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Fig. 1. Effects and applications based on RE-TM ferrimagnetic materials and DMI.
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Fig. 2. Three configurations of DMII'J: (a) Short-range interfacial DMI; (b) long-range interlayer DMI; (c) long-range intralayer DMIL.
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Fig. 3. (a), (b) Schematic illustrations of Bloch and Néel type Skyrmion; (c) magnetic phase diagram determined by DMI, magnetic

anisotropy, magnetoelastic anisotropy, and Heisenberg exchange interactions, where Skyrmion was stabled when K/J and D/J are

at certain ratio, reproduced with permission from Ref. [25]; (d) schematic illustration of Skyrmion-based racetrack memory struc-

ture, reproduced with permission from Ref. [32].
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Fig. 4. (a) Schematic illustration of current-driven domain wall motion in HM/FM heterostructures with perpendicular magnetic

anisotropy, for Néel-type domain walls, in the absence of an in-plane field, the domain walls on both sides move in the same direc-

tion under current drive (top panel), while the application of an in-plane field is required for domain expansion to occur (bottom

panel), reproduced with permission from Ref. [36]; (b) schematic illustration of mirror operation along the direction parallel to the

DMI vector in [FM/HM], structures, reproduced with permission from Ref. [41]; (c) deterministic switching achieved by DMI-in-

duced symmetry breaking, with the switching polarity determined by the direction of the applied current, reproduced with permis-
sion from Ref. [41]; (d) DMI in L1-FePt induced by disorder gradient, in perfectly ordered crystals, the DMI from the upper and
lower layers completely cancel (top panel); introducing disorder leads to incomplete cancellation resulting in a net DMI strength

(bottom panel), reproduced with permission from Ref. [42]; (e) zero-field switching by disorder-gradient-induced DMI, with the

switching ratio increasing as disorder gradient increases, reproduced with permission from Ref. [42].
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WEWERERY Zeeman REAH TR, WHRERY CUREHE DR AF
AL, BT N L KT DMI S5 E), W RE i) T~ gk
FIRSE , A0 PR A B P s A #8055 THD N G DR
[ m). O Bk 5 4k 2 14 i T N Y5, Zeeman RESBE 2
IS, WERE S RE SR 2 08y, DMI 37T DLk
B R AR A0 0t IO 9 T PN R 7 I (B Y rh 4R,
I 5(a) Ar7n B3 255 STl Pizzini 5 B 25 A 7%
WA RE R et 55 I AU 1 (PR G R -
ot
= S phaT ®
Hrh, o A 5 UBEAH R BERERE &, ¢ AR
MJERE, T RURBE, p o B ia) A% ok 72 vh 5 90
B ] 7 A OC B E T (7 = moep, o 2221

). WA RN R, WY H, 5WEEG &
03B A AH R A 728 A RRAE, DT AT L B 42 3 1<
¥ 5 J A 78 A I R I %) THT PN 1 3 i 5L ok B
DMI %52 FESZBRI v, XF PMA A i in S
Y H, 31 LMk 5 R 2 Z [R) S £ R 6.
FEIE H WY HecosO PIAE T Wi REDLR T4 H
ol M AL EREE Y Zeeman BESE T HEWE
BERB I, 7] 450K 3 0 Wk ¥ B8 20 BT 75 B 1) 1 Ak Rl
Y Hy:

1 dEpw 1

12p0M;  dx cosf’
Sl e SO B B SRR
R B ETEREN (0° < 0 < 60°), BifL B
Hy, 5 0 /& 1/cosf K F; MY 0 B K, H,
2Bk — 2, WA 5(b) 7R, 152 T 1 A
Yoy H, = Hg,sing 35K H S DMI 488037 10,
Neéel I G Wh BE (1 T 18 B 4T, W R 3248 87 7 A2 Ny
Bloch 7Y, W5 BE fig i 9 /1. SE Rl o o ml g SORE
¥ R we A B e S ) 3 B i H, = Hy,cos0, [
G 9 o i A0 B e S 1 TET N 4 i H, = H,sind).
Wi H, B8k, H, BA e R E )5 U/ Y
Afefasy, i 5(c) Bias, R H, 8N R )
H, I F{E 8k 7T LB 2 DMI 3700 K/, i 15 )
DMI # 44

Hy, = (4)

