|
|
Spectrally smooth X-ray source produced by laser direct driven DT implosion target on SG-Ⅲ laser facility |
Wang Ya-Qin1, Hu Guang-Yue1, Zhao Bin2, Zheng Jian1,3 |
1. Key Laboratory of Geospace Environment of Chinese Academy of Sciences, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; 2. Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China; 3. IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract Spectrally smooth X-ray sources can be used in point projection radiography and absorption spectrometry diagnostics of dense plasmas. But conventionally they are end at about 3.5 keV, which can only be used to diagnose materials up to Z=18. Spectrally smooth X-ray sources above 3.5 keV are needed to study higher-Z materials. Bremsstrahlung radiation from a laser driven implosion target can produce a small size, short duration and spectrally smooth X-ray source in the range of 1-100 keV. They have been successfully applied in the investigations of middle-Z materials in the 3-7 keV X-ray range. Despite much interest for backlit X-ray studies of middle- and high-Z dense materials, research on implosion X-ray sources are scarce. Characterization of the implosion X-ray source is needed to understand and improve its performance. To provide a physical basis for optimization, the properties of the deuterium-tritium (DT) implosion target X-ray source driven by 30-180 kJ laser pulses were explored using a radiation hydrodynamics code. We focus on laser pulse energies of 30-180 kJ at 351 nm wavelength to match the range of the OMEGA laser on the low end and the SG-Ⅲ laser on the high end. The laser pulse parameters are scaled with the target size in identical fashion to that of the OMEGA laser and the ignition designs of the National Ignition Facility to maintain the same irradiance on the surface of the capsule. The temporal and spatial evolution of the implosion targets was calculated using Multi-1D, a one-dimensional radiation hydrodynamics code. The emergent X-ray spectrum is calculated by post-processing from the time histories of the temperature and density profiles output by the Multi-1D code. We adjusted the laser absorption fraction to ensure neutron yield in accordance with OMEGA's 1D simulation results. It shows that the rapid increase of density and temperature at stagnation time develops a 150 ps point X-ray flash with approximately 100 μm size. The dominant X-ray emission comes from the inner layer of the dense compressed shell, which should be the focus of future efforts to improve the X-ray emission. Softer X-rays below 30 keV carry most of the energy due to the exponentially decaying spectral profile of implosion X-ray source. Opacity of the dense compressed shell plasma can markedly reduce the very softer X-ray emission of 1-3 keV. DT fusion reactions can enhance the share of harder X-rays above 30 keV greatly, while show negligible effect on the brightness of the implosion X-ray source. Thus higher-Z plastic target or glass target may be a better choice in generating the implosion X-ray source.
|
Received: 09 March 2017
|
PACS: |
52.57.-z
|
(Laser inertial confinement)
|
|
52.50.Jm
|
(Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))
|
|
52.65.-y
|
(Plasma simulation)
|
|
52.25.Os
|
(Emission, absorption, and scattering of electromagnetic radiation)
|
|
Fund:Project supported by the National Natural Science Foundation of China (Grant Nos. 11105147, 11375197, 11175179, 11275202), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16), the Open Fund of the State Key Laboratory of High Field Laser Physics (SIOM), and the Science Challenge Project, China (Grant No. JCKY2016212A505). |
Corresponding Authors:
胡广月
E-mail: gyhu@ustc.edu.cn
|
|
|
|
[1] |
Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
|
[2] |
Drake R P 2006 High-Energy-Density Physics: Fundamental, Inertial Fusion and Experimental Astrophysics (New York: Springer Science & Business Media) pp237-266
|
[3] |
Zhang J Y, Yang J M, Xu Y, Yang G H, Yan J, Meng G W, Ding Y N, Wang Y 2008 Acta Phys. Sin. 57 985 (in Chinese) [张继彦, 杨家敏, 许琰, 杨国洪, 颜君, 孟广为, 丁耀南, 汪艳 2008 物理学报 57 985]
|
[4] |
Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2001 Phys. Plasmas 18 113301
