子计算中展现出高精度预测能量、力等性能, 成功

替代多种传统计算方法.

2024年, Zhang等 [37] 开发了M-OFDFT方法,

首次将轨道自由密度泛函理论 (orbital-free density

functional theory, OF-DFT)拓展至分子体系: 采用

原子基组密度表示替代高维网格, 基于Graphormer

架构 [38] 构建动能密度泛函, 在乙醇分子上实现能

量MAE = 0.18 kcal·mol–1、力 MAE = 1.18 kcal·

mol–1·Å–1 的精度, 并成功外推至蛋白质体系. 同年,

Tang等 [39] 提出 MEHnet多任务框架, 采用考虑

了单重激发、双重激发以及微扰的三重激发的耦合

簇方法 [40] 的计算结果作为训练数据, 通过 E3-等

变图神经网络联合预测 8种量子化学性质, 碳氢化

合物能量 MAE = 0.1 kcal·mol–1·atom–1. 2025年,

Venturella等 [41] 推出 MBGF-Net, 以多体格林函

数为核心构建自能学习框架, 采用对称适应基与物

理增强损失函数. 仅需对 2000个分子训练即实现

HOMO/LUMO能级能量预测 MAE < 20 meV,

外推硅纳米团簇带隙 MAE < 0.2 eV, 结合 Hedin

方程 [8] 和 Bethe-Salpeter方程 [42] 将光学谱计算成

本降低两个数量级, 为强关联材料模拟提供高效

路径.

图神经网络与深度学习模型在量子化学计算

领域展现出强大的能力与巨大的潜力. 通过不断引

入方向性消息传递、SE(3)等变性、对称性匹配特

征以及先进的核方法等关键技术, 研究者们不仅显

著提升了对分子基态与激发态能量、哈密顿量、轨

道波函数、电子密度等核心量子化学性质的预测精

度, 使其逼近传统量子化学方法的水平, 还成功拓

展至含时演化等复杂场景的模拟. 这些进展标志

着ML与量子化学的深度融合, 为高效、高精度模

拟复杂分子体系开辟了新途径, 在材料设计、药物

发现等领域具有广阔的应用前景.
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图 1    ML加速电子结构计算模型在分子领域发展时间轴 (2017—2025), 来源于文献 [22,26–29,31–41]并整理 . 图中 E 为轨道能

量, H 为哈密顿矩阵 ,  MAE为平均绝对误差 ,  GNN为图神经网络 ,  DTNNs为深度张量神经网络 ,  GPR为高斯过程回归 ,

HOMO/LUMO为最高占据分子轨道/最低未占据分子轨道, LHC为光捕获复合物, KRR为核岭回归, GTO 为高斯轨道

Fig. 1. Development  timeline  for  machine  learning-accelerated  electronic  structure  calculation  models  (2017–2025),  with  sources

compiled  from Ref.  [22,26–29,31–41].  In  the  figure, E,  orbital  energy; H,  Hamiltonian  matrix;  MAE,  mean  absolute  error;  GNN,

graph neural network; DTNNs, deep tensor neural networks; GPR, Gaussian process regression; HOMO/LUMO, highest occupied

molecular orbital/lowest unoccupied molecular orbital; LHC, light-harvesting complex; KRR, kernel ridge regression; GTO, Gaussi-

an orbital.
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 3   固体材料中的 ML加速电子结构
计算

在量子化学领域, 利用ML方法预测大分子电

子结构的研究近年来已取得显著突破. 自然地, 研

究者们开始寻求将这类成功经验从分子体系推广

至大尺度固体材料的电子结构预测. 然而, 尽管

ML方法在分子体系上运用成功, 但直接迁移至周

期性固体依旧面临挑战, 源于二者在结构特征和计

算范式上的系统性差异. 结构差异体现在对称性要

求的区别: 分子哈密顿量在对称操作下不变 [43], 但

固体哈密顿量却在坐标、基组或旋转变换下会发生

协变 (等变). 这要求ML模型在处理固体材料的特

征构建中显式编码晶格矢量, 并严格保持倒空间

(k 空间)的周期性边界条件 (如能带结构计算中

k 点采样的布里渊区覆盖和点群约束).

H(k)

计算范式的差异上, 分子体系的有限尺寸允许

直接学习实空间稠密哈密顿矩阵, 其维度由基组决

定, 而固体材料的实空间哈密顿量维度巨大且高度

稀疏 (仅近邻相互作用显著). 这一根本区别推动了

固体中 ML转向两类高效范式, 学习倒空间  

或进行实空间紧束缚参数化. 前者需耦合晶体结构

H(k)

与 k 点采样, 面临高维 k 空间映射的计算负担、刚

性对称性约束 (厄米性、周期性、点群等变性)及统

一局域作用与全局对称性的矛盾; 后者则通过提取

局域作用实现本质降维. 鉴于   的基组敏感

性、效率瓶颈与建模复杂性, 基于 DFT的实空间

哈密顿量学习成为主流. DFT哈密顿量作为电子

结构的核心, 包含了电子能量相关的信息并可导出

波函数、能带、态密度等关键物理量 ,  对其进行

ML是实现大尺度材料高效高精度计算的有效

途径.

然而, ML直接应用于固体中 DFT哈密顿量

仍存挑战: 1)巨大维度导致海量数据, 对模型能力

与资源构成负担; 2)其非标量特性要求在坐标、基

组和规范变换下具有特定协变性/等变性, 增加了

保障物理一致性的模型设计复杂性; 3)传统 DFT

平面波基组产生的庞大矩阵, 对后续涉及对角化的

物性计算耗时巨大的部分削弱了ML的加速潜力.

在此领域, 清华大学徐勇团队 DeepH系列 [44–49]、

复旦大学向红军团队 HamGNN模型 [50–53] 及中国

科学技术大学顾强强团队的 DeePTB模型 [54,55] 形

成了三大技术标杆. 如图 2所示, 本节将按时间顺

序详细介绍上述 3种模型的发展与应用.

 

DeepH

HamGNN

DeePTB

xDeepH

磁性材料
严格局域的NN

 2023

2023年3月

DeepH-E3

E(3)-ENN
SOC项处理

 2023

2023年1月

DeepH-2

SO(2)等变LCMP
Transformer

arXiv: 2401.17015t

2024年1月

DeepH-UMM

通用材料大模型
元素周期表
前四行元素

  2024

2024年6月

DeepH-Zero

非监督学习
 2024

2024年9月2022年6月

DeepH

适用大尺度材料体系
哈密顿量旋转协变

MPNN
 2022

HamGNN

参数化哈密顿矩阵
E(3)等变神经网络
解析处理SOC项

  2023

HamGNN-UHM

通用材料大模型
元素周期表
所有元素

 2024

HamEPC

基于HamGNN的
EPC计算的工作流

 2024

HamGNN-Q

带电缺陷体系预测
 2025

2023年9月 2024年6月 2024年10月 2025年1月

TBworks

紧束缚哈密顿量
神经网络表示

 2022

2022年1月

DeePTB

紧束缚哈密顿量
神经网络修正

SK参数
 2024

2024年10月

DeePTB-E3

严格局域化消息传递
SO(2)等变卷积
简化张量积参数

 2025

2025年1月

2022年1月 2023年1月 2024年1月 2025年1月

更智能
更高效
更通用

图 2    ML加速固体材料电子结构计算的三大模型发展历程图 (2022—2025), 来源根据徐勇 (2022—2025)、向红军 (2023—2025)、
顾强强 (2024, 2025)等文献 [44–55]整理

Fig. 2. Timeline (2022–2025) of machine-learning-accelerated electronic-structure models in solid systems, compiled from the works

of Xu Yong (2022–2025), Xiang Hongjun (2023–2025), Gu Qiangqiang (2024, 2025) and Refs. [44–55].
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 3.1    DeepH: 高效率、高精度材料计算新
范式