3.2 Brillouin Y& 5%

H e (spin wave) JEAFFEAC AT H ARG TERF
Bl B IE G AR LR R S BUW B IRiE g, H
B AR BT sS4V E T YA G, DMI A2 44
FHXT 3G 20 7 25 W s el ] LAGE xR AE [ BEDE 1T
WE . FEE e i) m s, BT e a8 |
A SO T AR 1 e i B A B ) T, DMI
Yy ox 330 A TN R sl B AR, BV E e ) €
BOCRTE k2SR mEe, B HER MR BA AR
AT Gy, e ks8] 3 BERE A8 AL R
A RAEH DMIH 8. S2Bx 1, DMI 55 4 F e
P RIAAEAE B 5 PErT T 28 iR A, 25k
PR THE I 32 e e B ) A T (047,

Brillouin JGHU 2AE A & HIY H g R 1R
Tk, T2 T E DMI B4, H A R 3 A
FHREE R BET-5 A RN & A i, o3
SR REPE A BRI 7 2E (Stokes i) 5
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bIZ 2278 Brillouin Gk EETREVERS
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d Y !
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! E ! \ p | incidence ! : i
! I -~ il 1
E i A ¥ :
H HE R 1111 ,! x¢ il H
1 ‘ —k kast < -‘rk—kst‘ ! ' :
| [ La [ |
: N my :
1 ! [ I
1 ! [ |
Il ! [ Il
Il ! [ |
Il [ [ 1
1 ! [ 1
: ' e !
1.2 ! D |
E (b) . I ° E :(e) Stokes - OAnti-stokes H E E
| ex ! DMI DMI "i(h !
: 1ok , o | i fOMI > foMI > | :( ) |
! i N 5, N i Vaue Vaue |
g 08 ¥ h 200 ' x=0 x=01
LB i i £ i i i
'@ 0.6 ’ . p ° [N ! i
:E 4 o i ' 20 . !
1< 04f ! ' 0 ' o !
: 0006°° ¥ il <) ¥ H sl
! - 00009 ® Myp — Mpw | |1 P a P e i
02 v W P P L AHo=0 AHo>0 1
| 1/cos 0 © Mpw — Myp o P o i ! c= e |
! 0 L L L L !
| 0 20 40 60 80 100 ! % Fin 2 fox :i i
1
| o) 3 3 |
1 1 [ 1
1 [ [ 1
LI(E D<0 1i(i) 100 i
E O poHpyr =0 mT | | :( ) Stokes Anti-stokes ! E(l) %0 - |
| 0100 mT v oM< 0 oM< 0 HE ol |
| © 200 mT ¥ TR I T o) |
| © 300 mT o o= " il 9ol |
' 400 mT " - i o o A
: %0500 mT i g P 1o ol !
! . i oo i I \
i b oA I 1o —40f :
| b pA P 1 —60f Col
1 { ] ) 1 d
; ¥ P PA T T [ rvcopor
1 » 1 -
! : : For U fow Y% : ! —6000 —3000 O 3000 GOOOE
' . i Hipplane/ Oe '

Bl 5 3%k DMI % 0 5 ik
R, SRR [14], B ARTHRAL
Fig. 5. Three methods to determine DMI constant:

(a)—

(c) TeAx vk, 1l A SCHR [43], BRI (d)—

______________________________________

(f) Brillouin JEHUH % 1 (2)—(@) A BEHLE

(a)—(c) Nucleation method, reproduced with permission from Ref. [43];

(d)—(f) Brillouin light scattering method!"¥; (g)—(i) spin-orbit torque method, were reproduced with permission from Ref. [14].

K (L Stokes 372, FH R T B YEAH ELF A
SR AR EER, K 5(d) B ML SEER
Y, k7 AL RE Y A BERE 737 A Stokes 5
Stokes 1§, T DMI BAFE7E, fifR)RERT f=0
X A8 A W T T 567 5 ) & AR AW A%, anlEl 5(e),
(f) Fr 7 B4 DMI #8055 4503 0 # 19 5 28l L3k
A

vDEk

wM;

DA T BURE RS BT 45 2R R 19 DMI %
¥4 Brillouin YEES R IR AL s 78 T D25 BEAR
i, JEAR I DMI &R B4R R T B, [RIHE T
T 1/ T N REALRE &, BRAZIR]IA3) DMI 58 B A1
FF5 07 W), BT 2c e W A, w00 T iR 225,
SR Brillouin SGHURE XM IR 5T FIR 552K
1R, T G G TR TEXL.

