Search

Article

x

Accepted

Topics
Enhanced tunneling electroresistance through interfacial work function engineering in Al2Te3/In2Se3 ferroelectric tunnel junctions
HE Zhijian, OU Yun, ZOU Daifeng, LIU Yunya
Abstract +
In recent years, two-dimensional (2D) ferroelectric materials have attracted widespread interest due to their ultrathin geometry, high stability, and switchable polarization states. Ferroelectric tunnel junctions (FTJs) made from 2D ferroelectric materials exhibit exceptionally high tunnel electroresistance (TER) ratios, making them leading candidates for next-generation non-volatile memory and logic devices. However, advancing FTJ technology depends on overcoming the critical challenge of precisely controlling quantum tunneling resistance. Therefore, this study proposes a strategy of interfacial work function engineering, which actively modulates the band alignment of a heterostructure through ferroelectric polarization switching, induces a reversible metal-insulator transition in the barrier layer, and modulates TER. Using a van der Waals heterostructure composed of Al2Te3/In2Se3 as a model system, we demonstrate through first-principles calculations that the strategic manipulation of interfacial work functions can induce a reversible metal-insulator transition in the barrier, thereby drastically changing the tunneling conductance. Further analysis indicates that a work function mismatch between the two ferroelectric materials causes varying degrees of interfacial charge transfer, thereby triggering a metal-insulator transition in the van der Waals ferroelectric heterostructure as the external electric field is reversed. Non-equilibrium transport simulations reveal an unprecedented TER ratio of 2.69×105%. Our findings not only highlight Al2Te3/In2Se3 as a promising platform for high-performance FTJs but also establish a universal design strategy for engineering ultrahigh TER effects in low-dimensional ferroelectric memory devices. This work opens new avenues for developing energy-efficient, non-volatile memory with enhanced scalability and switching characteristics.
Research progress of crystalline-amorphous and amorphous-amorphous phase transformation behaviors
YANG Haiwang, WU Ge
Abstract +
Unlike traditional crystalline metals, amorphous alloys exhibit a distinctive atomic arrangement characterized by short-range order and long-range disorder. Consequently, they lack dislocations, grain boundaries and other traditional crystalline defects, thus demonstrating very high strength and hardness. However, their plastic deformation is highly localized into nanoscale shear bands, which readily leads to catastrophic fracture and results in very poor room-temperature ductility. Forming crystalline-amorphous or amorphous-amorphous dual-phase structure is an effective strategy to solve the problems of the brittleness and limited plasticity of amorphous alloys. On the one hand, such heterogeneous architectures promote the formation of multiple shear bands, thereby dissipating energy and redistributing stress; on the other hand, when the amorphous phase size is reduced below roughly 100 nm, the glassy phase can be deformed by homogeneous flow, and the interactions between nanoscale amorphous regions and dislocation activity in the crystalline phase are conductive to more uniform macroscopic plasticity. Mechanical loading, heat treatment, and other processing routes can induce the transformation from crystalline single-phase or amorphous states to crystalline-amorphous or amorphous–amorphous dual-phase structures, thereby enabling the simultaneous attainment of ultrahigh strength and significant uniform plastic deformation. The resulting dual-phase alloys can retain the unique properties of amorphous alloys. Accordingly, this review summarizes recent advances in crystalline-amorphous and amorphous-amorphous phase- transformation behaviors below.1) Mechanical loading, such as friction and TRIP effects, can induce phase transformations. During frictional wear, materials experience large shear strains and stress concentrations; when combined with chemical reaction, these conditions can lead to the formation of crystalline-amorphous dual-phase structures at the surface. Under externally applied loads, phase transformations and microstructural reconfiguration occur; crystalline–amorphous and amorphous-amorphous TRIP effects become the primary mechanisms for energy dissipation, thereby delaying local stress concentration and improving ductility and fracture resistance.2) Thermal annealing above the glass transition temperature commonly induces crystallization of amorphous alloys, leading to in-situ precipitation of nanocrystals within the amorphous matrix. By controlling the annealing temperature and time, the size and volume fraction of the precipitates can be regulated, and more refined heat-treatment paths can even induce amorphous-amorphous transformation.3) Mixing enthalpy design and elemental partitioning play an important role in crystalline-amorphous and amorphous–amorphous phase behaviors. Elements with large negative mixing enthalpies tend to attract and enrich one another, whereas those with positive mixing enthalpies tend to repel; mechanical loading, thermal treatment and other external driving forces further promote atomic diffusion and elemental redistribution, which mediate the formation of crystalline-amorphous and amorphous-amorphous dual-phase structures.4) These unique structures endow crystalline-amorphous and amorphous-amorphous dual-phase alloys with excellent strength-ductility combinations as well as advantageous magnetic, hydrogen-storage, and catalytic properties. Future research should concentrate on three directions: Ⅰ) establishing a thermodynamic design framework centered on mixing enthalpy to clarify how compositional changes affect phase stability; Ⅱ) developing large-scale, and mass-producible routes for dual-phase materials; and Ⅲ) designing application-oriented dual-phase alloy systems that are low-cost, simple to fabricate, and have long service lives, thereby accelerating their industrial deployment in energy, precision machinery, electronics and communications, aerospace, and biomedical fields.