2022年, Li等 [44] 通过消息传递神经网络 (mes-

sage passing neural networks, MPNN)[56] 并利用

局部性简化学习, 设计了通用的哈密顿量深度学习

第一性原理方法 DeepH, 方法架构如图 3(a), (b)

所示, 该方法是ML加速电子结构计算的里程碑成

果. 为了克服学习 DFT哈密顿量的难题, 利用电

子的“近视性”原理, DeepH方法采用局域的非正

交原子轨道作为基组, 将 DFT哈密顿量表示为稀

疏矩阵. 利用哈密顿矩阵的稀疏性和电子的近视

性 [57], 只需学习相邻原子 i 和 j (在截断半径 Rc 内)
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图 3    DeepH深度电子结构预测模型架构　(a) 通用信息处理框架, 展示了从结构输入→特征嵌入→核心网络 (消息传递)→哈

密顿矩阵→性质输出的完整流程; (b) DeepH架构, 基于局部坐标的 LCMP消息传递; (c) xDeepH架构, 同时处理晶体结构和磁

结构的双通道扩展网络; (d) DeepH-E3架构, 基于 E3等变图神经网络; (e) DeepH-2神经网络架构图; (f) DeepH-zero神经网络架

构和实现; (g) 发展历程与技术突破, 来源根据徐勇 (2022—2025)等文献 [44–49]整理

Fig. 3. Architecture evolution of deep electronic structure prediction models of DeepH: (a) Universal framework: structure →  fea-

ture embedding → message passing → Hamiltonian matrix → property output; (b) DeepH: LCNN-based LCMP message passing;

(c) XDeepH: dual-input extension (crystal + magnetic structures); (d) neural network architecture of DeepH-E3; (e) network archi-

tecture of DeepH-2; (f) architecture and implementation of neural-network DFT of DeepH-zero; (g) development history and tech-

nological breakthroughs; compiled from the works of Xu Yong (2022–2025) [44–49].
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之间的哈密顿矩阵元 Hij. 另外, 由于材料中原子的

全局旋转会使得 DFT哈密顿矩阵的协变变换. 为

了解决这一问题, DeepH引入了局域坐标系编码

原子对的方位角,  并基于 MPNN建构了 DeepH

神经网络架构, 使用局域坐标消息传递 [58] (local

coordinate message passing, LCMP)显式地传递

原子对的相对方向信息, 实现哈密顿量的高效率、

高精度预测. 该方法在不同材料体系中均展现出卓

越的预测能力, 例如在研究 Moiré扭转材料时, 将

小尺寸非转角的双层石墨烯结构的 DFT计算结果

作为训练数据, 对转角双层石墨烯进行预测时, 随

着测试体系的原子数从 200 atom到 1000 atom, 其

哈密顿矩阵的 MAE从 0.7 meV下降到 0.66 meV

以下. 并实现在相同计算资源的条件下, 将计算耗

时降至 DFT的 0.1%. 然而, 由于通过局部环境变

换适应旋转等变, 导致旋转的不变表示, 这种方法

仅限于小型周期系统 [44]. 因此, 随着材料原子数增

加, 数据量将大幅增加, 并且需要谨慎进行训练集

选取和参数设置才能实现模型的最佳性能. 此外,

在对称操作群约束下, 自旋轨道耦合 (spin-orbit

coupling, SOC)的引入并未以协变方式实现.

HDFT({R}, {M})

2023年, 通过两项突破性技术拓展深化了该

框架:  xDeepH[45],  一种预测磁性超结构 DFT哈

密顿量的深度学习方法, 方法框架如图 3(c)所示.

xDeepH通过构建严格遵循  E(3)×{I, T}对称群

(涵盖欧几里得变换与时间反演)的深度等变神

经 网络 (equivariant  neural  networks,  ENN)[59],

首次将磁自由度与原子结构共同纳入哈密顿量

  的高效建模中. 并利用 Clebsch-

Gordan系数 [60] 保持哈密顿量的旋转、平移及时间

反演对称性. 该模型在 3类磁性体系中实现 sub-

meV级精度: 自旋螺旋 (NiBr2)哈密顿矩阵 MAE

仅 0.56 meV; 非共线磁构型 (CrI3 纳米管)平面结

构哈密顿量的 MAE为 0.36 meV, 训练集未包含

的 (16, 16)纳米管结果能带误差<1 meV; 在磁性

斯格明子体系 (Moiré CrI3)中精准捕捉 63.48°扭

转角下斯格明子诱导的能带平带消失现象, 揭示磁

拓扑-电子态耦合机制 [61], 在保证较高精度的同时,

使得计算速度大幅度提升. DeepH-E3[46] 进一步将

框架拓展至普适性 E(3)等变建模 [62]. 该方法的框

架如图 3(d)所示, 其通过将原子种类、距离与方向

信息编码为不同角动量阶数的等变特征,  通过

Wigner-Eckart[63] 层与 Clebsch-Gordan[64] 张量变

换严格编码 SOC的变换规则, 并创新性地将半整

数角动量表示转化为整数表示, 规避了复杂网络计

算难题. 此外, 提出了一种名为 E3 LayerNorm的

归一化方案 (该方案利用从当前网络层的统计数据

中计算得出的均值和方差, 来对特征向量进行归一

化, 同时保持特征的等变性)结合消息传递机制,

使得整体框架能够在维持欧几里得对称性的条件

下, 实现计算复杂度的线性增长. 计算结果表明:

使用与 DeepH相同训练集训练, DeepH-E3模型

预测转角双层石墨烯的哈密顿矩阵元 MAE为

0.2—0.3 meV, 表现出比 DeepH更好的性能, 计算

耗时压缩至单 GPU分钟级, 并且计算耗时随所研

究体系 (Moiré超晶胞)尺寸的增大呈线性延长. 这

一“基础框架-磁性扩展-SOC普适化”的技术闭环

中, DeepH的局部坐标处理机制演进为 xDeepH的

磁矩操作, 而 DeepH-E3的等变张量变换则统一了

旋转约束与时间反演对称性, 使适用体系从常规材

料拓展至磁拓扑与强 SOC Moiré体系, 计算规模

突破 104 原子, 精度提升超两个量级.

2024年 ,  Wang等 [47] 通过引入 Transformer

架构 [65] 将 DeepH方法中的局域坐标系变换与

DeepH-E3方法中的等变神经网络结合, 形成可同

时嵌入旋转约束、时间反演与强 SOC效应的普适

性架构 DeepH-2 (图 3(e)). 精度较初代 DeepH提

升一个量级 (平均 MAE从 1 meV量级优化至

0.1 meV)且 GPU利用率大幅提升 .  此外 ,  即使

DeepH-2模型的训练参数数量比 DeepH-E3多了

一个数量级 (10倍), 其训练速度反而更快, 例如:

双层石墨烯, 每个训练轮次 (epoch)所花费的时间

从 200 s缩短至 100 s, 效率翻倍. 在此基础上, 构

建出一个 DeepH通用材料模型 (DeepH universal

materials model, DeepH-UMM)[48], 使用从Materials

Project数据库中筛选出 12062种涵盖周期表前

4行元素 (1—4周期, 排除过渡金属 Sc—Ni元素)

的非磁性固体材料结构, 通过基于 AiiDA高通量

计算框架的第一性原理计算软件 OpenMX, 计算

了相应的DFT哈密顿量作为训练集, 使用NVIDIA

A100 GPU训练 207 h (约 8.6 d)得到的模型可处

理多样化元素组成与原子结构的复杂材料体系, 并

在材料性质预测方面达到了出色的精度, 实现了测

试集 (训练集中随机选取 20% 的材料结构)中约

80%的结构哈密顿量 MAE  <  2.2 meV,  仅有

1.4%的结构 MAE > 10 meV. 该通用模型可准确
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预测复杂材料的多种物性, 验证了模型出色的通用

性能.

