|
|
Raman protocol-based quantum memories |
Shi Bao-Sen1,2, Ding Dong-Sheng1,2, Zhang Wei1,2, Li En-Ze1,2 |
1. Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2. Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Quantum memories are indispensable for quantum communication and quantum computation, which are able to realize the storage and retrieval of a quantum state such as a single photon, entanglement, or a squeezed state on demand. Among those memories realized by different protocols, the Raman quantum memory has advantages in its broadband and high-speed properties, resulting in huge potential applications in quantum network and quantum computation. However, the realization of Raman quantum memory for a true single photon and photonic entanglement is a challenging job. In this review, after briefly introducing the main benchmarks for quantum memories, showing the state of the art, we focus on the review of the experimental progress recently achieved in storing the quantum state by Raman scheme in our group. We believe that all achievements reviewed are very hopeful in building up a high-speed quantum network.
|
Received: 17 December 2018
|
PACS: |
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61435011, 61275115, 61525504) and Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY020200). |
|
|
|
[1] |
Sangouard N, Simon C, Zhao B, Chen Y A, de Riedmatten H, Pan J W, Gisin N 2008 Phys. Rev. A 77 062301
|
[2] |
Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
|
[3] |
Knill E, Laflamme R, Milburn G J 2001 Nature 409 46
|
[4] |
Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien J L 2010 Nature 464 54
|
[5] |
Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222
|
[6] |
Majumdar A, Bajcsy M, Rundquist A, Vučković J 2012 Phys. Rev. Lett. 108 183601
|
[7] |
Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519
|
[8] |
Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413
|
[9] |
Radnaev A G, Dudin Y O, Zhao R, Jen H H, Jenkins S D, Kuzmich A, Kennedy T A B 2010 Nat. Phys. 6 894
|
[10] |
Albrecht B, Farrera P, Gonzalvo X F, Cristiani M, de Riedmatten H 2014 Nat. Commun. 5 3376
|
[11] |
Clausen C, Usmani I, Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Gisin N 2011 Nature 469 508
|
[12] |
Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussières F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512
|
[13] |
Simon C, de Riedmatten H, Afzelius M, Sangouard N, Zbinden H, Gisin N 2007 Phys. Rev. Lett. 98 190503
|
[14] |
Zhang W, Ding D S, Shi S, Li Y, Zhou Z Y, Shi B S, Guo G C 2016 Phys. Rev. A 93 022316
|
[15] |
Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190
|
[16] |
Olmschenk S, Matsukevich D N, Maunz P, Hayes D, Duan L M, Monroe C 2009 Science 323 486
|
[17] |
Kurz C, Schug M, Eich P, Huwer J, Müller P, Eschner J 2014 Nat. Commun. 5 5527
|
[18] |
Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sørensen A S, Hemmer P R, Zibrov A S, Lukin M D 2010 Nature 466 730
|
[19] |
Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminiau T H, Markham M, Twitchen D J, Childress L, Hanson R 2013 Nature 497 86
|
[20] |
Greve D G, Yu L, McMahon P L, Pelc J S, Natarajan C M, Kim N Y, Abe E, Maier S, Schneider C, Kamp M, Höfling S, Hadfield R H, Forchel A, Fejer M M, Yamamoto Y 2012 Nature 491 421
|
[21] |
Wang Q, Zhang Y S 2012 Eur. Phys. J. B 85 225
|
[22] |
Dudin Y O, Li L, Kuzmich A 2013 Phys. Rev. A 87 031801
|
[23] |