Research Progress on Performance Optimization of Tunnel Magnetoresistive Sensors
Liu Yuanzhen, Lei Shaoyu, Zhang Shiyi, Pan Mengchun, Hu Yueguo, Hu Jiafei, Peng Junping, Du Qingfa, Zhang Qi, Li Peisen
Abstract +
Tunneling Magnetoresistance (TMR) sensors have emerged as a leading technology in high-performance magnetic sensing, distinguished by their high sensitivity, low power consumption, and miniaturization. To address the evolving demands of cutting-edge applications like biomagnetic imaging and smart grid monitoring, continuous performance enhancement is crucial. This review systematically outlines the key strategies for optimizing TMR sensors, focusing on thin-film material engineering and sensitive microstructure design. Material advancements are dissected along two paths: developing high-sensitivity systems via MgO barriers and composite free layers, and creating wide-linear-range systems through anisotropy engineering, including both perpendicular (PMA) and in-plane (IMA) configurations, as well as dynamic methods like electric-field and strain modulation. Structurally, we highlight innovations such as vortex-state MTJs and magnetic flux concentrators to enhance linearity and sensitivity, alongside advanced noise modulation techniques that effectively suppress low-frequency 1/f noise. The practical impact of these optimizations is evidenced by TMR sensors now capable of measuring magnetocardiograms (MCG) outside shielded environments and providing high-accuracy current sensing in smart grids. Future development is directed towards novel material systems that balance high sensitivity with a wide linear range, the realization of monolithic three-axis vector sensors, and the deep integration of TMR technology with artificial intelligence for smart sensing systems. This work provides a comprehensive reference for advancing TMR sensor technology and its applications in high-precision magnetic field detection.
Investigation of Thermal Neutron Scattering Mechanisms in Borohydrides
REN Wenzhao, SONG Hongzhou, YE Tao, GUO Hairui, YING Yangjun
Abstract +
Borohydrides (XBH4, X = Li, Na, K) exhibit an ”elemental synergy” effect, characterized by the high neutron absorption cross-section of boron and the excellent moderation capability of hydrogen, making them promising candidates for neutron shielding materials. However, the current lack of experimental and evaluated thermal scattering data for borohydrides in international nuclear data libraries hinders the accurate assessment of their shielding and moderation performance.In this study, material properties including lattice parameters, electronic structures, and phonon densities of states were calculated based on first-principles density functional theory. Subsequently, the corresponding S(α, β) data and thermal neutron scattering cross-sections were developed. The simulated lattice parameters show good agreement with experimental data. By comparing the electronic structures and phonon densities of states of XBH4, the coherent elastic, incoherent elastic, and inelastic scattering cross-sections for the cations X, B, and H were obtained. The results indicate that the thermal neutron cross-sections of the constituent nuclides in XBH4 exhibit significant differences depending on the cation X.To evaluate the impact of thermal scattering data on neutron shielding effects, a simplified fusion source model was employed using the OpenMC code to compare the leaked neutron energy spectra under different physical models. The results demonstrate that the Free Gas Model (FGM) provides an inaccurate description of neutron moderation due to its neglect of lattice binding effects. Furthermore, owing to the large incoherent scattering cross-section of hydrogen, the coherent elastic scattering cross-sections of the various nuclides have a negligible impact on the neutron energy spectrum. This research fills the gap in thermal neutron cross-section data for borohydrides and establishes a foundation for further investigations into their application as neutron shielding materials. These findings partially fill the gap in thermal neutron cross-section data for borohydrides and lay a foundation for their future application as neutron shielding materials.The datasets presented in this paper, including the ScienceDB, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00219(Please use the private access link https://www.scidb.cn/s/3meuq2).