(Ẽ[H] = E[H] + λ||H −H||2)

2024年 8月, Li等 [49] 开发了全新的 DeepH-

zero方法 (图 3(f)), 其能在零训练数据的情形下利

用基本物理原理实现 DeepH优化学习. 该方法通

过在神经网络中嵌入物理规则, 巧妙地将神经网络

与变分 DFT算法 [66] 结合, 形成了一种名为“神经

网络 DFT”的无监督学习框架 .  DeepH-zero的

架构标志着从局部哈密顿量学习 (DeepH)向全

局能量泛函优化的范式跃迁.  其广义变分框架

 通过可微分编程, 实

现量子力学约束与神经网络的闭环优化, 使模型

在 H2O分子中达到 0.013 μeV的能量精度 (超越

监督学习 60倍).

如图 3(g)所示, DeepH呈现出清晰的架构演

进路径, 从 DeepH的局部坐标消息传递 (图 3(b)),

到 xDeepH的双输入磁扩展 (图 3(c)), 再到DeepH-

E3的球谐等变网络 (图 3(d)), 并通过引入 Trans-

former架构, 团队进一步提升了DeepH方法的通用

性和泛化能力, 推出了 DeepH-2方法 (图 3(e)), 最

终到 DeepH-zero的无监督学习框架 (图 3(f)). 这

一系列方法基于统一的通用信息处理框架 (图 3(a)),

其流程涵盖从结构输入、特征嵌入、核心消息传递

网络、哈密顿矩阵构建, 直至最终物理性质输出的

完整过程.  这一演进过程同步实现了精度提升

(MAE: 1 meV →10–3 meV)、计算复杂度优化并逐

步扩展了应用范围, 从基础电子结构模拟延伸至磁

性体系与 SOC等复杂场景.

 3.2    HamGNN: 通用哈密顿量预测框架

T
nili,nj lj
l,pipj ,m

Ωon
i

Ωoff
ij

2023年, Zhong等 [50] 基于等变神经网络构建

了一个满足 E(3)群等变性的参数化哈密顿量框架

HamGNN, 其中通用 E(3)等变框架如图 4(a)所

示. 该模型与 3.1节介绍的 DeepH-E3不同—后

者主要依赖Wigner-Eckart层与模块化网络实现

高效的大规模晶体哈密顿量学习. HamGNN则从

表示论出发通过将哈密顿量矩阵的每个块分解为

具有明确角动量阶数 l 和宇称 pi pj 的不可约球张

量分量  , 并利用 Clebsch-Gordan系数进

行耦合, 从而在数学上严格重构实空间中的紧束缚

哈密顿量. 这一分解方式分别通过“在位项”  与

“非在位项”  的直和形式表示, 确保了哈密顿量

在旋转和宇称变换下的严格等变性, 同时契合图神

经网络所具备的平移不变性. 此外, 创新性地将哈

密顿量解耦为自旋无关项与 SU(2)等变项 [67], 从

而在降低参数复杂度的同时保持严格物理对称性.

基于此框架设计的等变图卷积网络 (如图 4(b)所

示), 实现了在分子/晶体结构到哈密顿量的高效映

射, 在复杂体系中展现出卓越的电子结构预测能

力, 例如: 对 QM9测试集 [30](10000分子)的哈密顿

矩阵预测 MAE = 1.49 meV; 在固体材料中, 碳/

硅同素异形体及 SiO2 异构体测试集 MAE分别为

 

 =0, 1, 2⋯

共同特征: • E(3)旋转平移等变性 •  轨道基表示 •  消息传递机制 •  材料系统间可迁移 •  DFT级精度 •  角动量守恒
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+ - 0

正电 中性负电 电荷转移

增强输入
{, , }

电荷增强
O(3)卷积

缺陷感知
电子结构

图 4    HamGNN深度电子结构预测模型架构对比　(a) HamGNN和 HamGNN-Q通用 E(3)等变架构框架 [51]; (b) HamGNN的通

用电子结构预测架构 [51]; (c) HamGNN-Q带电缺陷预测专用架构 [54]

Fig. 4. Architecture evolution of deep electronic structure prediction models of HamGNN: (a) Common E(3)-equivariant framework

of HamGNN and HanGNN-Q[51]; (b) general electronic structure prediction architecture of HamGNN[51]; (c) charged defect predic-

tion specialist of HamGNN-Q[54].
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1.55 meV, 2.01 meV和 2.29 meV. 此外 ,  该模型

还具有突出的大体系迁移性: 金刚石 (88原子)与

Moiré扭转双层石墨烯 (1084原子)预测 MAE仅

1.54 meV与 3.23 meV; 硅位错超胞 (4284原子 )

计算耗时 36 s (80核 CPU)即完成计算; 扭转双层

MoS2 (1626原子)基于 54原子训练, 获得 0.89 meV

精度,  加速比达 3500倍 .  在强 SOC材料 Bi2Se2
(45原子)中, 对 SOC哈密顿量虚部预测的 MAE

仅为 0.05 meV, 成功复现拓扑表面态的狄拉克锥

和自旋-动量锁定行为 (即电子自旋方向与其动量

方向严格关联).

2024年 , Zhong等 [51] 基于 HamGNN框架将

Materials  Project数据库中的晶体结构 ,  使用

OpenMX进行基于原子轨道基组的 DFT哈密顿

量矩阵计算, 并训练, 实现了一款能够跨越整个周

期表、适用于各类材料的通用 HamGNN电子哈密

顿量模型 (Universal HamGNN model, HamGNN-

UHM). Zhong等 [51] 采用了一种独特的“预训练+

微调的两步训练程序”, 巧妙融合了能量本征值的

训练策略, 确保了模型的真正通用性, 即可以用一

个模型准确描述元素周期表上任意元素构成的晶

体电子结构而无需额外的训练. 他们首先在多种块

状材料上验证了模型预测电子结构的准确性, 随后

在复杂低维材料如 MoS2/WS2 扭转异质结和

C60 团簇上进一步测试, 表明模型能有效预测此类

材料电子结构的能力. 尤为重要的是, 模型成功应

对了多元素系统 (即便是包含 5种以上元素的复杂

组合, 如 Hf2Zr9Ta6Ti5Nb5B54, HfTaTiB4MoC4, 和

K3Ba3Li2Al4B6O20F晶体), 体现了其在处理元素

多样性上的优越性. 通过在 GNoME数据集上的

高通量计算, 模型识别出众多具有直接带隙和扁平

能带色散的晶体, 证明了其在新材料探索中的高效

应用. 进一步, 在 HamGNN预测的超晶胞哈密顿

矩阵基础上, 他们实现了用有限差分法直接计算超

胞的电声耦合 (electron-phonon coupling,  EPC)

矩阵的框架 HamEPC[52]. 以 Si和 SiC为例, 发现

HamGNN预测的 EPC矩阵元与 DFT计算结果

高度一致. 此外, 他们计算了 GaAs的载流子迁移

率以及 CsV3Sb5 复杂的电子结构和静态电荷密度

波 (charge density wave, CDW)相位. 该方法以

< 2 meV的 MAE精度复现了 DFT哈密顿量, 同

时基于该方法计算的载流子迁移率与实验值高度

吻合, 对 CsV3Sb5 的压力-超导转变温度 (Tc)相图

也成功再现了实验观测的双穹顶结构. 在推理阶

段, 该方法相比密度泛函微扰理论 (density func-

tional perturbation theory, DFPT)提速达 4个数

量级, 其中哈密顿量对原子位置的梯度计算更是实

现了超过 10000倍的加速, 并首次实现了对包含

972个原子的 CsV3Sb5 CDW超晶格 EPC预测 ,

为研究材料的电子输运、超导等物理性质提供了强

大而高效的新手段.

rij V 0
i

V 0
i ⊕Q0

i

AsGa Ga0As

As6+Ga

2025年 ,  Ma等 [53] 在 HamGNN方法的基础

上提出了带电缺陷电子结构的可迁移预测框架

HamGNN-Q(图 4(c)). 首先将原子种类 Zi、原子间

距离|  |和相对方向编码 r 为初始特征向量   ,

然后将原子种类与背景电荷通过多层感知器 (multi-

layer perceptron, MLP)形成包含电荷信息的完

整初始原子特征  , 实现了电荷状态到电子

结构的直接映射. 对 GaAs的 4600个结构哈密顿

量预测的 MAE仅为 1.013 meV, 对未训练的复杂

缺陷 (如置换缺陷簇   -  ), 能带预测误差

< 1 meV, 显示出对缺陷体系的强泛化能力 . 在

13824原子的   置换缺陷体系中, 揭示了极化

子波函数分布. 测试结果表明, HamGNN-Q的计

算效率较 DFT提升 3个数量级. 该方法精准解析

从单空位到万原子级极化子的电荷局域化效应, 为

缺陷工程与器件设计提供原子级模拟工具.

