Search

Article

x

Highlights

Topics
Article Type

COVER ARTICLE

  

COVER ARTICLE

High-resolution resonant inelastic X-ray scattering study of W-L3 edge in WSi2
ZHAO Zheqian, WANG Shuxing, WANG Xiyuan, SU Yang, MA Ziru, HUANG Xinchao, ZHU Linfan
2025, 74 (18): 183201. doi: 10.7498/aps.74.20250659
Abstract +
With the advancement of synchrotron and free-electron laser, X-ray quantum optics has emerged as a novel frontier for exploring light-matter interactions at high photon energies. A significant challenge in this field is achieving well-defined two-level systems through atomic inner-shell transitions, which are often hindered by broad natural linewidths and local electronic structure effects. This study aims to explore the potential of tungsten disilicide (WSi2) as a two-level system for X-ray quantum optics applications. Utilizing high-resolution resonant inelastic X-ray scattering (RIXS) near the W-L3 edge, in this work, the white line of bulk WSi2 is experimentally distinguished, overcoming the spectral broadening caused by short core-hole lifetime. The measurements are conducted by using a von Hamos spectrometer at the GALAXIES beamline of the SOLEIL synchrotron. The results reveal a single resonant emission feature with a fixed energy transfer, confirming the presence of a discrete 2p-5d transition characteristic of a two-level system. Additional high-resolution XAS spectra, obtained via high energy resolution fluorescence detection method and reconstructed from off-resonant emission (free from self-absorption effect for bulk WSi2 sample) method, further support the identification of a sharp white line. These findings demonstrate the feasibility of using WSi2 as a model system in X-ray cavity quantum optics and establish RIXS as a powerful technique to resolve fine inner-shell structures.

SPECIAL TOPIC—AI + Physical Science

  

EDITOR'S SUGGESTION

Material design accelerated by large language models: end-to-end empowerment from knowledge mining to intelligent design
HUANG Yudan, XIA Wanjun, DU Junmei, JIANG Yu, WANG Xin, CHEN Yuanzheng, WANG Hongyan, ZHAO Jijun, GUO Chunsheng
2025, 74 (18): 188101. doi: 10.7498/aps.74.20250497
Abstract +
With the rapid development of artificial intelligence technology, large language models (LLMs) have become the core driving force for the paradigm shift in materials science research. This review explores the comprehensive role of LLMs in accelerating material design throughout the entire research lifecycle from knowledge mining to intelligent design. This work aims to emphasize how LLMs can leverage their advantages in information retrieval, cross-modal data integration, and intelligent reasoning to address challenges in traditional materials research, such as data fragmentation, high experimental costs, and limited reasoning capabilities.Key methods include applying LLMs to knowledge discovery through techniques such as retrieval-augmented generation (RAG), multi-modal information retrieval, and knowledge graph construction. These approaches can efficiently extract and construct material data from a vast repository of scientific literature and experimental records. Additionally, LLMs are integrated with automated experimental platforms to optimize workflows from natural language-driven experiment design to high-throughput iterative testing.The results demonstrate that LLMs significantly enhance material research efficiency and accuracy. For instance, in knowledge mining, LLMs improve information retrieval accuracy by up to 29.4% in tasks such as predicting material synthesis conditions. In material design, LLMs can accelerate computational modeling, structure and performance prediction, and reverse engineering, reducing experimental trial-and-error cycles. Notably, LLMs perform well in cross-scale knowledge integration, linking material composition, processing parameters, and performance metrics to guide innovative synthesis pathways.However, challenges still exist, including dependence on high-quality data, the “black-box” nature of LLMs, and limitations in handling complex material systems. The future direction emphasizes improving data quality through multi-source integration, enhancing model explainability through visualization tools, and deepening interdisciplinary collaboration, and bridging the gaps between AI and domain-specific expertise.In summary, LLMs are reshaping materials science by implementing a data-driven, knowledge-intensive research paradigms. The ability of LLMs to integrate vast datasets, predict material properties, and automate experimental workflows makes them indispensable tools for accelerating material discovery and innovation. With the development of LLMs, their synergistic effect with physical constraints and experimental platforms is expected to open new fields in material design.