Machine-learning predictions of fusion cross sections for synthesizing 99-103Mo*
HUANG Zhilong, LI Zhilong, Gao Zepeng, WANG Yongjia, LI Qingfeng
Abstract +
Based on the Gradient Boosting Decision Tree (GBDT) machine learning algorithm, this study develops a model for predicting the fusion reaction cross-section (CS) of 99-103Mo*, aiming to explore the optimal synthesis pathway for the medical isotope 99Mo. The model inputs include characteristic quantities such as reaction energy, proton number, mass number, and binding energy, as well as relevant parameters calculated based on phenomenological theoretical models, with the output being the fusion reaction cross-section. It is found that the mean absolute error (MAE) between the machine learning-predicted CS and experimental values on the test set is 0.0615, which is superior to the 0.1103 predicted by the EBD2 model. On this basis, combined with the GEMINI++ program, the survival probabilities of the neutron decay channels for 99-103Mo* were calculated to derive the evaporation residue cross-section of 99Mo. It is found that the evaporation residue cross-section of the 2n de-excitation channel for 4He+97Zr at a center-of-mass energy of 18.51 MeV is 1199.80 mb, making it the optimal pathway for synthesizing 99Mo. This research validates the reliability of physics-informed machine learning methods in predicting fusion reaction cross-sections and provides a reference for optimizing reaction system selection and producing medical isotopes through fusion reactions in heavy-ion accelerators.
An end-to-end model for ablation-plasma evolution-radiation in nanosecond laser-target interaction
ZHOU Ying, WU Jian, SUN Hao, LI Jinghui, LI Xiaoxuan, HUANG Shuzhi, HE Jiayao, LIU Xingyu, HANG Yuhua, PEI Cuixiang, LI Xingwen
Abstract +
The interaction of nanosecond laser pulses with metallic materials involves multiple complex physical processes, and constructing a self-consistent model capable of uniformly describing all stages remains a significant challenge. This work establishes a multi-physics coupled model for pure iron, encompassing laser energy deposition, solid-liquid phase transition, gas-liquid interfacial kinetic transport, plasma expansion and ionization, and spectral radiation. The numerical solution employs a partitioned approach, utilizing an implicit compact difference scheme for the target region and a Mac-Cormack explicit scheme for the ambient atmosphere, to simulate the ablation dynamics.
The simulations elucidate the emergence of plasma shielding and its inhibitory effect on the evaporation process. They confirm that the early-stage ablation products are primarily transported via a supersonic expansion mode, which accounts for 81.6% of the total ablated mass transfer. The model successfully captures the complete evolution of the plasma plume from a high-temperature, highly ionized state (dominated by Fe3+) to a low-temperature, neutral atomic state (dominated by Fe0). Based on this, spectral calculations demonstrate the dynamic evolution of radiative characteristics from an early stage featuring a “strong continuum background dominated by ion lines” to a later stage where “the continuum attenuates, atomic lines become prominent, and self-absorption appears”. The emergence of self-absorption proves the model’s capability to effectively capture the optical thickness effects arising from spatial inhomogeneity within the plasma.