 3.3    DeePTB: 产业应用导向的电子结构
计算

Gu等 [68] 在神经网络表示电子结构领域的研

究始于其开创性的 TBworks方法. 在 2022年的工

作中, 他们首次提出了一种可从第一性原理分子动

力学数据中学习并预测紧束缚 (tight binding, TB)

哈密顿量的神经网络框架. 该方法通过监督学习

ab initio 能谱, 构建了一个可转移的高保真紧束缚

模型, 实现了对动态系统中电子结构的高效、准确

采样. TBworks成功应用于一维电荷密度波材料

Carbyne, 精确再现了其电子谱函数和光学电导率,

并揭示了超越玻恩-奥本海默近似的非绝热动力学

效应. 这项工作为后续开发更高效、通用的神经网

络紧束缚模型奠定了重要的概念和方法论基础.

2024年, Gu等 [54] 在此基础上开发了一个基

于深度学习的电子紧束缚模型哈密顿量构造方法

DeePTB (图 5(a)). 通过将对称性保持的局域环境

描述符映射至 Slater-Koster参数, 实现了具有第
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一性原理精度的电子哈密顿量预测, 同时保证了计

算效率. 由于 DeePTB采用正交基组 TB形式, 因

此可以接入大规模 TB算法 (tight-binding propa-

gation  method,  TBPM[69]).  在测试中 ,  DeePTB

在较小系统 (如 2×2×2超胞)上通过与第一性原

理计算对比,  其本征值预测的 MAE普遍低于

50 meV(数值因材料而异, 多数在 20—50 meV之

间). 同时 ,  外推至百万原子级别 (如 106 原子的

GaP超胞)的电子结构计算, 与实验结果对比较

好, 从而实现器件尺度的量子力学精度模拟, 且计

算效率较传统第一性原理方法提高 3—5个数量级.

2025年, Zhou等[55] 推出DeePTB-E3 (图5(b)),

一种基于严格局域等变网络 (strictly  localized

equivariant message-passing, SLEM)预测 Kohn-

Sham哈密顿量、密度矩阵、重叠矩阵等的方法.

SLEM通过采用 SO(2)加速张量积运算方案并设

计严格的局部消息传递模型, 有效解决了在原子轨

道基组下表示等变量子算符时面临的高计算复杂

度与并行化困难的问题. 这种设计极大地增强了模

型的可传递性, 并支持在等变算符预测任务中对大

尺寸系统进行并行推理. 对于性质计算所需的轨道

重叠矩阵, SLEM利用双中心积分与不变参数化

(如 Slater-Koster参数)的物理特性, 以极低的附

加成本 (仅约同规模 E3网络参数量的 3%)实现了

高精度拟合, 其误差接近单精度浮点数极限. 而对

于分子等非周期体系, 该团队还提供了局部等变消

息传递模型, 该模型可以更准确地描述非周期系统

中电荷的非局域性, 并提供更好的准确性. 该模型

在哈密顿量预测方面达到 sub-meV量级的精度,

电子密度和重叠矩阵的预测误差更是在 (~10–5),

接近了单精度浮点数的机器精度.

 3.4    DeepH,  HamGNN 与 DeePTB 模型
的对比

在 回 顾了 DeepH系 列 、HamGNN系 列 与

DeePTB系列三大主流 ML电子结构预测方法的

发展与特色后, 本文对它们的核心特性进行系统梳

理与对比, 如表 1所示. 这些模型虽然在架构设

计、对称性处理、精度控制和应用范围上各有侧重,

但共同推动了ML在电子结构计算中的应用边界.

从理论基础上看, 三大类方法均高度重视物理

对称性的嵌入: DeepH系列通过局部坐标消息传

递和 E(3)等变网络显式编码旋转、平移及时间反

演对称性; HamGNN采用严格的 E(3)等变张量分

解框架, 支持 SOC和带电缺陷建模; DeePTB则

依托严格局域等变消息传递和 Slater-Koster参数

化, 在保持高精度的同时显著提升计算效率. 这些

对称性保持机制不仅是实现高精度预测的关键, 也

为模型在复杂磁性、拓扑和非平衡系统中的推广奠

定了基础.

在预测精度方面, 各模型在典型体系 (如石墨

烯、二硫化钼、硅等)中均可实现meV甚至 sub-meV

级别的哈密顿量预测MAE, 部分模型如DeepH-E3,

DeePTB-E3等在特定测试中MAE小于 0.5 meV,

已达到甚至超越传统 DFT计算在某些应用场景下

的精度需求. 此外, 相较于 DFT计算, 效率提升显

著, 普遍达到 3—5个数量级加速, 尤其在万原子

级以上大体系模拟中表现突出.
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图 5    DeepTB和 DeePTB方法的架构　(a) DeePTB方法的架构 [55]; (b) DeePTB-E3方法的严格局域化等变 (SLEM)架构 [56]

Fig. 5. Architecture  of  the  DeePTB  and  DeePTB-E3 method:  (a)  General  architecture  of  DeePTB[55];  (b)  the  strictly  localized

equivariant message-passing architecture of DeePTB-E3[56].
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在数据需求与适用性方面, 不同模型呈现出显

著差异. 目前已公开的 DeepH系列通常依赖数百

至数千个第一性原理计算样本作为训练数据, 在周

期性晶体或磁性材料体系中可实现毫电子伏量级

的高精度预测. 例如, 在石墨烯研究中, 基于 270

个 6×6超胞构型作为训练集 ,  DeepH与 DeepH-

E3分别实现了哈密顿矩阵元素平均绝对误差

(MAE)为 2.1 meV与 0.4 meV;  在 CrI3 体系中 ,

xDeepH使用 1000个超胞结构 (每结构含 32个原

子及 10种磁配置), MAE达 0.36 meV. 然而, 该系

列模型的性能在一定程度上受局部坐标选取或自

旋约束DFT计算成本的限制. 相比之下, HamGNN

系列模型依赖涵盖分子、固体及缺陷等多样化结构

的大规模数据集, 以保障其优异的跨体系可转移

性, 适用于包括带电缺陷在内的复杂场景. 例如,

在 QM9分子数据集上, HamGNN以 10000个分

子作为训练集, MAE约为 1.49 meV; 在碳同素异

形体数据集中, 使用 426种结构训练, MAE约为

1.55 meV; HamGNN-Q在约 4600个 GaAs结构上

训练后, MAE达 1.013 meV. 然而, 该模型在实现

高精度的同时, 也带来较高的模型复杂度与训练成

本. DeepTB基于紧束缚框架构建, 其训练数据通

常来自分子动力学轨迹采样, 需覆盖结构扰动与应

变效应. 在 IV族与 III-V族材料中, 仅使用 100个

分子动力学瞬态结构训练, 模型在 500个测试结构

上实现 20—50 meV的 MAE. DeepTB适用于有

限温度下的电子结构模拟与大规模体系 (如 106 原

子 GaP), 计算效率较第一性原理方法提升数个量

级, 但其精度受限于紧束缚模型的近似性. DeepTB-

E3模型通过严格的局域性设计实现了优异的数据

利用效率, 在仅使用约 100个MoS2 结构作为训练

数据时, 仍达到 0.37 meV的MAE, 并适用于含重

元素的体系. 然而, 其对截断半径较为敏感, 且在

涉及长程相互作用的分子体系中可能存在局限性.

