|
|
Charged paricle activation analysis for characterizing parameters of laser-accelerated protons |
He Shu-Kai1, Liu Dong-Xiao1, Jiao Jin-Long1, Deng Zhi-Gang1, Teng Jian1, Zhang Zhi-Meng1, Zhang Zhi-Meng1, Hong Wei1, Gu Yu-Qiu1,2,3 |
1. Key Laboratory of Plasma Physics, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;
2. International Fusion Sciences and Applications(IFSA) Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China;
3. Center for Applied Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract The protons accelerated by ultra-high intensity laser have been extensively studied. The most commonly used detectors for measuring laser-driven proton are Tomspon parabola ion energy analyser (TP) and filtered nuclear track detectors, such as radiochromic films (RCF). The TP uses a parallel magneto-electric field to distinguish ions. This conventional technique can precisely identify the species and energy spectra of ions. However, the strong electromagnetic field produced by the laser-plasma interaction has an effect on TP, which results in no spatial resolution of TP. The RCF can give the spatial integration spectrum of proton, but it is easy to be saturated and cannot be reused anymore. In this paper, we present a method based on the traditional charged particle activation analysis and the gamma-gamma coincidence measurement to measure the spectrum of protons accelerated by ultra intense lasers. In this method, a copper plate stack is placed in the proton emission direction. Colliding with MeV proton converts 63Cu in the copper plates into radionuclide 63Zn whose decay can be easily observed and measured. Proton spectrum is then recovered from 63Zn decay counts from layers in the copper stack. The layout of diagnostics and the method to solve proton spectrum are discussed in detail and a self-consistent test is given. This spectrum analysis method is used in a laser-driven proton acceleration experiment carried out on XG-Ⅲ laser facility. The results show that protons up to 18 MeV are obtained, and the spatial integrated spectrum and a laser-proton conversion efficiency of 1.07% are achieved. In conclusion, our method has some advantages as a laser-driven ion diagnostic tool. It has no saturation problem and is not affected by strong electromagnetic fields. The basic principle of charged particle activation analysis is based on nuclear reaction, and can be extended to the measuring of other charged particle beams besides protons, such as deuterons, helium ions produced by ultra-high intensity laser.
|
Received: 08 May 2017
|
PACS: |
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.70.Nc
|
(Particle measurements)
|
|
29.40.-n
|
(Radiation detectors)
|
|
82.80.Jp
|
(Activation analysis and other radiochemical methods)
|
|
Fund: Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2013A0103003) and the Major Special Scientific Instruments and Equipment Development of Ministry of Science and Technology, China (Grant No. 2012YQ03014206). |
Corresponding Authors:
洪伟
E-mail: jminhong@126.com
|
|
|
|
[1] |
Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267
|
[2] |
Wagner F, Deppert O, Brabetz C, et al. 2016 Phys. Rev. Lett. 116 205002
|
[3] |
Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 59 8733 (in Chinese)[董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方2010物理学报59 8733]
|
[4] |
Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899
|
[5] |
Cowan T E, Hunt A W, Phillips T W, Wilks S C, Perry M D, Brown C, Fountain W, Hatchett S, Johnson J, Key M H, Parnell T, Pennington D M, Snavely R A, Takahashi Y, Photonuclear 2000 Phys. Rev. Lett. 84 903
|
[6] |
Boyer K, Luk T S, Rhodes C K 1988 Phys. Rev. Lett. 60 557
|
[7] |
Schwoerer H, Ewald F, Sauerbrey R, Galy J, Magill J, Rondinella V, Schenkel R, Butz T 2003 Europhys. Lett. 61 47
|
[8] |
Heinrich S, Joseph M, Burgard B 2006 Laser and Nuclei:Application of Ultrahigh Intensity Lasers in Nuclear Science (Lecture Notes in Physics 694) (Berlin:Springer Press) pp25-45
|
[9] |
Wang N Y 2008 Physics 37 9 (in Chinese)[王乃彦2008物理37 9]
|
[10] |
Sadighi-Bonabi R, Irani E, Safaie B, Imani Kh, Silatani M, Zare S 2010 Energy Convers. Manag. 51 636
|
[11] |
Petrov G M, Higginson D P, Davis J, Petrova T B, McNaney J M, McGuffey C, Qiao B, Beg F N 2012 Phys. Plasmas 19 093106
|
[12] |
Lefebvre E, Humieres E, Fritzler S, Malka V 2006 J. Appl. Phys. 100 113308
|
[13] |
Zhao G Q, Ren C G 1989 Nuclear Analyticle Techniques (Beijing:Atomic Energy Press) p40(in Chinese)[赵国庆, 任炽刚1989核分析技术(北京:原子能出版社)第40页]
|
[14] |
Cobble J A, Flippo K A, Offermann D T, Lopez F E, Oertel J A, Mastrosimone D, Letzring S A, Sinenian N 2011 Rev. Sci. Instrum. 82 113504
|
[15] |
Morrison J T, Willis C, Freeman R R, van Woerkom L 2011 Rev. Sci. Instrum. 82 033506
|
[16] |
Nurnberg F, Schollmeier M, Brambrink E, Blazevic A, Carroll D C, Flippo K, Gautier D C, Geissel M, Harres K, Hegelich B M, Lundh O, Markey K, McKenna P, Neely D, Schreiber J, Roth M 2009 Rev. Sci. Instrum. 80 033301
|
[17] |
Clark E 2001 Ph. D. Dissertation (London:University of London)
|
[18] |
Santala M I K, Zepf M, Beg F N, Clark E L, Dangor A E, Krushelnick K, Tatarakis M, Watts I, Ledingham K W D, McCanny T, Spencer I, Machacek A C, Allott R, Clarke R J, Norreys P A 2001 Appl. Phys. Lett. 78 19
|
[19] |
Yang J M, McKenna P, Ledingham K W D, McCanny T, Shimizu S, Robson L, Clarke R J, Neely D, Norreys P A, Wei M S, Krushelnick K, Nilson P, Mangles S P D, Singhal R P 2004 Appl. Phys. Lett. 84 675
|
[20] |
Meadows J W 1953 Phys. Rev. 91 885
|
[21] |
Higginson D P, McNaney J M, Swift D C, Petrov G M, Davis J, Frenje J A, Jarrott L C, Kodama R, Lancaster K L, Mackinnon A J, Nakamura H, Patel P K, Tynan G, Beg F N 2011 Phys. Plasmas 18 100703
|
[1] |
Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Focusing effect of channel target on ultra-intense laser-accelerated proton beam[J]. Acta Physica Sinica, 2017, 66(18):
.
doi:10.7498/aps.66.184101. |
[2] |
Ma Hai-Qiang, Li Lin-Xia, Wang Su-Mei, Wu Zhang-Bin, Jiao Rong-Zhen. An all-fiber method to measure the wave-particle duality of light[J]. Acta Phys. Sin., 2010, 59(1):
75.
doi:10.7498/aps.59.75. |
[3] |
Ma Hai-Qiang, Wang Su-Mei, Wu Ling-An. A single photon source based on entangled photon pairs[J]. Acta Phys. Sin., 2009, 58(2):
717.
doi:10.7498/aps.58.717. |
[4] |
Liu Yi-Bao, Pang Wen-Ning, Ding Hai-Bing, Shang Ren-Cheng. Distribution of electron clouds in the excited atomic state in electron-photon coincidence scattering experiment[J]. Acta Phys. Sin., 2005, 54(8):
3554.
doi:10.7498/aps.54.3554. |
|
|
|
|