(5)

fDMI =

BB %

AT SCRT R, X T HEA PMA (5 HM/FM &
F, WA S HM 7 AR HOE A A FM
JZ, TER—TFERY Neel BEREN B A K/ MHIA] . 7
6] AH S B S5 3G Y Hegr, . = xpLJe cos o, AT
A WERE & AR MR 5K, o J, S Fe T B
X N AT - A B 4R AR, o g W BE T 5 P U
Je s, i 5(g) Fim M. f T DMI AETE, B RE
SR ZARFF Néel AU, B cosp F—A-H %0, LA
Jn—A~ R 94T DMI 37 7 4 45 Neel #IB5 BE (14 T8
W3 H,, 30 (FBEREACREH ) S 05 10 % 5%, 2245 7
A P S PR BT, Hogr, 7 PRI BE AL PO 1 2%
RAPESE AR, IFES Y S B /R (anomalous
Hall effect, AHE) fh£& i 3w (AH), WK 5(h)
s 0 AH BTSN H, 3Rk, 24 0, i —
A 3 R W B G R K T A X SR B G T 1 )R,

3.3
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AH KA, Wity H, BDXF R T DMI 3% H9 K
N, B0 (1) s 4,

e ILTE A0 i 1 S 2 O A e A vk
5 R0 AHE 385 B34S, THR 9l ABIME &
IR, %7 X BE SR B DMI A58 FE 5 B, ok 3
Wr HAF5 Jr 1), XA R PMA A #mEsK. %
FHADME DMI F B SL80 2:, mTik—$ 25
SCHIR [12) DAARICE 21 A 25k 14,

4 RE-TM ## Dzyaloshinskii-Moriya
A8 B AE A

41 RE-TM RyEARMR

WA RE-TM A& 41 CoGd, CoTh, GdFeCo
&, Witk A TEM 0K 3d #hE)RE T
6] [ AT HES S B AR iR LR ) CoGd
S 18 A A1 6(a) . T RE B9 4Af B,
T5 TM 1Y 3d 7= B SFERAR, —& N
PIAZHAEFIR A TLL RE (9 5d 7Ry v 0[] 42
ZHAEH, 2L 3d-Af L1 SRR S, QniEl 6(b)
TR B WA R SRR SR P A FI T 5 191
Ji. RE-TM 1R R 2 N TR 2k iE & sl &
JE TS5 | A HCAAE SR Hh R A ) ) B2 5 i1
FHEEAS#HAEH, RE-TM B8 ekl 4 055 B4
5532 Mg IR 0649 LIRS R, Ren 4 0 F]
FHE ST R HEE S CoGd BEATHIME TR H], 25—
PEJF BRI Hr A W E T TR &R 19 DMI
5 B IR T IR AR A BAE R, AR T RER
JE LR T M 20 1 3 B 3 I A NE RN, R
ST RE-TM Y $h B gl Foede e it 1 B2
5%,

M T RE 5 TM B & i 0k 15 A
Yy B AR — B R, 7E R E 1R AL T
RE-TM B G RE, FRVERFE M . X —
R A A5 T DL A I B R 4 43 ok R RE-TM #4
BHAREAPERR. DURH WL CoGd M, TERERI#N
B2 S B, AT S AHE gt %, Hil T
WS VR R S B/ IMEL, Sk B R A B e 1l A P 75
# Zeeman fit, A B} B9 BT w76 18 B e KME. RE-
TM FRHA R B T R R M2 S A7 A Bl i b
£255, BT RE Il TM ST R BIHERE EL AR, fidha
JAHEAME G AR AEAEZE 1 2 W RE AR Y. RE-TM #b
B B LA AR A5 A4S DA S SRR R Ak 3 7 2

v B2 Binder 45 P31 38 4+ ST IE S T A Bl i 4 M AN
Ak LA W R AN A B 1 e REL. Bt Kim 45 P4 7
CoGd & & MM sl #M2 A I T =ik 20 km/
(s:T) WIREWERET RS R, Cai 5 148 gJE—F ] SOT
TE CoGd A A aEal T ik 5.7 km /s [ PLBERE
(E: 5T

BT RE-TM A7 ESCPATRIFidg, SOT
UK By G Ak B e () B0 07 S e FR A R AR A A
Landau-Lifshitz-Gilbert /7 F25 H 5557

di R . dm
M——> = — VerrMs (ivs X Hegr) + cepMrivg X :
dt dt
+ VesrJsTirs X (0' X ms)a (6)