应用上, DeepH和 HamGNN已成功应用于磁

性材料、Moiré超晶格、缺陷体系, 并且可以处理电

声耦合等复杂问题; DeePTB则侧重于面向产业应

用的大尺度光电材料模拟, 在百万原子体系的电子

结构与光学性质预测中显示出强大潜力. 各模型均

提供了与主流第一性原理软件 (如 OpenMX,

Abacus, SIESTA等)的接口, 支持高效数据生成
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与模型推理. 模型所依赖的训练与测试数据集公开

可用 (主要存储于 Zenodo等知识库, 见表 1), 这为

方法的复现、比较与进一步发展奠定了坚实的数据

基础,  极大地促进了该领域的开放科学与合作

研究.

 3.5    国内外 ML 赋能电子结构计算: 前沿
算法与效率革命

除三大核心团队外, 国内外各个研究团队在

ML加速电子结构计算领域形成了多极化创新网

络, 各研究课题组依托学科优势发展出特色技术

路线.

2022年, Zhang等 [70] 系统评估了多种 ML算

法与结构描述符的组合对典型钙钛矿 MAPbI3 非

绝热耦合的预测性能, 发现轻量梯度提升机 (light

gradient boosting machine, LightGBM)算法结合

正弦矩阵描述符效果最优. 次年, Wang等 [71] 利用

双向长短期记忆网络 (bidirectional  long-term

memory network, Bi-LSTM)成功预测了金属卤

化物钙钛矿体系的非绝热耦合; 与此同时, Cignoni

等 [31] 在高斯过程回归框架中, 通过线性核与非线

性Matern核分别处理静电势和几何变化, 精确预

测了光捕获复合物的激子哈密顿量. 2024—2025
年间,  神经网络方法取得重要突破 .  Fu等 [72,73]

提出了基于 Transformer架构的神经网络量子

态方法 (QiankunNet-Solid), 利用多层感知机 [14]

(multilayer perceptron, MLP)构建相位子网络, 学

习波函数相位结构, 并通过引入周期性边界条件,

在固体体系中实现了高精度的基态能量计算和能

带结构预测, 其性能超越传统量化中的耦合簇方法

并接近全组态相互作用 [74] 方法的精度. 同年, Cho

等 [75] 提出的 SemiH框架首次将半监督学习 [76] 引

入 DFT哈密顿量, 进行神经网络训练, 通过伪哈密

顿量构造和渐进式损失权重调度策略显著提升数

据效率, 在减少 40%标记数据需求 (相比 DeepH-

E3)的同时, 有效降低了哈密顿量、能带结构以及

超胞和高温结构的预测误差, 增强了模型泛化能

力, 并兼容MPNN架构及多材料联合训练. 2025年,

Cao等 [77] 进一步开发了基于ML的准非绝热哈密

顿网络, 命名为 DHNet. 该模型利用基于Wannier

基的旋转不变描述符捕获局域与非局域环境信息,

仅需 10个结构的 DFT训练集即可高效构建大规

模系统哈密顿矩阵, 计算效率较 DFT提升约 5个

量级. 结合DeePMD[78,79] 力场, 成功实现了包含 3675

个原子的单层MoS2 体系的非绝热动力学模拟, 所

得电子迁移率 (110 cm2·V–1·s–1)与实验值范围 (3—

200 cm2·V–1·s–1)吻合良好.

 3.6    ML 电子结构计算的技术范式演进

在梳理了各类代表性模型的发展脉络后, 我们

可以从一个更宏观的视角审视其内在的技术范式

演进. ML在电子结构计算中的应用, 并非单一技

术的线性发展, 而是研究范式经历了从“黑箱”性质

预测, 到可迁移的哈密顿量学习, 再到严格等变架

构设计的深刻变革. 这一演进过程, 其核心驱动力

是从追求单一性质的预测精度, 转向追求对整个电

子结构物理量的普适、可迁移且严格保持对称的表

示能力.

早期研究属于第一范式: 黑箱性质预测. 该范

式旨在绕过复杂的量子力学方程, 建立从原子结构

到特定物理性质 (如总能量、能带带隙)的端到端

映射. 虽能实现特定任务的高效预测, 但存在固有

局限: 模型可移植性差, 其“黑箱”特性导致预测结

果缺乏电子结构的内在信息, 且严重依赖训练数据

分布, 泛化能力有限. 以核岭回归和早期图神经网

络 (如 SchNOrb[28])为代表的工作实现了从 0到 1

的突破, 但未能释放ML的全部潜力. 为克服上述

局限, 研究逐渐转向第二范式: 可迁移的哈密顿量

学习, 不直接预测性质, 而是学习其物理根源—

DFT哈密顿量. 一旦获得准确的哈密顿量, 即可通

过标准对角化计算多种电子性质. 该范式实现了

“本质降维”, 并使得学习到的模型成为一个可移植

的“数字孪生”, 替代昂贵的第一性原理计算. 面对

哈密顿量在坐标旋转下的等变性挑战, 以DeepH[44],

HamGNN[50] 和 DeePTB[54] 为代表的方法通过引

入局部坐标系、E(3)等变神经网络等策略成功学

习了哈密顿量, 并展现出卓越的可迁移性. 当前的

前沿技术已进入第三范式: 物理规律引导的无监督

学习, 这被视为一次从“数据驱动”到“原理驱动”的

范式飞跃. 其核心思想是减少甚至摆脱对 DFT标

注数据的依赖, 转而通过让模型直接满足物理规律

的硬约束来进行训练. 例如, 通过将神经网络嵌入

变分法框架, 使其输出的电子密度或哈密顿量必须

满足能量最小化原理 (如 DeepH-zero[49]); 或利用

物理系统的对称性、守恒定律等构建自监督信号.

在此范式下, 物理规律本身成为最主要的监督信
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号, 模型不再仅仅是拟合数据, 而是在学习并内化

量子力学的基本方程. 这使得模型具备从第一性原

理直接“思考”并发现新材料的能力, 为实现真正的

科学发现奠定了基础.

从第一到第三范式的演进, 标志着该领域从

“替代计算”到“重构模型”再到“内化规律”的深化

路径. 未来的发展方向将更加侧重于物理原理与

ML的深度融合, 探索出一条不依赖于大规模标注

数据的、真正自主的电子结构智能计算新路径.

 4   应　用

ML方法在电子结构计算领域的突破性进展,

正深刻重塑材料模拟的研究范式, 将计算规模推进

至万原子级, 并保持 sub-meV量级精度, 极大降低

了电子结构计算的时间花费. 使得一系列传统方法

“不可计算”或“难以系统计算”的问题变得可行. 本

节将探讨 ML加速电子结构预测模型如何在四大

前沿方向引发研究范式的根本性变革.

 4.1    分子光谱预测: E(3)-等变消息传递神
经网络

分子光谱学是一种用于分析分子电子或振动

特性的技术, 广泛应用于物理、化学、生物学等多

个科学领域. 这项技术通过捕捉分子的特定“指纹”

来帮助科学家识别和研究物质. 量子化学模拟是

实现这种预测的主要方法, 但其需要对大量分子逐

个进行复杂的电子结构计算, 极大地限制了其在高

通量筛选或实时分析中的应用. Zou等 [80] 开发的

DetaNet模型代表了这一领域研究范式的根本转

变. 通过在原子间传递更高阶的张量信息, 利用结

构特征快速而准确地预测各种分子属性, 基于这些

功能, DetaNet还具备预测红外吸收、拉曼散射、

紫外-可见吸收等功能模块 .  该模型使用包含

130000种有机分子的 QM9数据集进行训练和验

证. DetaNet对分子性质的预测达到了接近 DFT

的极高精度, 例如图 6(a)中 5种代表性分子 (环己

酮、2-甲基吡嗪、庚-3, 5-二炔-2-酮、苯胺和 5-甲氧

基-1, 3-恶唑-2-羧酸, 其预测 13C和 1H NMR化学

位移的决定系数 (R2)高达 0.9997(图 6(c), (d)), 紫

外-可见光谱的 R2 为 92.04%(图 6(b)). 重要的是,

与传统使用 DFT的量子化学方法相比, 该方法在

光谱计算的效率上提高了 3—5个数量级. 此外,

DetaNet的结果还表明其具有良好的可迁移性, 能

够应对不同大小的分子以及不同环境条件 (如电

场、溶剂和表面吸附)的影响 ,  这进一步扩展了

DetaNet在各种光谱实时应用的可能性. 更重要的

是, 这种能力使得“计算光谱学”从一种用于深入分

析特定分子的工具, 转变为一种可以用于快速扫描

大型分子数据库、甚至辅助实时实验检测的通用技

术. 此外, DetaNet展现出对分子大小和外部环境

(如电场、溶剂)的良好迁移性, 打破了传统计算中

“一个结构一次计算”的孤立模式, 为在复杂条件下

进行光谱预测开辟了新道路.