Xu Z X, Wu Y L, Tian L, Chen L, Zhang Z Y, Yan Z H, Li S J, Wang H, Xie C D, Peng K C 2013 Phys. Rev. Lett. 111 240503
|
[24] |
Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602
|
[25] |
Zhou S, Zhang S C, Liu C, Chen J F, Wen J M, Loy M M T, Wong G K L, Du S W 2012 Opt. Express. 20 24124
|
[26] |
Li J F, Wang Y F, Zhang S C, He J Y, Cheng A Q, Yan H, Zhu S L 2017 arXiv: 1706.01404[quant-ph]
|
[27] |
Ding D S, Zhou Z Y, Shi B S, Guo G C 2013 Nat. Commun. 4 2527
|
[28] |
Ding D S, Zhang W, Zhou Z Y, Shi S, Pan J S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2014 Phys. Rev. A 90 042301
|
[29] |
Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502
|
[30] |
Ding D S, Zhang W, Shi S, Zhou Z Y, Li Y, Shi B S, Guo G C 2016 Light: Science and Applications 5 e 5 e16157
|
[31] |
Shi B S, Ding D S, Zhang W 2018 J. Phys. B: At. Mol. Opt. Phys. 51 032004
|
[32] |
Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174
|
[33] |
Higginbottom D B, Sparkes B M, Rancic M, Pinel O, Hosseini M, Lam P K, Buchler B C 2012 Phys. Rev. A 86 023801
|
[34] |
Glorieux Q, Clark J B, Marino A M, Zhou Z F, Lett P D 2012 Opt. Express 20 12350
|
[35] |
Shi S, Ding D S, Zhang W, Zhou Z Y, Dong M X, Liu S L, Wang K, Shi B S, Guo G C 2017 Phys. Rev. A 95 033823
|
[36] |
Ding D S, Wu J H, Zhou Z Y, Liu Y, Shi B S, Zou X B, Guo G C 2013 Phys. Rev. A 87 013835
|
[37] |
Zhong M J, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177
|
[38] |
Tang, J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha Z G, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652
|
[39] |
Sinclair N, Saglamyurek E, Mallahzadeh H, Slater J A., George M, Ricken R, Hedges M P, Oblak D, Simon C, Sohler W, Tittel W 2014 Phys. Rev. Lett. 113 053603
|
[40] |
Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107
|
[41] |
Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594
|
[42] |
Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833
|
[43] |
Nunn J, Walmsley I A, Raymer M G, Surmacz K, Waldermann F C, Wang Z, Jaksch D 2007 Phys. Rev. A 75 011401(R)
|
[44] |
Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nat. Photon. 4 218
|
[45] |
Reim K F, Michelberger P, Lee K C, Nunn J, Langford N K, Walmsley I A 2011 Phys. Rev. Lett. 107 053603
|
[46] |
Moiseev S A, Kröll S 2001 Phys. Rev. Lett. 87 173601
|
[47] |
Kraus B, Tittel W, Gisin N, Nilsson M, Kröll S, Cirac J I 2006 Phys. Rev. A 73 020302(R)
|
[48] |
Afzelius M, Simon C, de Riedmatten H, Gisin N 2009 Phys. Rev. A 79 052329
|
[49] |
Alexander A L, Longdell J J, Sellars M J, Manson N B 2006 Phys. Rev. Lett. 96 043602
|
[50] |
Tittel W, Afzelius M, Chaneliére T, Cone R L, Kröll S, Moiseev S A, Sellars M 2010 Laser Photon. Rev. 4 244
|
[51] |
Michelberger P S, Champion T F M, Sprague M R, Kaczmarek K T, Barbieri M, Jin X M, England D G, Kolthammer W S, Saunders D J, Nunn J, Walmsley I A 2015 New. J. Phys. 17 043006
|
[52] |
Bustard P J, Lausten R, England D G, Sussman B J 2013 Phys. Rev. Lett. 111 083901
|
[53] |
England D G, Bustard P J, Nunn J, Lausten R, Sussman B J 2013 Phys. Rev. Lett. 111 243601
|
[54] |
Saunders D J, Munns J H D, Champion T F M, Qiu C, Kaczmarek K T, Poem E, Ledingham P M, Walmsley I A, Nunn J 2016 Phys. Rev. Lett. 116 090501
|
[55] |
Kaczmarek K T, Ledingham P M, Brecht B, Thomas S E, Thekkadath G S, Lazo-Arjona O, Munns J H D, Poem E, Feizpour A, Saunders D J, Nunn J, Walmsley I A 2018 Phys. Rev. A 97 042316
|
[56] |
Dou J P, Yang A L, Du M Y, Lao D, Gao J, Qiao L F, Li H, Pang X L, Feng Z, Tang H, Jin X M 2018 Commun. Phys. 1 55