EDITOR'S SUGGESTION

Modification of TOV equation in Poincaré gauge gravity
GUO Zhengrui, LIU Helei, LV Guoliang, MA Yongge
2025, 74 (18): 180401. doi: 10.7498/aps.74.20250644
Abstract +
In recent years, Poincaré gauge gravity theory has attracted widespread attention and has been applied to the fields of gravitation and astrophysics. Therefore, how to distinguish between general relativity and Poincaré gauge gravity theory through experimental observations has become an important subject. The core of Poincaré gauge gravity theory is the introduction of torsion in spacetime. General relativity can be regarded as a special case of Poincaré gauge gravity theory in the absence of torsion. Neutron stars, as celestial bodies with extremely strong gravitational fields, serve as an ideal laboratory for Poincaré gauge gravity theory. At present, research on the properties of neutron stars based on the Poincaré gauge theory of gravitation is very scarce. In view of the significance of Poincaré gauge gravity theory, it is necessary to study the properties of neutron stars within the framework of this theory and check whether observations of neutron stars can be used to distinguish and test Poincaré gauge gravity theory and general relativity.In this work, a specific gravitational field Lagrangian is chosen for Poincaré gauge gravity theory to derive the corresponding gravitational field equations. Based on these equations, the modified Tolman-Oppenheimer-Volkoff (TOV) equation is further derived for spherically symmetric static neutron stars. When the spacetime torsion is zero, the modified static neutron star TOV equation decreases precisely to the TOV equation in general relativity.Then, the influence of torsion on the mass-radius relation of static neutron stars is investigated. Our analysis shows that in spherically symmetric spacetime, when the neutron star is static and only the spin tensor of particles is considered (the order of magnitude is ${10^{ - 34}}$), the mass-radius relation of static neutron stars calculated by this theoretical model is consistent with the result in general relativity. This indicates that under static conditions, the correction effect of torsion on the mass-radius relation of neutron stars can be neglected.This study is limited to static neutron star models under the condition of spherically symmetric spacetime metrics. However, in realistic astrophysical environments, neutron stars possess significant angular momentum. In the final section of this paper, the effect of neutron star rotation is discussed and the selected Poincaré gauge gravity model is found to be unsuitable for investigating the mass–radius relation of rotating neutron stars. This work provides a theoretical foundation and reference methods for further investigating the mass–radius relation of rotating neutron stars within the framework of Poincaré gauge gravity.

EDITOR'S SUGGESTION

Preparation of single-quantum-state-selected helium for neutral atom-molecule merged-beams collisions
WEI Long, DU Xiaojiao, WEN Jinlu, DONG Junfeng, SUN Yu, HU Shuiming
2025, 74 (18): 183103. doi: 10.7498/aps.74.20250812
Abstract +
Studying low-temperature atomic and molecular reaction dynamics in quantum state selection is one of the key research methods for exploring the collision reaction mechanisms and revealing quantum effects in scattering processes. The merging beam collision experimental method is a powerful approach to achieving cold collisions of mK collision energy, by deflecting one reactant beam to collide with another reactant beam in a collinear manner.In this work, based on the Zeeman effect, the interaction between atomic magnetic moments and a magnetic field, a permanent-magnet “magnetic guide” system is developed to deflect metastable helium atom beams, with the aim of achieving collinear transport of neutral helium atoms and molecules in cold merged-beams collisions. Metastable helium atoms He(23S1) are produced through RF discharge. Utilizing this “magnetic guide”, the quantum-state-resolved neutral helium atoms (He(23S1), $ {M_J} = + 1 $) are prepared. Helium flux measurements demonstrate about 10°deflection of metastable helium atoms with a flux exceeding 106 atoms/s, accompanied by successful preparation of $ {M_J} = + 1 $ magnetic sublevel helium atoms. Furthermore, by combining the magnetic field measurements and magnetic force calculations for 23S1 metastable helium atom, the simulated trajectories propagating through the magnetic guide are analyzed.This work lays an experimental foundation for quantum-state-resolved cold collisions between excited-state helium and molecules below 1 K, advancing the understanding of cold reaction mechanisms governing the evolution of interstellar media and promoting chemical reaction control. The developed magnetic guidance technology in this study also has important application prospects in fields such as atomic velocity filtering and cold atom transport.In the future, optical pumping experimental methods will be employed to pump 23S1 helium atoms into the $ {M_J} = + 1 $ magnetic sublevel helium atoms, enhancing the population of single quantum state. Moreover, two-dimensional magneto-optical traps and optical molasses will be implemented to optimize beam, which is expected to further improve the beam flux of helium atoms.