 4.2    缺陷工程: 精准预测缺陷性质

位错作为材料塑性变形的核心载体, 其核心结

构 (core structure)和 Peierls势垒的精确描述是

预测金属材料力学响应的关键. 位错模拟的位错核

心区 (<10 Å)的电子结构畸变需 DFT精度描述,

但是 Peierls势垒的求解需超胞包含数千原子, 远

超常规 DFT计算上限. 通过 ML加速电子结构方

法和 ML势函数结合有望解决这个问题 . Zhong

等 [50] 发展的 ML加速电子结构方法 HamGNN模

型在含 4284原子的硅刃位错超胞研究中 (图 7(a)),

在 30种完美硅同素异形体训练的模型成功捕捉到

了位错导致的带隙变小与价带顶局域态. 该模型的

预测精度在一个 192原子的刃位错超胞上经 DFT

验证, 其哈密顿量预测MAE仅为 1.03 meV, 实现

对位错核心结构与能量的高精度预测. 这一研究的

变革性意义在于: 无需对该巨大超胞进行昂贵的

DFT计算, 仅通过在小型完美晶体上训练的模型,

即可直接解析位错核心的电子结构畸变. 这为后续

实现 HamGNN预测的位错电子结构与ML势函数

(deep potentials, DP)预测的力学响应 (如 Peierls

势垒)耦合, 构建材料塑性变形的全流程ML框架

铺平了道路.

(∆Ef (q))

(ϵ(q/q′))

缺陷工程是调控半导体材料性能的核心手段,

其关键在于精确计算带电缺陷的形成能 

和跃迁能级  , q 是缺陷所带的净电荷数. 传

统 DFT计算面临两大瓶颈; 首先, 大尺度超胞需

求, 为消除缺陷间的周期性相互作用, 需构建包含

数千原子的超胞, DFT计算代价高昂; 其次, 长程

库仑修正, 带电缺陷的静电场需引入诸如 FNV[81]

(Freysoldt-Neugebauer-Van de  Walle)或局域电

荷补偿 [82] 等修正方案, 进一步增加复杂度. 这些瓶
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∆Ef(q) ϵ(q/q′)

颈使得系统性研究大尺度缺陷簇或精确计算带电

缺陷的形成能变得异常困难. 近年来ML方法, 为

解决这一困境提供了全新的范式. 通过构建跨尺

度、等变性的电子结构模型, 有望显著加速缺陷性

质的预测. 在缺陷工程中, ML加速电子结构方法

(HamGNN-Q[53])可无缝衔接以下关键步骤: 首先,

结合ML势函数 (如MACE[83], GAP[84])优化缺陷

构型; 其次, 利用等变 GNN直接输出大尺度缺陷

体系的哈密顿矩阵; 最后, 将预测的哈密顿矩阵与

Poisson方程 [85] 求解器耦合, 实现 FNV修正的自

动化, 精确计算  和  . 例如, HamGNN-

Q成功预测了 13824个原子的砷化镓带电缺陷体系

的哈密顿矩阵和电荷密度 (图 7(b)), 不仅精确预

测了其能带结构, 更在如此大的尺度下首次模拟出

直径约 40 Å的极化子波函数分布. 这标志着研究范

式从“只能基于小超胞近似和复杂修正来间接推断”,

跨越到了“能够利用 ML模型, 快速获得大体系具

有量子力学精度的电子结构信息 (如哈密顿量), 并

据此进行直接物理分析” 的新阶段, 为在真实尺度

下理解缺陷的物理效应提供了前所未有的工具.

ML通过物理驱动的等变架构与高效跨尺度

建模, 将缺陷工程从受限于计算尺度的近似处理,

推进到了能够对真实复杂缺陷体系进行直接、精准

量子模拟的新范式, 极大地推动了高性能半导体材

料的理性设计.

 4.3    拓扑量子材料响应: 自旋-轨道耦合效
应精准建模

拓扑量子材料的新奇物性 (如拓扑绝缘体边界

态、Moiré超晶格平带关联效应)源于电子关联、

SOC与能带拓扑的协同作用. 传统 DFT在精确处

理 SOC效应 (尤其在大体系)和严格遵守拓扑态
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图 6    ML加速电子结构计算在预测分子光谱中的应用实例 [80]　(a) 从左到右依次为环己酮、2-甲基吡嗪、庚–3, 5-二炔–2-酮、苯

胺和 5-甲氧基–1, 3-噁唑–2-甲醛的分子结构示意图 ; (b) 对比 DetaNet预测的紫外-可见光谱 (红色)与图 (a)所示分子的参考数

据 (蓝色)DetaNet预测的吸收强度误差随波长的变化 ; (c) 对比了 DetaNet预测的 13CNMR谱与图 (a)所示分子的参考数据 ; (d)

对比了 DetaNet预测的 1HNMR谱与图 (a)所示分子的参考数据

Fig. 6. Application examples of machine learning accelerating electronic structure computation in predicting molecular spectroscopy,

reprinted  from[80]:  (a)  Left  to  right,  schematic  structures  of  cyclohexanone,  2-methylpyrazine,  hepta3,  5-diyn-2-one,  aniline  and

5-methoxy-1,  3-oxazole-2-carbaldehyde;  (b)  comparison of  the  DetaNet-predicted (red)  UV-Vis  spectra  with reference  data  (blue)

for the molecules shown in panel (a);  (c) comparison of the DetaNet-predicted  13C NMR spectra with reference data for the mo-

lecules shown in panel (a); (d) comparison of the DetaNetpredicted 1HNMR spectra with reference data for the molecules shown in

panel (a).
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表征所需的对称性 (SU(2)旋转不变性、时间反演

对称性)方面面临挑战. 这使得系统性地探索大尺

度Moiré体系或通过参数扫描研究拓扑相变成为

计算上的一个巨大挑战. ML加速电子结构方法通

过内禀保持物理对称性 (如 DeepH-E3 (3.1节)和

HamGNN (3.2节)), 成为研究这类体系的理想工

具, 使得“精确对称性”不再是计算的负担, 而是模

型自带的属性.

针对这些挑战, DeepH-E3[46] 框架基于小体系

训练模型, 成功预测了包含上万原子的魔角石墨

烯 (q = 1.08°)的电子结构, 精确复现了其标志性

的平带特征 (图 8(a)), 计算耗时仅为分钟级. 在扭

转双层 Bi2Te3 体系中, 通过调节 SOC强度参数 l,

DeepH-E3成功预测了拓扑非平凡相 (ℤ2 = 1)并

捕捉到狄拉克锥的形成过程 (如图 8(c)所示). 这

种“参数扫描式”的拓扑量子相变研究, 在传统框架

下由于每个点的计算成本都极高而难以实现, 如今

在ML范式下变得轻而易举. 此外, HamGNN[50]

方法应用于 Bi2Se3 薄膜, 预测了导带底附近未占

据态的自旋-动量锁定特征 (图 8(b)),  也证明了

ML模型能够在内禀层面捕获拓扑表面态的鲁棒

性. 这些方法使得在包含强 SOC和复杂磁序 (如

Moiré结构)的大尺寸体系中, 高效、高精度地解析

拓扑电子态和自旋纹理成为可能, 为设计和理解拓

扑量子器件提供了关键理论支撑. 当前研究正进一

步拓展至利用 ML预测结果进行高通量魔角搜寻

(加速新材料发现)以及融合 DMFT处理强关联物

理 (如Mott相变 [86]).