Through systematic comparison with experimentally measured spectra and calculated results from the PrismSPECT and NIST LIBS spectral programs, the model presented here achieved the highest comprehensive scores in quantitative evaluations across multiple channels. This validates the necessity and superiority of the full-chain self-consistent modeling approach over traditional methods relying on spatial averaging or the optically thin approximation, particularly in describing plasma inhomogeneity and radiation transport. It also provides a numerical simulation framework for applications such as laser processing parameter optimization, quantitative spectroscopic analysis, and the design of novel plasma light sources.
Research on the measurement and application of SLEGS gamma activation analysis
YANG Yuxuan, ZHANG Yue, SUN Qiankun, LI Zhicai, WANG Hongwei, FAN Gongtao, ZHAO Weijuan, HAO Zirui, LIU Longxiang, XU Hanghua, JIAO Pu, JIN Sheng, CHEN Kaijie, WANG Zhenwei, ZHOU Mengdie, XU Mengke, WANG Xiangfei, SHEN Yulong, DING Jiawen
Abstract +
Gamma activation analysis (GAA) represents a powerful elemental analysis technique, particularly suitable for light elements and those insensitive to thermal neutron activation. The establishment of the Shanghai Laser Electron Gamma Source (SLEGS) beamline has provided a unique platform in China for conducting advanced gamma activation studies using quasi-monochromatic gamma beams and obtaining high-precision nuclear data. This paper systematically presents the gamma activation data measurement methodology and experimental setup developed at the SLEGS beamline, while demonstrating its specific applications and significant achievements in beam diagnostics and nuclear astrophysics research. As is shown in the overall workflow in Fig. 10.The study was conducted at the SLEGS beamline. SLEGS generates tunable quasi-monochromatic gamma beams in the energy range of 0.66–21.7 MeV through inverse Compton scattering mode between a 3.5 GeV electron beam and a 10.64 μm CO2 laser (see experimental layout in Figure 1). The experimental procedure began with the online irradiation of target samples (e.g., natural abundance Au, Zn and Ru/Ga) to produce radioactive nuclei via photonuclear reactions. During irradiation, beam monitoring was conducted using LaBr3(Ce) or BGO detectors alongside spectral unfolding. Subsequently, offline γ-ray spectroscopy was performed on the activated samples using shielded HPGe detectors. Based on these measurements, the reaction cross-sections were ultimately determined by analyzing characteristic gamma peaks in conjunction with beam parameters and detector efficiency data.Absolute calibration of SLEGS gamma beam intensity was successfully achieved using 197Au(γ, n)196Au and 64Zn(γ, n)63Zn reactions. The measured results agreed with online monitor data and Geant4 simulations within 10% uncertainty (Figure 6), validating activation as a reliable beam diagnostic tool. Key photonuclear reaction cross-sections relevant to p-process nucleosynthesis were measured. Using natural abundance Ru targets, preliminary quasi-monoenergetic cross-section data were obtained for 96Ru(γ, n)95Ru, 96Ru(γ, p)95Tc and 98Ru(γ, n)97Ru reactions (Figures 8(a), 8(b)). Systematic measurements of the 69Ga(γ, n)68Ga monoenergetic reaction cross-section were performed (Figures 8(c), 8(d)). The experimental data constrained parameters in the TALYS nuclear reaction model, enabling calculation of 69Ga(γ, n), (γ, p), and (γ, α) reaction rates over 1.5$\sim$10 GK temperature range (Figure 9). REACLIB-format parameters were derived for astrophysical network calculations. These experimental results provide crucial constraints for understanding the origin of p-nuclei.The study has successfully established a comprehensive and reliable gamma activation data acquisition and analysis platform at the SLEGS beamline of Shanghai Synchrotron Radiation Facility. Experimental results demonstrate that this platform can not only precisely calibrate gamma beam parameters but also conduct frontier fundamental research in nuclear astrophysics, particularly for measuring critical yet challenging p-process photonuclear reaction cross-sections. The obtained datasets hold significant importance for nuclear databases and astrophysical models. Looking forward, the SLEGS gamma activation platform will expand its applications to broader fields including characteristic nuclide identification, archaeometry, materials science, and medical isotope production.Low-background gamma data and partial gamma activation data were provided, which can be accessed in the dataset at: https://www.scidb.cn/s/RVRjEz.
