Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structure and optical properties of (α, β, γ)-Nb5Si3

Duan Yong-Hua Sun Yong

Electronic structure and optical properties of (α, β, γ)-Nb5Si3

Duan Yong-Hua, Sun Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the first-principles density functional theory, the electronic structures, densities of states and optical properties of the structures α-Nb5Si3, β-Nb5Si33 and γ-Nb5Si are calculated by using the local density approximation and plane wave pseudopotential method. The calculation results show that the valence band of Nb5Si3 near the Fermi energy is composed of Nb 4d, Si 3s, 3p orbits and the conduction band is comprised mainly of Nb 4d orbit; the optical properties of Nb5Si3 possess anisotropic characteristics, the static dielectric function ε1(0) of Nb5Si3 is about 207, and the refractive index n0 is 13. Their absorptions in a range above 15 eV approach to zero, showing the optical transparent behaviors.
    [1]

    Kim J H, Tabaru T, Hirai H, Kitahara A, Hanada S 2003 Scr. Mater. 48 1439

    [2]

    Li W, Yang H B, Shan A D, Zhang L T, Wu J S 2006 Intermetallics 14 392

    [3]

    Li Y L, Ma C L, Zhang H, Miura S 2011 Mater. Sci. Eng. A 528 5772

    [4]

    Fu Y M, Liu W, Zong W, Sha J B 2012 Procedia Eng. 27 1152

    [5]

    Lu Y Y, Zhang J, Tian L X, Li Y L, Ma C L 2011 Rare Metals 30 335

    [6]

    Qu S Y, Han Y F, Kang Y W 2009 Sci. China E 52 37

    [7]

    Wang Y Y, Li S S, Wu M L, Han Y F 2011 Rare Metals 30 326

    [8]

    Xiong B W, Long W Y, Chen Z, Wan H, Yan Y W 2009 Rare Metal Mater. Eng. 38 1112 (in Chinese) [熊博文, 龙文元, 陈哲, 万红, 严有为 2009 稀有金属材料与工程 38 1112]

    [9]

    Miura S, Tanahash T, Mishima Y, Mohri T 2010 Mater. Sci. Forum 654-656 444

    [10]

    Fernandes P B, Coelho G C, Ferreira F, Nunes C A, Sundman B 2002 Intermetallics 10 993

    [11]

    Sekido N, Miura S Yamabe-Mitarai Y, Kimura Y, Mishima Y 2010 Intermetallics 18 841

    [12]

    Stewart B, Kumar R S 2011 Undergraduate Research Opportunities Program Las Vegas, USA, August 9, p3

    [13]

    Chen Y, Shang J X, Zhang Y 2007 Phys. Rev. B 76 184204

    [14]

    Kang Y W, Han Y F, Qu S Y, Song J X 2009 Chin. J Aeronautics 22 206

    [15]

    Chen Y, Shang J X, Zhang Y 2007 J. Phys: Condens. Matter 19 016215

    [16]

    Shang J X, Guan K, Wang F H 2010 J. Phys: Condens. Matter 22 085004

    [17]

    Yi D Q, Du R X, Cao Y 2001 Acta Metal. Sin. 37 1121 (in Chinese) [易丹青, 杜若昕, 曹昱 2001 金属学报 37 1121]

    [18]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [19]

    Vanferbilt D 1990 Phys. Rev. B 41 7892

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [22]

    Pan L, Lu T C, Su R, Wang Y Z, Qi J Q, Fu J, Zhang Y, He D W 2012 Acta Phys. Sin. 61 027101 (in Chinese) [潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺瑞威 2012 物理学报 61 027101]

    [23]

    Huang K 1988 Solid-State Physics (Beijing: Higher Education Press) (in Chinese) [黄昆 1988 固体物理 (北京: 高等教育出版社)]

    [24]

    Shen X C 2002 The Spectrum and Optical Property of Semiconductor (Beijing: Science Press) (in Chinese) [沈学础 2002 半导体光谱和光学性质(第二版) (北京: 科学出版社)]

    [25]

    Schachner H, Cerwenka E, Nowotny H 1954 Monatsch. Chem. 85 245

    [26]

    Mendiratta M G, Lewandowski J J, Dimiduk D M 1991 Metall. Trans. A 22 1573

    [27]

    Pearson W B 1958 A Handbook of Lattice Spacing and Structures of Metals and Alloys (London: Pergamon Press)

    [28]

    Parthe E, Lux B, Nowotny H 1955 Monatshefte Fuer Chemie 86 859

    [29]

    Willis J O, Waterstrat R M 1979 J. Appl. Phys. 50 2863

    [30]

    Sun Z M, Ahuja R, Schneider J M 2003 Phys. Rev. B 68 224112.

  • [1]

    Kim J H, Tabaru T, Hirai H, Kitahara A, Hanada S 2003 Scr. Mater. 48 1439

    [2]

    Li W, Yang H B, Shan A D, Zhang L T, Wu J S 2006 Intermetallics 14 392

    [3]

    Li Y L, Ma C L, Zhang H, Miura S 2011 Mater. Sci. Eng. A 528 5772

    [4]

    Fu Y M, Liu W, Zong W, Sha J B 2012 Procedia Eng. 27 1152

    [5]

    Lu Y Y, Zhang J, Tian L X, Li Y L, Ma C L 2011 Rare Metals 30 335

    [6]

    Qu S Y, Han Y F, Kang Y W 2009 Sci. China E 52 37

    [7]

    Wang Y Y, Li S S, Wu M L, Han Y F 2011 Rare Metals 30 326

    [8]

    Xiong B W, Long W Y, Chen Z, Wan H, Yan Y W 2009 Rare Metal Mater. Eng. 38 1112 (in Chinese) [熊博文, 龙文元, 陈哲, 万红, 严有为 2009 稀有金属材料与工程 38 1112]