 4.4    材料光电与输运性质预测: ML 加速
哈密顿量偏导矩阵元计算

∂H/∂A

在光电材料应用中, 理解有限温度下的光电行

为 (如带隙温度依赖性、应变诱导光吸收调制)和

电输运/超导性质, 是器件设计的物理基础. 但这

些性质的计算, 特别是光导率、介电函数等光学响

应依赖于电子能带间的跃迁矩阵元 (本质是电子哈

密顿量对电磁场或其等效动量算符的偏导数矩阵

元  ), 而载流子迁移率、超导相变等则依赖
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图 7    ML加速电子结构方法预测缺陷体系的示例　(a) HamGNN模型预测的硅位错的能带结构和电荷密度 [50]; (b) HamGNN-

Q模型预测砷化镓带电缺陷结构的能带结构和电荷密度 [53]

Fig. 7. Examples of defect system predictions using machine learning-accelerated electronic structure methods: (a) Band structure

and charge density of a silicon dislocation predicted by using the HamGNN model[50];  (b) band structure and charge density of a

charged defect structure in gallium arsenide (GaAs) by using the HamGNN-Q model[53].
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∂H/∂u

于 EPC矩阵元 (本质是电子哈密顿量对原子位移

的偏导数矩阵元  ). 这些都面临传统第一性

原理方法 (如 DFT/DFPT)计算复杂度高的瓶颈,

难以处理 103 原子级的体系. ML方法的范式变革

作用在于其充当了一座高效的桥梁, 将基础电子结

构的预测能力直接延伸到这些高阶物性的计算上,

打破了后者的计算瓶颈.

Gu等 [54] 的 DeePTB框架通过深度学习的紧

束缚方法高效预测电子结构, 并结合 DeePMD[78]

分子动力学和 TBPM[69] 传播方法, 首次实现了对

大尺度体系的模拟, (如百万原子级 GaP)材料电

子结构及光电性质 (光导率、介电函数、吸收谱), 成

功复现了实验观测的特征吸收峰 (图 9(a)). 这标志

着研究范式从“对小模型体系计算性质”到“直接模

拟真实器件尺度的光学响应”的跨越. Zhong等 [52]

的 HamEPC框架则更具革命性地展示了ML如何

变革动力学过程的研究, 其利用 HamGNN[50] 预测

哈密顿量, 进而高效计算 EPC矩阵元, 实现了对

SiC材料 EPC的高精度预测 (图 9(b)), 并高效计

算了 GaAs的载流子迁移率 (图 9(c))和 Kagome

超导体 CsV3Sb5 的声子谱图 (图 9(d)),  展示了

CDW相中对 EPC贡献大的声子模式, 推理速度

较 DFPT提升万倍以上. 这两项突破性工作共同

表明: ML方法通过高效精确预测材料的基础电子

哈密顿量及其在特定微扰 (光场或原子位移)下的

偏导数矩阵元, 克服了计算瓶颈, 使得在接近真实

尺度上高精度模拟材料复杂的光电响应与电输运/

超导性质成为可能, 为先进光电器件和量子材料设

计提供了强大的计算工具.

 5   总结与展望

ML加速电子结构计算方法经过近十年发展,

已实现从量子化学小分子到百万原子级固体材料
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图 8    ML加速电子结构计算应用于量子材料领域内的实例　(a) 采用 DeepH-E3模型预测转角为 1.08°, 11164个原子数的双层

转角石墨烯结构的能带结构与 DFT和连续介质模型计算的能带结构的对比图 [46]; (b) HamGNN模型预测的 Bi2Se3 薄膜的能带

结构与 DFT计算的能带结构的对比图, 以及导带底附近未占据态的自旋-动量锁定特征 [50]; (c) DeepH-E3模型预测在 SOC强度

变化导致的带隙闭合后重新打开, 拓扑量子相变从   到    [46]

Z2

Fig. 8. Several examples of machine-learning-accelerated electronic-structure calculations applied to quantum materials: (a) Compar-

ison of  the band structure predicted by using the DeepH-E3 model  with the DFT-computed band structure for a twisted bilayer

graphene supercell  containing 11164 atoms at a twist angle of 1.08°[46];  (b) band structure of Bi2Se3 thin film with the HamGNN

model compared to DFT results, together with the spin–momentum locking of the unoccupied states near the conduction-band min-

imum[50];  (c) DeepH-E3 of a topological quantum phase transition driven by varying SOC strength: after gap closure, the gap re-

opens, changing the    invariant from 0 to 1[46].
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的扩展. 通过引入对称性保持的深度学习架构 (如

DeepH的局域坐标编码、HamGNN的等变张量分

解、DeePTB-E3的严格局域消息传递), 该方法可

达到 sub-meV精度的哈密顿量预测, 计算效率较

DFT提升 3—4个量级. 该进展推动了跨尺度模拟

的实现, 逐渐应用于缺陷形成能预测、拓扑材料电

子结构解析及大尺寸体系光电性质模拟等领域. 随

着无监督框架与预训练模型的发展, 此类方法正逐

步从专用工具向具备通用性与零样本能力的普适

性计算范式演进.

尽管现有研究已经在很多方面取得了突破, 但

仍然面临若干技术上的挑战: 1)各类 ML加速的

电子结构计算方法虽展现出卓越的数值预测精度,

但其方法论上的固有局限, 即“黑盒”效应 [88,89], 导致

其难以揭示驱动预测结果的物理机理; 2)现有方

法的参数规模随原子种类呈超线性增长, 万原子级

体系仍依赖周期性片段拼接等近似的处理方法 [44,55],

而且大尺度非绝热动力学模拟对计算的要求非常

高, 仍需要发展兼顾精度和效率的新方法; 3)可转

移性与泛化能力有限, 一个在特定元素集合 (如 C,

H, N, O)上训练的模型, 通常难以推广到训练时

未覆盖的元素 (如过渡金属、稀土元素), 元素的电

子结构 (如价态、轨道类型)差异巨大, 实现一个

“通用”的 ML电子结构模型成本高昂 [47,51]; 4)尽

管ML方法在预测时间上相较于传统 DFT计算已

有显著提升, 但目前主流的ML电子结构方法通常

是在原子轨道基组下对 DFT哈密顿量进行学习.

然而, 现有主流材料数据库中存储的数据大多基于

平面波基组的 DFT计算结果, 导致无法直接利用

这些现有数据作为训练集. 因此, 在构建训练集时,

必须重新进行基于原子轨道基组的 DFT计算, 这

一过程不仅增加了额外的计算负担, 也造成了计算
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图 9    ML加速电子结果计算在光电与输运性质领域内的应用实例　(a) DeePTB模型预测超百万个原子的 GaP体系的复折射

率结果与 Aspnes等 [87] 的实验结果的对比 [54]; (b) HamEPC框架预测的碳化硅 (SiC)EPC与 DFT(OpenMX)计算结果的对比 [52];

(c) HamEPC框架在杂化泛函 HSE级别下预测的 GaAs迁移率在 PBE级别下 (Perturbo软件)的计算结果对比 [52]; (d) HamEPC

框架预测 CsV3Sb5 CDW超晶格的声子谱并标定了每个声子模式对应的电子-声子耦合强度 (gqv)[52]

Fig. 9. Several  examples  of  machine-learning-accelerated  electronic-structure  calculations  applied  to  optoelectronic  and  transport

properties: (a) Complex refractive index of a GaP system with over one million atoms using the DeePTB model, compared with the

experimental data of Aspnes et al[87]. Reproduced from Ref. [[54]]; (b) EPC matrix of SiC computed by Xiang Hongjun et al. with the

HamEPC  framework,  benchmarked  against  DFT  (OpenMX)  results[52];  (c)  GaAs  mobility  predicted  at  the  HSE  level  by  using

HamEPC, compared with Perturbo calculations at the PBE level[52]; (d) complete phonon spectrum of the CsV3Sb5 CDW supercell

and mode and moment-resolved electron–phonon coupling strengths (gqv) quantitatively characterized via the HamEPC framework[52].
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资源和时间的浪费.