Forb, M MM BEAL SR BE , g IRERETT 0], Hepr
N, Yerr WA BIERE L, e A RBHIE A
T, o NIEAM A BERALTT 10, Jo oA HBRER R/
HAAk,

ms = msM; = mp + mg,

ma Mg -1
’Yeff:(mA*mB) - - s
YA B

KN, map) BT IEREHE, yaw) F T s HERE
L. H TR A BHAE R A M B M iR T
%, KBIEY) tsr = Jons x (o x 1) FFTERME SR
R HWERE 1/ M AREE R, I AT A
RE-TM V8K 1% (1) 04 5 4 M2 a5 B 3 AR AH >4 K iy i
FRCR, 5 5 FRACA SOT I 7 BHFE f it 25 5
2017 4, Mishra 45 58 £ CoGd B REFE #Mz2 AR
W T SOT A& A EAT N, H Hpy, B8R
BT 1/ M BIBREESE R, QR 6(c) FiaR. X gk IS5
i RE-TM i 38 44 37 R 25 BHLJE S5 >k 1 51
k. SR Zhu 1 RalphP 7£ FeTb w3 1 #%
SRM 2518, 78 FeTb BRE#M2 S BT I ) 1
JLT- R SOT %%, il 6(d) Fims. %45 R
AT e FE AR B A AS B (iR ny ) A1
FERE R (bR roob ) MITE g4 R, W 6(e),
(£) iR PO Horp U S84 FHER o3 234 SOT 4=
DR, FEAMEE SR T F B RLE U L S
MR E R T SOT &0R. I, 76 715 W 4k i 4
1Y SOT ZHRITHZMABSMA B HEFE UG
1ET.

AR, KRR RET RE-TM B#EZ5 5
H e a7, 4R s I L AME s R 00 [
TP 101631 I 2 i 45 4y 10461 2 (] AH G 166681
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(b) (d) (e) Spin-orbit torque efficiency
E IstL %1500 [300 K 0. B
g T56=0
o . DU
: 1000 o .
) o
o < 500t .
7 T 0.
90, o‘fd.DX . .
300 K 0
0.4 -
a e o
<A 1%
. = a0 6 w02y ,O’Q)
@ —+ X H = = “0..
. - —— 1/ M, - -Q
5 8 —e—1/M; H 5 /. a 0 0.9 . .
= : T g 02 04 06 08 1.0
T : 3 14 7
g 6f : : : . < X
= . z 20 25 30 35 8
) ! 2/(Gd%) s (f) Heavy metal
g 4} . |
5 : 12 2
g ; - NCNCNCNNS
5 9 a . ~
) r : =
& :
: Y
oL ) . 0 : ®
20 25 30 35 G
x/(Gd%) Spin-orbit scattering (7':,,1 o Gois V)
h i k
@ — ® (i) W —
) i L 9T 10 K —360 K 180 K
k [ — 330 K — 150 K
<3 i 300 K - —120 K
= (O b |'"" ) 270 K —90 K
n? 1 mea [ 240K —60 K
—30 K
—0.5 | AHE s - r
U ! i 44 K
L L L L mco °
150 ! i m I%
. - i 46 K
L 100t \o ! X WWW Collinear phase  Spin flop phase XL e
S - > | =L T
Q\a 50 b : = 0K (J) 1 7 N=10| & =+ — =
= I V= N W 11 g F /D:I\
. . . . S F
150 f " 3
L 100} . 0 !
Sz 501 o I E
4|1 9 | 5 ] »
Tr %??TM E 3
0 [SMR N . . . . . R < ° Lo,
0 100 200 300 0 90 180 270 360 0 3 6 9 -4 -2 0 2 4
T/K B/(°) HoH./T woH./T
B 6 (a) CoGd RE-TM iV &k #% ¥ & 4% 7/~ Bl ; (b) RE-TM H 3d-4f B F R Bk WG AR A 09~ B, 1 A SCEk (8], B3RS A