EDITOR'S SUGGESTION

Characterization and control of quasi-bound states in the continuous in Si3N4 photonic crystals
ZHANG Yunhao, HE Xiao, YING Jiahe, LIU Donglin, TAO Guangyi, DAI Yuchen, DANG Zhibo, FANG Zheyu
2025, 74 (18): 184204. doi: 10.7498/aps.74.20250757
Abstract +
Photon localization is of great significance in both basic research and technical applications. Bound states in the continuum (BICs) in photonic crystal provide a new mechanism for effective photon localization. However, the imperfections and defects are inevitable in the process of fabricating photonic crystals. Momentum-space characterization is used as a powerful tool to analyze how such processing variations affect the photonic band structure, providing information for designing and fabricating photonic crystal devices. In this work, a photonic crystal in the visible light band is designed and its band structure is analyzed through FDTD simulation. The high symmetry at the point in momentum space Γ leads to a symmetry mismatch between the internal mode of the photonic crystal and the external propagation mode (radiation continuum), so that bound states with infinite lifetime appear above the light, thereby achieving the localization of photons in the vertical direction. At the same time, the angle-resolved photoluminescence (PL) spectrum of the photonic crystal is measured through the self-built angle-resolved optical path. The weak photoluminescence of the Si3N4 substrate is coupled with the photonic crystal mode for measuring the photonic crystal band. It can be observed that the band structure is consistent with the simulation results. At the same time, the intensity of the TE1 band near the Γ point is significantly weakened compared with the intensity at the position away from the Γ point, but it is not completely eliminated. This shows that errors and defects caused in fabrication process will destroy the symmetry of the structure, causing the BIC to evolve into the quasi-BIC. The quasi-BIC mode achieves effective localization of photons in the vertical direction near the Γ point. Furthermore, a heterostructure of photonic crystals with different periods is designed to achieve lateral photon localization by utilizing the band nesting between the photonic ctystals with different periods. Through this approach, this study ultimately develops a high-quality microcavity with a ratio of impressive quality factor to mode volume of $ 6\times {10}^{14} $ cm–3, and achieves characteristic regulation of the momentum space of photonic crystals by adjusting the structural parameters. This research is of great significance for designing photonic crystals and studying the interaction between light and matter.

EDITOR'S SUGGESTION

Theoretical study on charge-state evolution of carbon ions passing through hydrogen plasma
ZHANG Chongrui, HE Wenliang, CAO Shiquan, XIE Luyou, DONG Chenzhong
2025, 74 (18): 185203. doi: 10.7498/aps.74.20250668
Abstract +
In this paper, the charge state evolution behavior of carbon ions interacting with hydrogen plasma is systematically investigated based on a cross-sectional model. First, the influence of introducing a “shifted” Maxwellian velocity distribution on the dielectronic recombination rate coefficients is investigated within the range of carbon ion incident energies from 1 keV/u to 100 MeV/u and hydrogen plasma electron temperatures of $k{T_{\text{e}}} = 1$–1000 eV. The rate coefficient data for this system are provided. On this basis, this research specifically solves the equilibrium rate equations by taking into account various ionization and recombination processes for projectile carbon ions with an energy of ${0}{\text{.5 MeV/u}}$, plasma electron temperatures of $k{T_{\text{e}}} = 3{\text{ eV}}$ and ${\text{8 eV}}$, and electron densities ranging from ${1}{{0}^{{18}}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$ to ${1}{{0}^{{20}}}{\text{ c}}{{\text{m}}^{{{ - 3}}}}$. The results show that the abundance of both non-equilibrium and equilibrium charge states of carbon ions passing through hydrogen plasma varies with plasma thickness, revealing how plasma conditions such as temperature and density, along with projectile ion energy and initial charge states, influence the evolution of the ion charge states. Furthermore, a comparison of the dynamic behaviors of carbon ions in hydrogen plasma and neutral gas (hydrogen) shows that the unique effects of the plasma environment on ion charge exchange are elucidated. The mean equilibrium charge state of projectile ions exhibits a positive correlation with electron temperature and a negative correlation with electron density. It is particularly important that the calculated equilibrium charge states in hydrogen gas targets are notably lower than those in plasma environments. As the initial charge state of projectile ions approaches its equilibrium value, the equilibrium thicknesses for all charge states demonstrate a decreasing trend, accompanied by a corresponding reduction in the mean equilibrium thickness. This phenomenon is consistently verified in both plasma and gas targets, with the mean equilibrium thickness values in gas targets being significantly smaller than those in plasma environments. Most importantly, when the initial charge state of projectile ions exceeds the equilibrium value, these ions display more pronounced energy loss characteristics in non-equilibrium regions. This study will provides important references for investigating the dynamic evolution and energy transport characteristics of ion-plasma interactions in the field of high-energy-density physics.