未来的技术研究可以围绕以下 5个方面协同

展开: 其一, 引入更严格的物理约束以确保预测结

果的合理性, 将物理机制直接嵌入ML模型以增强

可解释性的趋势, 在保持精度的同时建立与物理世

界的联系 [90]; 其二, 在时间反演等复杂对称性的精

确保持和自旋-轨道耦合等物理量的描述方面, 仍

需发展更具普适性的等变网络架构 [91]; 其三, 通过

构建元素无关的物理描述符 [92] 并结合预训练-微

调框架 [93], 提升 ML模型对未见元素的泛化能力;

其四, 解决上述计算资源浪费的问题, 一种可行的

方案是通过数学变换将平面波基组下的 DFT哈密

顿量投影至原子轨道基组表示, 从而实现对现有大

规模平面波数据库的有效利用 [94] 或者使用类似机

器学习势函数中所用到的主动学习方法让 ML模

型智能地选择那些能最大程度提升自身性能的新

数据点进行计算, 避免对信息量不大的冗余结构进

行昂贵的 DFT计算 [95].

随着ML电子结构计算方法的日益成熟, 其价

值将从“高效替代传统计算”逐步走向“驱动新物理

与新材料的发现”. 我们预见其将在以下几个应用

领域产生深远影响: 其一, 新型量子材料设计, 通

过高通量筛选具有特定拓扑性质、强关联效应或奇

异超导相的候选材料, 特别是在复杂的异质结和

Moiré超晶格体系中 [46]; 其二, 高效能源与催化材

料开发, 精准计算催化反应路径、锂电材料的离子

迁移势垒、光电转换材料的激发态性质等传统

DFT难以企及的复杂过程, 为理性设计高性能能

源材料奠定理论基石 [54]; 其三, 半导体工业中的原

子级精准模拟, 实现对超大规模缺陷、掺杂和界面

结构的电子结构与输运性质模拟, 为下一代芯片器

件的设计提供原子级见解 [50,53].

综上所述, ML加速电子结构的研究正处于快

速发展阶段. 随着物理规律引导的深度学习方法持

续革新, 以及高质量数据资源的不断积累, 未来的

ML模型有望实现更高精度、更强可解释性与更优

泛化性能. 从而推动材料研究从“试错式实验”向

“AI驱动设计”转型, 为材料研究探索提供全新解

决方案, 最终重塑材料科学的研发范式. 展望未来,

ML加速电子结构计算领域的突破, 正引领材料科

学研究范式的深刻变革. 借鉴“第五范式”(AI for

science)的核心理念 [96,97], 未来 ML加速电子结构

计算方法的发展将呈现从“工具辅助”到“范式驱

动”的跃迁, 其将从一个计算加速器, 演进为驱动

“材料智能设计”全流程的核心引擎, 从而形成一个

闭环研究范式: 由生成式模型提出候选材料 [98], 通

过高性能ML电子结构模型进行高通量精准筛选,

再驱动自动化计算与机器人实验进行验证, 最终利

用实验数据反馈持续优化整个ML模型. 在此范式

中, ML电子结构模型将成为连接理论设计、高效

计算与实验验证的智能核心, 实现从“AI辅助计

算”到“AI驱动发现”的范式革命.

感谢上海大学上海市科学与工程计算专业技术服务平

台的支持.
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Abstract

Density  functional  theory  (DFT)  serves  as  the  primary  method  of  calculating  electronic  structures  in

physics,  chemistry,  and  materials  science.  However,  its  practical  application  is  fundamentally  limited  by  a

computational  cost  that  scales  cubically  with  system size,  making  high-precision  studies  of  complex  or  large-

scale  materials  prohibitively  expensive.  This  review  addresses  the  key  challenge  by  examining  the  rapidly

evolving  paradigm  of  integrating  machine  learning  (ML)  with  first-principles  calculations  to  significantly

accelerate and expand electronic structure prediction. Our primary objective is to provide a comprehensive and

critical  overview  of  the  methodological  advances,  physical  outcomes,  and  transformative  potential  of  this

interdisciplinary field.

　　The  core  methodological  progress  involves  a  shift  from  black-box  property  predictors  to  symmetry-

preserving,  transferable  models  that  learn  the  fundamental  Hamiltonian—the  central  quantity  from  which
diverse  electronic  properties  are  derived.  We  detail  this  evolution,  beginning  with  pioneering  applications  in

molecular systems by using graph neural networks (e.g., SchNOrb, DimeNet) to predict energies, wavefunctions,

and  Hamiltonian  matrices  with  meV-level  accuracy.  This  review  then  focuses  on  the  critical  extension  to

periodic  solids,  where  maintaining  symmetries  such  as  E(3)-equivariance  and  handling  vast  configurational

spaces are of utmost importance. We systematically analyze three leading model families that define the state-

of-the-art:  the  DeepH  series,  which  uses  local  coordinate  message  passing  and  E(3)-equivariant  networks  to

achieve  sub-meV  accuracy  and  linear  scaling;  the  HamGNN framework,  built  on  rigorous  equivariant  tensor

decomposition,  which  excels  in  modeling  systems  with

spin-orbit  coupling  and  charged  defects;  and  the

DeePTB  approach,  which  leverages  deep  learning  for

tight-binding  Hamiltonian  parameterization,  enabling

quantum-accurate simulations of millions of atoms.

　　These  methods  yield  significant  physical  results

and  computational  breakthroughs.  Key  outcomes

include:  1)  unprecedented accuracy and speed.  Models

consistently  achieve  Hamiltonian  prediction  mean

absolute  errors  (MAE)  below 1  meV (e.g.,  DeepH-E3:

~0.4 meV in graphene;  HamGNN: ~1.5 meV in QM9
molecules), along with computational speedups of 3 to

5 orders of magnitude compared with traditional DFT.

 

*  Project supported by the National Key Research and Development Program of China (Grant No. 2024YFF0505900) and the

National Natural Science Foundation of China (Grant Nos. 52172216, 92163212).
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2) Scale bridging.  Successful  applications now range from small  molecules to defect-containing supercells  with

over  10000  atoms  (e.g.,  HamGNN-Q  on  a  13824-atom  GaAs  defect)  and  even  to  millions  of  atoms  for

optoelectronic property simulations (DeePTB). 3) Expanded application scope. This review highlights how these

ML-accelerated  tools  are  revolutionizing  research  in  previously  intractable  areas:  predicting  spectroscopic

properties of molecules (e.g., DetaNet for NMR/UV-Vis spectra), elucidating electronic structures of topological

materials and magnetic moiré systems, computing electron-phonon coupling and carrier mobility with DFT-level

accuracy but far greater efficiency (HamEPC framework), and enabling high-throughput screening for materials

design.

　　In  conclusion,  ML-accelerated  electronic  structure  calculation  has  matured  into  a  powerful  paradigm,

transitioning from a proof-of-concept to a tool capable of delivering DFT-fidelity results at dramatically reduced

cost for systems of realistic scale and complexity. However, challenges remain, including model interpretability

(“black-box”  nature),  transferability  to  unseen  elements,  and  seamless  integration  with  existing  plane-wave

DFT  databases.  Future  directions  include  physics-constrained  unsupervised  learning  (e.g.,  DeepH-zero),

developing  more  universal  and  element-agnostic  architectures,  and  creating  closed-loop,  artificial  intelligence

(AI)-driven  discovery  pipelines.  By  overcoming  current  limitations,  these  methods  have  the  potential  to

fundamentally  change  the  field  of  materials  research,  accelerating  the  process  from  atomistic  simulation  to

rational material design and discovery.
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