(c) CoGd HYREH #Mz2 0, M, B H x K HE, 1 A SCHk [58], B4R 4Z4L; (d) Fe,Tby , FRiZH 3280 M, 55 SOT RO &, TR
MR & H R Z 0 () A BEHLIE BUF AT SOT R0 & M RE WA 7R 38 I, (f) H BEAE kL) b g i BE /R B B (g) CoGd W
S A B2 5 AR B SMR A7 5 09 (h) CoGd #h % 5 W IE 9 [ % SMR 1% 5 97 (i) [Co/Gd],, 1 5 35 28 #1 A1 Spin Flop i 9 75 2 4] ©0;
() [Co/Gd]yo TEA [F) ARG 37 FINELBE R A9 RE 25 4440 181 69; (k) CoTb/CoFeB,/MgO/CoFeB %514 B i B A5 b 1 TMR {55, 7€ 212 K L)
oNIE TMR K, 212 K LR A TMR 3R, SC#k [70], B 3453 4L

Fig. 6. (a) Schematic illustration of the CoGd RE-TM ferrimagnetic sublatticel*y; (b) schematic illustration of 3d-4f antiferromag-
netic coupling in RE-TM, reproduced with permission from Ref. [8]; (¢) magnetic compensation point of CoGd, where y diverges as
M; close to zero, reproduced with permission from Ref. [58]; (d) variation of M, and SOT efficiency £ with composition in Fe,Tb, ,,
with ¢ approaching zero near the magnetic moment compensation point¥; (e) schematic of the effect of spin-orbit scattering on
SOT efficiency &%%); (f) schematic of spin relaxation process in the ferromagnetic layer; (g) SMR signal at the magnetic compensa-
tion point of CoGdl®; (h) unconventional SMR signals near the compensation point of CoGdl®; (i) schematic illustration of the col-
linear and Spin Flop phases of [Co/Gd],%!; (j) magnetic phase diagram of [Co/Gd],, under different external magnetic field and
temperature [%; (k) temperature dependence of TMR, ratio of CoTb/CoFeB/MgO/CoFeB structure, with a positive TMR ratio
above 212 K and negative below 212 K, reproduced with permission from Ref. [70].

CoGd &4 SMR 53 T H HEr Ak 2R i) 1L # Mz
m, HIFEHT RE B 4 575 TM #) 3d B FX) 2%
KT s BT BT Rk A AN SR A ER AL R,

H i€ £ /R B4 FBH (spin Hall magneto-resistance,
SMR)169) | g B 45 70 T (7 RO
B 12001 Tgf - e A g 171 5. X A5 (090 3 ok Y0 o
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K 6(g) iT/R. Chen 45 1 #E CoGd #M 5t ik &
BHE B AHE 4k, & BT CoGd AR pE S
P, 2 G e B B R AR B TE] 6(h)
Ji7R. Meng %5 04 76 3 R 1L [Co/Gd], 22 1 #b
A% 5 B A WL 3] 9F 2R Spin Flop AH S B /N 1]
2k, MR RERET i Co A Gd 2051 3= S (g 2548
AT LA AR E 2, nE 6(31), () BraR, S RE-TM
(AR LR WG 25 A B L T 2 S %, Zhu 55 )4
CoTb & i #4551 CoFeB/MgO/CoFeB MTJ
SEFh, SCELT RS T AR Y R 2R FBEL, WAl 6(k)
fias, R A SOT A1 STT & LB T 4 H
¥ MTJ.

RE-TM #4 8} [ #£ 7] H T 32 iz 5515 B A7
it (775U, 3 G BT E AR T LA S5 R T AR
REMG A T A1 /R 1B 18 B B B BT, Sk B T L
ARG Rk, BT B HRR A RE O, A
B Rfes CMOS HOR hREHLIIAFERIR S, 230
AE— IR R BT 5284 . Zheng 45 FU7E Pt/
CoTh/W /CoTb/Pt 454 v 580 T W5 LU ARE 1Y) A7 it
BTG, I S BHEG f i B A CoTh YRR RE L IE
Et, AR AT LA 2 AN R R EE R CoTh #1715 B
PP 5N FEICSERE b 25 & R [E] T R B,
R AT 528 22 25 % . Dong %5 ™) fE 3 & W44k [Pt/
Fe, ,Tb,/SisN,], )28 T 0] S 1 £ DI REATF
B ARAT R, PIH 2n DRERS AR . FIFIZ 4,
P SEEUAR /R B ] S s s Thee, WE 7(a)—(c)
Ji7R. 2021 4, Zhang 55 B IS F8EH T —Fb
ETZ2)Z CoTb WfEHEA (in-memory computing,
IMC), W 7(d) Fras. | TARERE CoTb MYl
TP B BE AN — 3, AR ARG A [R] ) H 3 %
A E AR AHE Ry, Qi 7(e) Bias, M
AT RSB B RZ T2 5. LA XOR 24
1o, L ini 25 BEAE s A, DL AHE HIBH Y IE
G (G300 X5 R 1 F0) A S b, 7 L i A
0—2.5x 10" A/m? JE[F I AT 523 XOR #4511,
wmE 7(f) s, BRIL LM, RE-TM W4k i 44 Ak 78
YK R AR A 25 VR A 1 R i S5 52861
SRR RS B M S AL S R R %, [
JiE BELJE 4% 35 1 e S A i, (45 1 B4R 35 AR T 3k
GHz & % 1) [RGB W AS 2R 56 . 454 Wiks W7
A IR ST | R E R A e
YK IR