|
[5] |
Zhang J Y, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H Y, Yang G H, Yang J M, Liu S Y, Jiang S E, Ding Y K, Zhang B H, Zheng Z J, Xu Y, Meng X J, Yan J 2012 Phys. Plasmas 19 113302
|
[6] |
Zhang X D, Zhang J Y, Zhao Y, Xiong G, Zhao B, Yang G H, Zheng J, Yang J M 2012 Phys. Plasmas 19 123301
|
[7] |
Sawada H, Regan S P, Radha P B, Epstein R, Li D, Goncharov V N, Hu S X, Meyerhofer D D, Delettrez J A, Jaanimagi P A, Smalyuk V A, Boehly T R, Sangster T C, Yaakobi B, Mancini R C 2009 Phys. Plasmas 16 052702
|
[8] |
Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Blancard C, Cosse P, Faussurier G 2009 Phys. Plasmas 16 058101
|
[9] |
Bailey J E, Rochau G A, Iglesias C A, Abdallah Jr J, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007 Phys. Rev. Lett. 99 265002
|
[10] |
Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104
|
[11] |
Hansen J F, Glendinning S G, Heeter R F, Brockington S J E 2008 Rev. Sci. Instrum. 79 013504
|
[12] |
Remington B A, Allen P, Bringa E M, Hawreliak J, Ho D, Lorenz K T, Lorenzana H, McNaney J M, Meyers M A, Pollaine S W, Rosolankova K, Sadik B, Schneider M S, Swift D, Wark J, Yaakobi B 2006 Mater. Sci. Technol. 22 474
|
[13] |
Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006
|
[14] |
Eason R W, Bradley D K, Kilkenny J D, Greaves G N 1984 J. Phys. C 17 5067
|
[15] |
Shiwai B A, Djaoui A, Hall T A, Tallents G J, Rose S J 1992 Laser Part. Beams 10 41
|
[16] |
Yaakobi B, Marshall F J, Boehly T R, Town P R J, Meyerhofer D D 2003 J. Opt. Soc. Am. B 20 238
|
[17] |
Yaakobi B, Meyerhofer D D, Boehly T R, Rehr J J, Remington B A, Allen P G, Pollaine S M, Albers R C 2004 Phys. Rev. Lett. 92 095504
|
[18] |
Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Rev. Lett. 95 075501
|
[19] |
Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709
|
[20] |
Hammer D 2008 JASON Report on DTRA National Ignition Facility(NIF) JSR-08-800
|
[21] |
Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Su J Q, Zheng K X, Yuan X D, Zhou H, Dai W J, Zhou W, Wang F, Xu D P, Xie X D, Feng B, Peng Z T, Guo L F, Chen Y B, Zhang X J, Liu L Q, Lin D H, Dang Z, Xiang Y, Deng X W 2016 High Power Laser Science and Engineering 4 20
|
[22] |
Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Loucks S J, Letzring S A, Marshall F J, McCrory R L, Morse S F B, Seka W, Soures J M, Verdon C P 1997 Opt. Commun. 133 495
|
[23] |
Tommasini R, Hatchett S P, Hey D S, Iglesias C, Izumi N, Koch J A, Landen O L, MacKinnon A J, Sorce C, Delettrez J A, Glebov V Y, Sangster T C, Stoeckl C 2011 Phys. Plasmas 18 056309
|
[24] |
Stoeckl C, Chiritescu C, Delettrez J A, Epstein R, Glebov V Y, Harding D R, Keck R L, Loucks S J, Lund L D, McCrory R L, McKenty P M, Marshall F J, Meyerhofer D D, Morse S F B, Regan S P, Radha P B, Roberts S, Sangster T C, Seka W, Skupsky S, Smalyuk V A, Sorce C, Soures J M, Town R P J, Frenje J A, Li C K, Petrasso R D, Séguin F H, Fletcher K, Paladino S, Freeman C, Izumi N, Lerche R, Phillips T W 2002 Phys. Plasmas 9 2195
|
[25] |
Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475
|
[26] |
Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energy Density Physics 1 3
|
[27] |
Chung H K, Morgan W L, Lee R W 2003 J. Quantit. Spectrosc. Radia. Transfer 81 107
|
[28] |
Marshall F J, Craxton R S, Delettrez J A, Edgell D H, Elasky L M, Epstein R, Glebov V Y, Goncharov V N, Harding D R, Janezic R, Keck R L, Kilkenny J D, Knauer J P, Loucks S J, Lund L D, McCrory R L, McKenty P W, Meyerhofer D D, Radha P B, Regan S P, Sangster T C, Seka W, Smalyuk V A, Soures J M, Stoeckl C, Skupsky S 2005 Phys. Plasmas 12 056302
|
[29] |
Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford University Press) pp47-72
|
[1] |
Zhao Jia-Rui, Yu Quan-Zhi, Liang Tian-Jiao, Chen Li-Ming, Li Yu-Tong, Guo Cheng-Shan. Temperature diagnostic using photonuclear reactions for hot electrons in laserplasma interactions[J]. Acta Phys. Sin, 2013, 62(7):
.
doi:10.7498/aps.62.072501. |
[2] |
Xie Chong Guo, An Yu, Ying Chong Fu. Effect of water vapor in sonoluminescing bubble[J]. Acta Phys. Sin., 2003, 52(1):
102.
doi:10.7498/aps.52.102. |
[3] |
. [J]. Physics, 2000, 29(05):
0.
doi:. |
|
|
|
|