|
|
Picosecond laser-driven proton acceleration study of SGⅡ-U device based on charged particle activation method |
He Shu-Kai1, Qi Wei1, Jiao Jin-Long1, Dong Ke-Gong1, Deng Zhi-Gang1, Teng Jian1, Zhang Bo1, Zhang Zhi-Meng1, Hong Wei1, Zhang Hui2, Shen Bai-Fei2, Gu Yu-Qiu1,3,4 |
1. Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China; 2. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 3. Shanghai Jiao Tong University, International Fusion Sciences and Applications(IFSA) Collaborative Innovation Center, Shanghai 200240, China; 4. Center for Applied Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract The laser-driven proton acceleration experiment is carried out on the SGⅡ-U device based on charged particle activation method, and the target parameters are optimized. The charged particle method is used to measure the maximum cutoff energy of proton, angular profile, total yield and conversion efficiency of laser energy to proton energy for different copper film thickness under the same laser condition. It is found that the optimal copper film thickness for the SGⅡ-U picoseond laser-driven proton experiment is 10 μm, the highest proton energy obtained is about 40 MeV, and the total yield of protons (>4 MeV) is about 4×1012, the conversion efficiency of laser energy to proton energy is about 2%. Thicker or thinner copper film can reduce the maximum cut-off energy of accelerated proton; when the target thickness is reduced to 1 μm, the pre-pulse of the laser begins to have a significant effect on the target normal sheath acceleration (TNSA) proton, proton energy drops sharply, the proton beam porfile exhibits a hollow structure; when the target thickness is increased to 35 μm, although the energy of the proton is reduced, the proton beam spot is more uniform. According to our experimental results, when using SGⅡ-U picosecond laser to generate protons as a backlight diagnostics, a thicker Cu film can be selected which can supply more uniform proton beams. When the target is too thin, the TNSA proton itself has a modulation structure which will cause interference to yield the photographic results; when the protons generated by the SGⅡ-U picosecond are used to generate neutron source, the higher proton energy and yield are required, and 10 μm Cu film is suitable. The further enhancing the TNSA accelerated proton energy and quantity of the SGⅡ-U picosecond laser requires the further improving of the laser contrast.
|
Received: 08 August 2018
|
PACS: |
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.70.Nc
|
(Particle measurements)
|
|
29.40.-n
|
(Radiation detectors)
|
|
82.80.Jp
|
(Activation analysis and other radiochemical methods)
|
|
Fund:Project supported by the National Key Programme for Science and Technology Research and Development, China (Grant No. 2016YFA0401100), the Science Challenge Project, China (Grant No. TZ2018005), and the National Grand Instrument Project, China (Grant No. 2012YQ03014206). |
Corresponding Authors:
贺书凯
E-mail: shukai.he@caep.cn
|
|
|
|
[1] |
Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267
|
[2] |
Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945
|
[3] |
Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401
|
[4] |
Roth M, Cowan T E, Gauthier J C, Vehn J M, Allen M, Audebert P, Blazevic A, Fuchs J, Geissel M, Hegelich M, Karsch S, Pukhov A, Schlegel T 2002 Phys. Rev. ST Accel. Beams 5 061301
|
[5] |
Roth M, Brambrink E, Audeert P, Basko M, Blazevic A, Clarke R, Cobble J, Cowan T E, Fernandez J, Fuchs J, Hegelich M, Ledingham K, Logan B G, Neely D, Ruhl H, Schollmeier M 2005 Plasma Phys. Control. Fusion 47 B841
|
[6] |
Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Mackinnon A, Snavely R A 2001 Phys. Plasmas 8 2
|
[7] |
Ceccotti T, Levy A, Popescu H, Reau F, Oliveira P D, Monot P, Geindre J P, Lefebvre E, Martin P 2007 Phys. Rev. Lett. 99 185002
|
[8] |
Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, McCanny T, Mora P, Neely D, Wahlstrom C G, Zepf M, McKenna P 2007 Nature Phys. 3 58
|
[9] |
Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, LeSage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801
|
[10] |
Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004
|
[11] |
Yin L, Albright B J, Bowers K J, Jung D, Fernandez J C, Hegelich B M 2011 Phys. Rev. Lett. 107 045003
|
[12] |
Yin L, Albright B J, Jung D, Shah R C, Palaniyappan S, Bowers K J, Henig A, Fernandez J C, Hegelich B M 2011 Phys. Plasmas 18 063103
|
[13] |
Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser and Particle Beams 24 291
|
[14] |
Jung D, Yin L, Gautier D C, Wu H C, Letzring S 2013 Phys. Plasmas 20 083103
|
[15] |
Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 175003
|
[16] |
Esirkepov T Z, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003
|
[17] |
Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301
|
[18] |
Jiao J L, He S K, Deng Z G, Lu F, Zhang Y, Yang L, Zhang F Q, Dong K G, Wang S Y, Zhang B, Teng J, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 085201 (in Chinese) [矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋 2017 物理学报 66 085201]
|
[19] |
Zhang H, Shen B F, Wang W P, Xu Y, Liu Y Q, Liang X Y, Leng Y X, Li R X, Yan X Q, Chen J E, Xu Z Z 2015 Phys. Plasmas 22 013113
|
[20] |
Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002
|
[21] |
Shan L Q, Cai H B, Zhang W S, Tang Q, Zhang F, Song Z F, Bi B, Ge F J, Chen J B, Liu D X, Wang W W, Yang Z H, Qi W, Tian C, Yuan Z Q, Zhang B, Yang L, Jiao J L, Cui B, Zhou W M, Cao L F, Zhou C T, Gu Y Q, Zhang B H, Zhu S P, He X T 2018 Phys. Rev. Lett. 120 195001
|
[22] |
He S K, Liu D X, Jiao J L, Deng Z G, Teng J, Zhang B, Zhang Z M, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 205201 (in Chinese) [贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋 2017 物理学报 66 205201]
|
[23] |
Meadows J W 1953 Phys. Rev. 91 885
|
[1] |
Yan Ming-Yue, Zhang Xu, Liu Chen-Hao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Energy conversion efficiency of feedback pulsing ratchet[J]. Acta Physica Sinica, 2018, 67(19):
.
doi:10.7498/aps.67.20181066. |
[2] |
He Shu-Kai, Liu Dong-Xiao, Jiao Jin-Long, Deng Zhi-Gang, Teng Jian, Zhang Zhi-Meng, Zhang Zhi-Meng, Hong Wei, Gu Yu-Qiu. Charged paricle activation analysis for characterizing parameters of laser-accelerated protons[J]. Acta Physica Sinica, 2017, 66(20):
.
doi:10.7498/aps.66.205201. |
[3] |
Fan Li-Ming, Lü Ming-Tao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Investigation on the directed transport efficiency of feedback-control ratchet[J]. Acta Physica Sinica, 2017, 66(1):
.
doi:10.7498/aps.66.010501. |
|
|
|
|