|
[57] |
Guo J X, Feng X T, Yang P Y, Yu Z F, Chen L Q, Yuan C H, Zhang W P 2018 arXiv: 1804.10763[quant-ph]
|
[58] |
Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photon. 9 332
|
[59] |
Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Li Y, Zhou Z Y, Shi B S, Guo G C 2016 Nat. Commun. 7 13514
|
[60] |
Liu Y, Wu J H, Shi B S, Guo G C 2012 Chin. Phys. Lett. 29 024205
|
[61] |
Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
|
[62] |
Franke-Arnold S, Allen L, Padgett M 2008 Laser Photon. Rev. 2 299
|
[63] |
Leach J, Jack B, Romero J, Jha A K, Yao A M, Franke-Arnold S, Ireland D G, Boyd R W, Barnett S M, Padgett1 M J 2010 Science 329 662
|
[64] |
Dada A C, Leach J, Buller G S, Padgett M J, Andersson E 2011 Nat. Phys. 7 677
|
[65] |
Fickler R, Lapkiewicz R, Plick W M, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640
|
[66] |
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photon. 6 488
|
[67] |
Inoue R, Kanai N, Yonehara T, Miyamoto Y, Koashi M, Kozuma M 2006 Phys. Rev. A 74 053809
|
[68] |
Inoue R, Yonehara T, Miyamoto Y, Koashi M, Kozuma M 2009 Phys. Rev. Lett. 103 110503
|
[69] |
James D F V, Kwiat P G, Munro W J, White A G 2001 Phys. Rev. A 64 052312
|
[70] |
Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880
|
[71] |
Spengler C, Huber M, Brierley S, Adaktylos T, Hiesmayr B C 2012 Phys. Rev. A 86 022311
|
[72] |
Hiesmayr B C, Löffler W 2013 New J. Phys. 15 083036
|
[73] |
Collins D, Gisin N, Linden N, Massar S, Popescu S 2002 Phys. Rev. Lett. 88 040404
|
[74] |
Romero J, Leach J, Jack B, Barnett S M, Padgett M J, Franke-Arnold S 2010 New J. Phys. 12 123007
|
[75] |
Gühne O, Tóth G 2009 Phys. Rep. 474 1
|
[76] |
Fickler R, Krenn M, Lapkiewicz R, Ramelow S, Zeilinger A 2013 Sci. Rep. 3 1914
|
[77] |
Bruß D 2002 J. Math. Phys. 43 4237
|
[78] |
Gühne O, Hyllus P, Bruß D, Ekert A, Lewenstein M, Macchiavello V, Sanpera A 2002 Phys. Rev. A 66 062305
|
[79] |
Agnew M, Salvail J Z, Leach J, Boyd R E 2013 Phys. Rev. Lett. 111 030402
|
[80] |
Krenn M, Huber M, Fickler R, Lapkiewicz R, Ramelow S, Zeilinger A 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6243
|
[81] |
Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67
|
[82] |
Kwiat P G 1997 J. Mod. Opt. 44 2173
|
[83] |
Barreiro J T, Langford N K, Peters N A, Kwiat P G 2005 Phys. Rev. Lett. 95 260501
|
[84] |
Schuck C, Huber G, Kurtsiefer C, Weinfurter H 2006 Phys. Rev. Lett. 96 190501
|
[85] |
Bozinovic1 N, Yue Y, Ren Y X, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545
|
[86] |
Walborn W S, Pádua S, Monken C H 2003 Phys. Rev. A 68 042313
|
[87] |
Calsamiglia J, Lütkenhaus N 2001 Appl. Phys. B 72 67
|
[88] |
Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282
|
[89] |
Tiranov A, Lavoie J, Ferrier A, Goldner P, Verma V B, Nam S W, Mirin R P, Lita A E, Marsili F, Herrmann H, Silberhorn C, Gisin N, Afzelius M, Bussières F 2015 Optica 2 279
|
[1] |
Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory[J]. Acta Physica Sinica, 2019, 68(3):
.
doi:10.7498/aps.68.20182207. |
[2] |
Li Bao-Min, Hu Ming-Liang, Fan Heng. Quantum coherence[J]. Acta Physica Sinica, 2019, 68(3):
.
doi:10.7498/aps.68.20181779. |
[3] |
Wang Ye, Zhang Jing-Ning, Kim Kihwan. Single-ion qubit with coherence time exceeding 10 minutes[J]. Acta Physica Sinica, 2019, 68(3):
.
doi:10.7498/aps.68.20181729. |
[4] |
Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory[J]. Acta Physica Sinica, 2019, 68(3):
.
doi:10.7498/aps.68.20190039. |
|
|
|
|