EDITOR'S SUGGESTION

Physical properties of novel amorphous superconducting thin film materials for superconducting nanowire single-photon detectors
XU Luo, ZHANG Xiaofu, YOU Lixing
2025, 74 (18): 187402. doi: 10.7498/aps.74.20250795
Abstract +
Amorphous superconducting thin film materials have the advantages of high superconducting uniformity and good optical response sensitivity, which make them ideal materials for fabricating large-area and mid-infrared superconducting nanowire single-photon detectors (SNSPD). In this paper, three series of different amorphous superconducting films are deposited on Si wafers by room-temperature magnetron co-sputtering. For these films, the dependence of their physical properties, i.e. critical temperature Tc, Ginzburg-Landau coherence length ξ(0), normal-state electron diffusion coefficient De, magnetic penetration depth λ(0), and superconducting energy gap Δ(0), on film thickness is systematically investigated. Compared with amorphous tungsten silicide (WSi) and molybdenum germanide (MoGe) superconducting thin films, WGe alloys and WSi have similar superconducting properties, including critical temperature and coherence length, slightly lower normal-state electron diffusion coefficient and higher magnetic penetration depth. Compared with MoGe, both WGe and WSi alloys exhibit larger normal-state electron diffusion coefficient and higher magnetic penetration depths. By studying the superconducting properties of three different amorphous thin films, this research provides new material choices and experimental evidence for developing and optimizing the performance of large-area, high-sensitivity superconducting nanowire single-photon detectors.

EDITOR'S SUGGESTION

Parameter optimization method for space channel continuous-variable quantum key distribution based on Unet network
ZHENG Tian, CHEN Yujie, CHENG Jin, CHEN Lanjian, LIU Ao, DONG Chen
2025, 74 (18): 180302. doi: 10.7498/aps.74.20250740
Abstract +
Continuous-variable quantum key distribution (CV-QKD) has made significant progress in the field of quantum communication, operating under strict conditions such as optical diffraction limit, maximum communication distance, and photoelectric detection limit. The optimization of protocol parameters, particularly the modulation variance ($ {V}_{\mathrm{A}} $), is crucial for the feasibility of CV-QKD. However, in space-to-ground CV-QKD scenarios, the high-speed relative motion between low-earth-orbit satellites and ground stations, coupled with limited on-board computing resources, poses challenges for traditional optimization algorithms to meet the real-time demands of rapidly changing space channels.To cope with these challenges, a novel method of optimizing Gaussian-modulation CV-QKD in space channels using a Unet-based approach is proposed in this work. A comprehensive simulation platform for CV-QKD links, generating a substantial training dataset of 126575 samples by changing parameters such as orbital height and zenith angle, is developed in this work. The Unet network, renowned for its symmetric architecture and powerful feature fusion capabilities, is utilized to achieve near-real-time prediction of modulation variance. Our simulation results demonstrate the effectiveness of the proposed method, with the Unet network achieving a remarkable prediction accuracy of 99.25%–99.41% on 6328 datasets, orbital heights between 510 and 710 km, and excess noise levels between 0.01 and 0.03.Compared with the local search algorithm, which takes 14754 s, the Unet-based approach significantly reduces the inference time to just 1.08 s, representing a speed-up ratio of 1.48 × 106. These findings provide a solid theoretical foundation for optimizing real-time parameters in future space-channel CV-QKD experiments, and have made significant progress in the field of quantum communication. The proposed method not only enhances the efficiency of parameter optimization but also ensures the security and reliability of CV-QKD in dynamic space environments.