4.2 RE-TM H Dzyaloshinskii-Moriya 8
BEfERARENA

R — AR TR RE A TEAE AR A, HFE A0
C 242 ZMRIIFE , mitesE v T 4R 15 BAF
it Jr%&. RE-TM & B9 3P BT i HAA B2 LR
— ARk fE B A AR DMI/ESY RE-TM
TR EAIL R, FCOR LR 1) A e Sk B
A R B R R A RE AL RS ST IRA
P DMI HLHIFBHE 2 R RE S X AL T RE-
TM 1Y E EH 727 g0 A 25

4.2.1 RE-TM % Dzyaloshinskii-Moriya #8
BAER AR X A

4 DMI 5 Heisenberg 38 #e 4 F X6 i %6 HE
A HA R AR RS [R] X PR 22K R HM/
FM K& ) DMI 5 Heisenberg 1 HAE A EATR
5 ) AH S B7881 45 & Heisenberg 22 42 58 i 5
M, WARFREOC R, A1 LIARTS DML S S M,
Z B A BE DG F IR R A RN DMI B S AL
] 159900 e 2k PL AR AR R S S A RS AR DA
JEH HM/FM 5545 DML

AT F7E0F 58—k HM/FM 53 i 45 i) DMI
A 75 275 Az HM 9] il A9 2R J2 v A <
() I BE S; 1 S;, RE-TM 1K il TREMER £0%K
A7 TE A0 A5 HRE AT R o B 2%, 2 Rl i 25
TM-TM, RE-TM, RE-RE [a] (AZ Bekl 4. 1984 4F
Mansuripur fll Ruane® 24517 CoGd, FeGd, FeTb
o TM-TM, RE-TM, RE-RE [R5, tnsk 1
Jiizs. Lk CoGd R, Hat 545558, Heisenberg
LR AR Co-Co A BEEL B i b K, Co-Gd X
2, Gd-Gd /. 25U, Morshed 45 49 7E 1155 H
BHARMIESEZH Pt/Co-Gd/X (X = Ta, W, Ir)
S 4R DMI B, [R5 & T Heisenberg 38
A Co-Co LUK Co-Gd BTk

#1 AR RE-TM &4 TM-TM, RE-TM LI

J¢ RE-RE JE¥] 1Y) Heisenberg 3¢ #4341 (H 101
Table 1. Heisenberg exchange integrals for TM-

TM, RE-TM, and RE-RE in RE-TM alloys.

EMEZR Joerv/erg JRE-TM/ €18 JrerE/erg
CoGd 28.0x10°1° -2.2x101 0.5x101
FeGd +12.0x101  -1.7x10°% 0.5x10°%
FeTb +8.5%10715 -1.0x101 0.5x10%

H:lerg=1071J.
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Fig. 7. (a) Schematic illustration of [Pt/Fe,Tb,_,/SiN]; stacks with different FeTb compositions, reproduced with permission from
Ref. [78]; (b) measured AHE resistance (left) and current-driven magnetization switching curves (right), both exhibits eight distinct
magnetization states, reproduced with permission from Ref. [78]; (c) top left represents circuit diagram of a standard 24 decoder,
with current as the input signal, AHE resistance as the output signal and in-plane auxiliary field as the enable terminal; bottom left
represents optical microscope image of the device; right represents corresponding truth table, reproduced with permission from Ref. [78];
(d) schematic of CoTb-based IMC device, where layers a—d serve as configuration modules (CFM) and layers e and f as computing
modules (CPM)B; (e) micromagnetic simulation results of SOT switching curves in the positive current rangel”; (f) XOR logic

gate realized at low current densities®,
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Fig. 8. (a) Negative scaling law between effective DMI strength D* and net magnetization M in CoGd alloys; (b) illustration of

competitive sublattice moments and the Fert-Levy models in CoGd alloy; (c¢) DMI contribution of Co-Gd moments in Pt/Co,;Gd 3

heterostructure; (d) temperature dependence of the effective DMI strength[®2.
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Fig. 9. (a) Schematic illustration of interfacial chemical composition gradient of [Co/Tb]y, with the red curve representing asymmet-

ric distribution of Th atoms!””; (b) average interfacial chemical composition gradient & plotted with layer number N in [Co/Tb]y %