Research Progress in Nuclear Fusion Reactions
ZHANG Yuhai, DONG Yifei, ZHONG Jiayong, ZHANG Fengshou
Abstract +
Fusion reactions not only provide key information for studying the dynamic evolution and dissipation mechanisms in quantum many-body systems, but also open up an important avenue for exploring the reaction dynamics and structural characteristics of atomic nuclei. In recent years, with the continuous development of the technology for synthesizing new elements and their isotopes via fusion reactions, a series of new elements and their isotopes have been successfully synthesized. This paper systematically summarizes the synthesis pathways of elements in different mass regions, ranging from hydrogen to mendelevium, as well as the experimental progress of various heavy-ion fusion reactions from light systems to heavy systems. It reviews the advantages and limitations of current theoretical models in describing the capture process, and focuses on analyzing the strengths and shortcomings of phenomenological models and microscopic dynamic models in explaining the fusion behavior of different reaction systems. For the capture cross sections in light nuclei-light nuclei reaction systems, the EBD method, the CCFULL model, the universal Wong formula, and the ImQMD model all demonstrate good agreement with the experimental data. For the systems involving light nuclei-medium mass nuclei and light nuclei-heavy nuclei, the mentioned above models provide satisfactory descriptions. In particular, for the 16O+144Sm reaction system, the results obtained from the CCFULL model show good agreement with experimental data across both the sub-barrier and above-barrier energy regions. For the heavy nuclei-heavy nuclei systems, however, the EBD method holds a distinct advantage. Therefore, in subsequent predictions of the evaporation residue cross sections for superheavy elements, the results calculated by the EBD method can serve as the input for the capture cross section. On this basis, several key scientific issues in fusion reaction research are proposed, including heavy-ion fusion hindrance, the phenomenon of fusion suppression at extreme sub-barrier energies, fusion probability $P_{\text{CN}}$, and the fission barrier of compound nuclei, etc. Furthermore, an outlook and suggestions for future research directions in fusion reactions are provided.
Nuclear mass predictions through neural networks incorporating neutron and proton separation energy constraints
WANG Dongdong, Li Peng, WANG Zhiheng
Abstract +
Nuclear masses are fundamental observables that reflect nuclear structure and stability, playing a key role in nuclear physics and astrophysical processes. Most existing neural network studies focus on predicting either binding energies or neutron/proton separation energies individually, with limited attention to the physical correlations between these observables. Based on the relativistic point-coupling model PCF-PK1, a physics-informed artificial neural network (ANN) was developed to systematically predict nuclear binding energies along with single- and double-neutron/proton separation energies, while preserving the physical self-consistency of the predictions. To assess the impact of incorporating separation-energy constraints, networks were trained with varying loss function weight combinations, enabling a comparison between networks without separation-energy constraints (e.g., ANN1) and those including such constraints (e.g., ANN3).The neural network significantly improves the overall prediction accuracy of binding energies compared with the PCF-PK1 model. Without separation-energy constraints, ANN1 already achieves high precision for binding energies (RMSE $\approx$ 0.147 MeV) and separation energies (RMSE $\approx$ 0.158–0.185 MeV). Incorporating separation-energy constraints in ANN3 results in a slight improvement in overall prediction accuracy. The binding energy predictions improve by approximately 4.6%, while the separation energy predictions increase by 8.9–12.0%. The improvement is particularly noticeable for nuclei where the deviations of ANN1 predictions from experimental values exceed 0.2 MeV. Supporting datasets are publicly accessible at the Science Data Bank (https://doi.org/10.57760/sciencedb.j00213.00239).