EDITOR'S SUGGESTION

Improvements of traditional optical model and its applications in heavy-ion collision reaction
LIANG Chuntian, SUN Xiaojun, HUANG Junxi, YANG Haoyu, LI Xiaohua, CAI Chonghai
2025, 74 (18): 182401. doi: 10.7498/aps.74.20250633
Abstract +
To describe the projectile-target interaction in heavy-ion collision, the traditional optical model is improved and a corresponding optical model for heavy-ion collisions is established in this work The program APOMHI is developed accordingly. In heavy-ion collisions, the mass of the projectile is comparable to the mass of target nucleus. Therefore, the projectile and target nucleus must be treated equally. The potential field for their relative motion must arise from an equivalent contribution of both nuclei, not just from the target nucleus. Consequently, the angular momentum coupling scheme must adopt L - S coupling, instead of j - j coupling. The projectile spin i and target spin I first couple to form the projectile-target system spin S (which varies between $ \left| {I - i} \right| $ and $ i + I $). Then, the spin S of this system couples with the orbital angular momentum L of relative motion, forming a total angular momentum J . Thus, the radial wave function UlSJ (r) involves three quantum numbers: l , S , and J , while traditional optical model only involves l and j . Furthermore, since the mass of projectile is similar the mass of target, the form of the optical model potential is symmetrical relative to the projectile and target. The projectile nucleus and the target nucleus are still assumed to be spherical, and their excited states are not considered. The projectile may be lighter or heavier than the target, but they cannot be identical particles. By using this optical model program APOMHI, the elastic scattering angular distributions and compound nucleus absorption cross sections for heavy-ion collisions can be calculated. Taking for example a series of heavy-ion collision reactions with 18O as the projectile nucleus, a corresponding set of universal optical potential parameters is obtained by fitting experimental data. The comparisons show that the theoretical calculations generally accord well with the available experimental data. Here, the results for fusion cross-sections and elastic scattering angular distributions using several representative target nuclei (lighter, comparable in mass, heavier, and heavy compared to the projectile nucleus) are taken for example. Specifically, the fusion cross-section results correspond to targets 9Be, 27Al, 63Cu and 150Sm, while the elastic scattering angular distributions correspond to targets 16O, 24Mg, 58Ni, and 120Sn.

EDITOR'S SUGGESTION

Multi-objective and multi-constraint optimization of ultracold molecular orientation with limited rotational states
YU Zhenyang, HONG Qianqian, YI Yougen, SHU Chuancun
2025, 74 (18): 183102. doi: 10.7498/aps.74.20250684
Abstract +
The design of shaping pulse fields for controlling molecular orientation is of great importance in fields of stereochemical reactions, strong-field ionization, and quantum information processing. Traditional quantum optimal control algorithms typically solve the problem of molecular orientation in an infinite-dimensional rotational space, but they often overlook the constraints imposed by experimental limitations. In this work, a multi-objective and multi-constraint quantum optimal control algorithm is proposed to design a pulse field that conforms to the constraints of pulse area and energy. Specifically, the algorithm enforces a zero pulse area condition to eliminate the static field components and maintains constant pulse energy, ensuring compatibility with realistic experimental setups. Under these constraints, the algorithm optimizes the population and phase distribution of a selected number of low-lying rotational states in ultracold molecules to achieve maximum molecular orientation. The effectiveness of the proposed algorithm is demonstrated through numerical studies involving two- and three-state target subspaces, where the creation of a coherent superposition state with optimized population and phase distribution leads to the desired molecular orientation. Furthermore, its scalability is validated by applying it to a more complex 17-state subspace, where a maximum orientation value of 0.99055 is obtained, approaching the global optimal value of 1. Our findings demonstrate that by effectively managing these constraints, the influence of rotational states in the non-target state subspace can be substantially suppressed. The time-frequency analysis of the optimized pulses, combined with the Fourier transform spectrum of the time-dependent degree of orientation, indicates that the maximum molecular orientation is mainly achieved through ladder-climbing excitation of multi-color pulse fields, with the contributions from highly excited states being minimal. This work provides a valuable reference for designing experimentally feasible pulse fields using multi-constraint optimization algorithms, which helps to precisely control a limited number of rotational states to achieve maximum molecular orientation.
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 205
  • 206