(c) variation of the interfacial contribution to DMI in [Co/Tb]y multilayers with layer number N [7]; (d) scaling law between DMI

strength and net magnetization in [Co/Tb]y .
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Fig. 10. (a) Schematic illustration of CoTb with vertical composition gradient § %; (b) SOT switching of CoTb with composition
gradient § = 0.07 under different in-plane magnetic fields, demonstrating nearly 100% switching at zero field?; (c) non-collinear
spin textures caused by component gradients will result in a additional DMI energy, with the sign of the DMI determining the chir-
ality of the magnetic moment arrangement, reproduced with permission from Ref. [98]; (d) schematic illustration of the M, gradient

caused by the in-plane composition gradient in Ta/Gd,(FeCo), ,, reproduced with permission from Ref. [98]; (e¢) SOT switching of

Ta/Gd,(FeCo), , under different in-plane magnetic fields, reproduced with permission from Ref. [98].
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Fig. 11. (a) Schematic illustration of SKHE, demonstrating that the trajectory of the Skyrmion significantly deviates from the cur-
rent direction; (b) MOKE images of SOT-driven Skyrmion motion in Pt/CoGd/Ta, which exhibits opposite directions under posit-
ive current (top panel) and negative current (bottom panel)!'¥l| reproduced with permission from Ref. [114]; (c) relationship
between domain wall displacement velocity and current density in Pt/CoGd/Ta(W)4, reproduced with permission from Ref. [114];
(d) MOKE images of SOT-driven Skyrmion motion in [Pt/Co/Tb/Al];!%); (e) relationship between average Skyrmion velocity and
current density in [Pt/Co/Tb/Al]5 for Tb samples of different thicknesses; (k) schematic illustration of dipolar coupling and antifer-
romagnetic exchange coupling in [Pt/Co/Tb], 1%,
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Fig. 12. (a) Schematic of a Skyrmion-enhanced strain-mediated spintronic RC system!!'?’]; (b) magnetic force microscopy images of

Skyrmion under different electric fields (top panel) and the corresponding Skyrmion contours (bottom panel)!'3.
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Abstract

Magnetic exchange interactions and their induced magnetic structures are crucial factors in determining

magnetization switching. Dzyaloshinskii-Moriya interaction (DMI) is an asymmetric exchange interaction

arising from spin-orbit coupling and structural inversion symmetry breaking, which is one of the key

mechanisms to induce non-collinear magnetic order and chiral magnetic structures, including magnetic
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Skyrmion, vortex and chiral domain wall. These magnetic structures enable novel information proceeding
devices with ultralow power consumption. More importantly, non-collinear magnetic order exhibits richer and
more novel physical behaviors than traditional collinear magnetic structures. With ongoing exploration and
research into magnetic materials, rare-earth transition metal ferrimagnetic materials such as CoGd, CoTb, and
GdFeCo have emerged as notable candidates. These materials combine the spin-orbit coupling of rare-earth
elements with the magnetic exchange interactions of transition metals, leading to ultrafast magnetization
dynamics, tunable magnetic structures, and rich spin transport phenomena. These properties provide an ideal
material platform for studying and manipulating DMI, demonstrating significant potential in designing future
high-density magnetic storage and spintronic devices. This review systematically elucidates the microscopic
physical origin of DMI, outlines the fundamental characteristics of rare-earth transition metal ferrimagnetic
materials, and explores the coupling mechanisms between DMI and ferrimagnetic order. We introduce the
fundamental properties of RE-TM systems and their applications in spin logic devices and magnetic memory
devices. We focus on discussing the physical phenomena related to DMI in RE-TM systems, including the
scaling relationship of DMI in RE-TM, DMlI-related spin-orbit torque effects, and the principles and
applications of skyrmion-based devices, which will provide both theoretical foundations and technical guidance

for the future development of advanced spintronic technologies.
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