Study of the Neutron Energy Spectra below 1 MeV in ES#2 of the CSNS Back-n White Neutron Facility
KONG Yuqian, QIU Yijia, JIANG Wei, SUN Kang, YANG Gaole, YI Han, FAN Ruirui, YUAN Cenxi, LI Qiang, REN Jie, LUO Qiuyue, JING Hantao, TANG Jingyu, ZHANG Guangxin, CHEN Yonghao
Abstract +
The Back-n white neutron facility at the China Spallation Neutron Source (CSNS) provides neutrons in the 0.3 eV–300 MeV energy range, severing as a crucial platform for neutron-induced nuclear reaction studies in China. With a flight length of about 76 m, neutrons in Endstation 2 show excellent neutron energy resolution, providing nice conditions for experiments such as neutron capture cross-section measurements relevant to astrophysical nucleosynthesis and key nuclear data. Measurements of neutron capture reactions mainly employ low- to intermediate-energy neutrons (below 1 MeV), and the precision of experimental results strongly depends on the neutron energy spectrum in this energy range. Benefiting from the stable operation of the CSNS, the neutron energy spectrum of Back-n remains highly stable over extended periods, but it also evolves with structural adjustments of the CSNS’s components such as the target and beam window. In this work, the 6Li-Si beam monitor at Back-n Endstation 2 was used to measure the low- to intermediate-energy neutron spectrum under the 50-15-40 collimator configuration in different preiods. Relative neutron energy spectra in the 0.3 eV–1 MeV range (100 bpd) were obtained before and after the proton beam window replacement in 2024 and the target structure adjustment in 2025. The unfolding threshold was extended down to 10 eV, achieving total uncertainty of 1%–6.8%. The results indicate that the new proton beam window reduced the neutron flux intensity in the eV to keV energy range and significantly altered the spectral shape, while adjustments to the target slightly increased the neutron flux intensity in the eV to keV range and marginally modified the spectral shape. Additionally, by analyzing the neutron energy spectra under two different commonly used collimator configurations, the differences in their spectral shapes were also compared. This work provides essential data support for neutron capture cross-section measurements and related studies carried out at the Back-n ES#2. The datasets presented in this paper are openly available at https://www.scidb.cn/s/ArAvAn.
Sc–La–Zn Co Substituted M Type Barium Ferrites: Magnetic Properties and Application in Self Biased Circulators
ZHAN Xueqian, LI Jiashu, ZHONG Ming, SHI Huigang, JIANG Changjun
Abstract +
To meet the demands for miniaturization and higher operating frequencies in self biased circulators, improving the performance of hexaferrite materials is essential. In this work, La–Zn–Sc co substituted M type barium ferrites (La0.3Ba0.7Fe10.9-xZn0.3ScxO19) were prepared via solid state reaction. X ray diffraction (XRD) confirmed the formation of a single phase magnetoplumbite structure in all samples. Scanning electron microscopy (SEM) images revealed that the ferrite particles exhibit hexagonal platelet morphology and are aligned along the c axis after wet pressing and sintering under a magnetic field. Lattice parameters and particle sizes were calculated from the XRD and SEM data. Magnetic measurements indicate that the Sc–La–Zn substituted M type ferrites exhibit high saturation magnetization (Ms > 60 emu/g) while allowing the magnetocrystalline anisotropy field to be tuned between 7–10 kOe via controlled Sc doping. Moreover, a narrow ferromagnetic resonance linewidth (ΔH ≈ 260 Oe) was achieved. Based on the measured magnetic parameters, three self biased circulators operating at center frequencies from 25 GHz to 35 GHz were designed and simulated using HFSS, demonstrating a broad frequency tuning range. The circulators exhibit a minimum insertion loss below 0.5 dB and a maximum isolation bandwidth (isolation >20 dB) of up to 4.4 GHz. This study highlights the potential of these materials for self biased circulators covering different frequency bands.
Correlation Between Atomic Structures and Magnetic Properties in Iron-Based Amorphous Alloys
X. R. Liu, K. Y. Li, M. Z. Li
Abstract +
Fe-based amorphous alloys have continuously attracted extensive attention due to their excellent soft magnetic properties, such as high saturation magnetization, high permeability, low coercivity, and low core loss. However, the theoretical studies on the magnetism of amorphous alloys remain incomplete, and the structural origins of the magnetic properties in Fe-based amorphous alloys are still unclear, making it difficult to fully explain their magnetic behavior. Accordingly, this review summarizes recent experimental and computational progress in exploring potential correlation mechanisms between amorphous structures and soft-magnetic properties. Existing research has primarily focused on how different elements affect the electronic structure, magnetic moment, saturation magnetization, and other properties of iron-based amorphous alloys. However, little effort has been devoted to the in-depth exploration into the underlying mechanisms of the local atomic structures, including short-range and medium-range order, influence magnetic properties. This review aims to provide a reference for further elucidating the structural origins of magnetic properties in Fe-based amorphous alloys, while also identifying key unresolved issues in future research.