    [9]

    Miura S, Tanahash T, Mishima Y, Mohri T 2010 Mater. Sci. Forum 654-656 444

    [10]

    Fernandes P B, Coelho G C, Ferreira F, Nunes C A, Sundman B 2002 Intermetallics 10 993

    [11]

    Sekido N, Miura S Yamabe-Mitarai Y, Kimura Y, Mishima Y 2010 Intermetallics 18 841

    [12]

    Stewart B, Kumar R S 2011 Undergraduate Research Opportunities Program Las Vegas, USA, August 9, p3

    [13]

    Chen Y, Shang J X, Zhang Y 2007 Phys. Rev. B 76 184204

    [14]

    Kang Y W, Han Y F, Qu S Y, Song J X 2009 Chin. J Aeronautics 22 206

    [15]

    Chen Y, Shang J X, Zhang Y 2007 J. Phys: Condens. Matter 19 016215

    [16]

    Shang J X, Guan K, Wang F H 2010 J. Phys: Condens. Matter 22 085004

    [17]

    Yi D Q, Du R X, Cao Y 2001 Acta Metal. Sin. 37 1121 (in Chinese) [易丹青, 杜若昕, 曹昱 2001 金属学报 37 1121]

    [18]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [19]

    Vanferbilt D 1990 Phys. Rev. B 41 7892

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [22]

    Pan L, Lu T C, Su R, Wang Y Z, Qi J Q, Fu J, Zhang Y, He D W 2012 Acta Phys. Sin. 61 027101 (in Chinese) [潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺瑞威 2012 物理学报 61 027101]

    [23]

    Huang K 1988 Solid-State Physics (Beijing: Higher Education Press) (in Chinese) [黄昆 1988 固体物理 (北京: 高等教育出版社)]

    [24]

    Shen X C 2002 The Spectrum and Optical Property of Semiconductor (Beijing: Science Press) (in Chinese) [沈学础 2002 半导体光谱和光学性质(第二版) (北京: 科学出版社)]

    [25]

    Schachner H, Cerwenka E, Nowotny H 1954 Monatsch. Chem. 85 245

    [26]

    Mendiratta M G, Lewandowski J J, Dimiduk D M 1991 Metall. Trans. A 22 1573

    [27]

    Pearson W B 1958 A Handbook of Lattice Spacing and Structures of Metals and Alloys (London: Pergamon Press)

    [28]

    Parthe E, Lux B, Nowotny H 1955 Monatshefte Fuer Chemie 86 859

    [29]

    Willis J O, Waterstrat R M 1979 J. Appl. Phys. 50 2863

    [30]

    Sun Z M, Ahuja R, Schneider J M 2003 Phys. Rev. B 68 224112.

  • [1] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [2] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [3] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [4] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [5] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [6] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [7] Hou Qin-Ying, Kong Xiang-Lan, Su Xi-Yu, Qi Yan-Hua, Zhi Xiao-Fen. First-principles study of the electronic structure and optical properties of Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [8] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [9] Fu Zheng-Hong, Li Ting, Shan Mei-Le, Guo Kang, Gou Guo-Qing. Effect of H on elastic properties of Mg2Si by the first principles calculation. Acta Physica Sinica, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [10] Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li. First-principles calculation for hydrogen-doped hematite. Acta Physica Sinica, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [11] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. First-principles study of optical and electronic properties of N-doped SnO2. Acta Physica Sinica, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [12] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. First-principles calculation on electronic structure and optical properties of iron-doped SnO2. Acta Physica Sinica, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [13] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Jiang Lei, Zhang Guo-Lian, Song Peng. Material opto-electronic properties of In, N co-doped SnO2 studied by first principles. Acta Physica Sinica, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [14] Qin Jing-Yun, Shu Qun-Wei, Yuan Yi, Qiu Wei, Xiao Li-Hua, Peng Ping, Lu Guo-Song. First-principles investigation on electronic structure and solar radiation shielding performance of Ti0.33WO3. Acta Physica Sinica, 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [15] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [16] Liu Jian-Jun. The effect on electronic density of states and optical properties of ZnO by doping Ga. Acta Physica Sinica, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [17] Cui Dong-Meng, Xie Quan, Chen Qian, Zhao Feng-Juan, Li Xu-Zhen. First-principles study on the band structure and optical properties of strained Ru2Si3 semiconductor. Acta Physica Sinica, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [18] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. Study of material properties of Fe, S Co-doped SnO2 by first principles. Acta Physica Sinica, 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [19] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [20] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
  • Citation:
Metrics
  • Abstract views:  1332
  • PDF Downloads:  447
  • Cited By: 0
Publishing process
  • Received Date:  29 February 2012
  • Accepted Date:  10 May 2012
  • Published Online:  05 November 2012

Electronic structure and optical properties of (α, β, γ)-Nb5Si3

  • 1. Faculty of Material Science and Technology, Kunming University of Science and Technology, Kunming 650093, China;
  • 2. Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China

Abstract: Based on the first-principles density functional theory, the electronic structures, densities of states and optical properties of the structures α-Nb5Si3, β-Nb5Si33 and γ-Nb5Si are calculated by using the local density approximation and plane wave pseudopotential method. The calculation results show that the valence band of Nb5Si3 near the Fermi energy is composed of Nb 4d, Si 3s, 3p orbits and the conduction band is comprised mainly of Nb 4d orbit; the optical properties of Nb5Si3 possess anisotropic characteristics, the static dielectric function ε1(0) of Nb5Si3 is about 207, and the refractive index n0 is 13. Their absorptions in a range above 15 eV approach to zero, showing the optical transparent behaviors.

Reference (30)

Catalog

    /

    返回文章
    返回