The abnormal threshold anomaly in the 6Li+208Pb system
HUANG Zhijie, YANG Lei, LIN Chengjian, JIA Huiming, MA Nanru, YANG Feng, WEN Peiwei
Abstract +
The optical potential is a key tool for describing interactions in nuclear collisions and is widely used in studies of nuclear reaction mechanisms. It is highly sensitive to nuclear structure, leading to distinct characteristics between weakly bound and tightly bound nuclear systems.For weakly bound nuclei such as 6Li, 9Be and 6He, the behavior of the optical potential remains controversial due to insufficient experimental data at near-barrier and deep-barrier energies.In this work, elastic scattering angular distributions for the 6Li+208Pb system were measured at near-barrier and deep-barrier energies. Optical model fitting was employed to extract the optical potential parameters. The results indicate an anomalous threshold anomaly in the optical potential of this system, and the dispersion relation is not applicable. Furthermore, the reaction threshold for the 6Li+208Pb system was determined to be approximately 0.73VB based on deep-barrier data. A systematic analysis was also performed on the reaction thresholds and breakup thresholds of different nuclear systems.This work measured the optical potential of the 6Li+208Pb system at near-barrier and deep sub-barrier energies, providing data support for further investigation of the anomalous threshold anomaly.The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00218.
Theoretical investigation on spectroscopic properties of 18 Λ-S and 35 Ω states of the SH+ ion
Xing Wei, Li Sheng-Zhou, Zhang Fang, Sun Jin-Feng, Li Wen-Tao, Zhu Zun-Lüe
Abstract +
On the basis of precisely treating various physical effects—including core-valence electron correlation, scalar relativistic, spin-orbit coupling, and extrapolation to the complete basis set limit, this study constructs the potential energy curves of 18 Λ-S states and the corresponding 35 Ω states of the SH+ ion by means of the optimized icMRCI+Q method. Within the all-electron icMRCI/cc-pCV5Z+SOC theoretical framework, the transition dipole moment curves of 12 pairs of transitions between 7 Ω states[including X3Σ-0+, X3Σ-1, (1)21st well(υ'=0–8), (2)0+(υ'=0–5), (2)21st well(υ'=0–2), (2)11st well(υ'=0–2), and (3)0+(υ'=0–2)] are calculated. Based on the aforementioned potential energy curves and transition dipole moment curves, the spectral data of each state and the transition data between Ω states are determined by solving the Schrödinger equation for nuclear motion and combining with the corresponding formulas, and the obtained results are in excellent agreement with the experimental values. In addition, the spectral characteristics of the 12 pairs of radiative transitions are clarified, the variation laws of the radiative lifetimes(τυ'J') and radiation widths(Γr) of the excited Ω states are revealed, and the influence of the rotational quantum number(J') on the radiative lifetimes(τυ'J') of the (2)21st well(υ'=0−2, +), (2)11st well(υ'=0–2, +), and (3)0+(υ'=0–2, +) states is discussed. The datasets presented in this paper, including the potential energy curves of 18 Λ-S and 35 Ω states, 12 pairs of transition dipole moments between the 7 Ω states[X3Σ-0+, X3Σ-1,(1)21st well(υ'=0–8), (2)0+(υ'=0–5), (2)21st well(υ'=0–2), (2)11st well(υ'=0–2), and (3)0+(υ'=0–2)], and variation of the radiative lifetimes(τυ'J') with J' for the (2)21st well(υ'=0−2, +), (2)11st well(υ'=0–2, +), and (3)0+(υ'=0–2, +) states of SH⁺ ion, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00233. (Data private access link https://www.scidb.cn/s/nMziqa)
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 18
  • 19