Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A rapid atmospheric correction model for L-band microwave radiometer under the cloudless condition

Du Yan-Lei Ma Wen-Tao Yang Xiao-Feng Liu Gui-Hong Yu Yang Li Zi-Wei

A rapid atmospheric correction model for L-band microwave radiometer under the cloudless condition

Du Yan-Lei, Ma Wen-Tao, Yang Xiao-Feng, Liu Gui-Hong, Yu Yang, Li Zi-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Atmospheric correction is very important to the accurate retrieval of geophysical parameters from spaceborne L-band radiometers. In this paper, the L-band upwelling and downwelling radiation brightness temperature and transmittance above sea surface are calculated using the atmospheric radiation transfer model based on NCEP temperature and humidity profile data. A regression model, i.e., radiation-vapor model, is established to describe the relationship between the three atmospheric radiation parameters and the atmospheric water vapor content as well as the sea surface pressure. Using this model, the atmospheric radiation parameters can be calculated and used to correct the atmospheric effects in L-band microwave radiometer observation. In order to test the proposed model, the atmospheric radiation parameters are calculated by this model and compared with the SSM/I water vapor content data and the NCEP surface pressure data. Finally, the model outputs are compared with the Aquarius satellite data. Results indicate that the radiation brightness temperature calculated by the proposed model is lower than the Aquarius data about 0.335 K and the root-mean-square error between them is about 0.086 K after correcting the systematic errors. The atmospheric transmittance calculated by the proposed model agrees well with the Aquarius data. Besides, the proposed model uses fewer input data and is faster and more stable than other existing models.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41371355).
    [1]

    Bettenhausen M H, Smith C K, Bevilacqua R M, Wang N Y, Gaiser P W, Cox S K 2006 IEEE Trans. Geosci. Remote Sensing 44 597

    [2]

    Yueh S H, West R, Wilson W J, Li F K, Njoku E G, Rahmat-Samii Y 2001 IEEE Trans. Geosci. Remote Sensing 39 1049

    [3]

    Skou N, Hoffman-Bang D 2005 IEEE Trans. Geosci. Remote Sensing 43 2210

    [4]

    Camps A, Font J, Mercè V, Gabarro Ć, Corbella I, Duffo N, Torres F, Blanch S, Aguasca A, Villarino R, Enrique L, Miranda J J, Arenas J J, Julia à, Etcheto J, Caselles V, Weill A, Boutin J, Contardo S, Niclós R, Rivas R, Reising S C, Wursteisen P, Berger M, Martín-Neira M 2004 IEEE Trans. Geosci. Remote Sensing 42 804

    [5]

    Wentz F J, Spencer R W 1998 J. Atmos. Sci. 55 1613

    [6]

    Meissner T, Wentz F J 2009 IEEE Trans. Geosci. Remote Sensing 47 3065

    [7]

    Hariharan T A, Pandey P C 1983 Proc. Indian Acad. Sci. 6 233

    [8]

    Liebe H J 1989 Int. J. Infrared and Millimeter Waves 10 631

    [9]

    Liebe H J, Hufford G A, Cotton M G 1993 AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel Palma De Mallorca, Spain, May 17-21 1993 p3.1

    [10]

    Rosenkranz P W 1998 Radio sci. 33 919

    [11]

    Liebe H J 1985 Radio Sci. 20 1069

    [12]

    Liebe H J, Rosenkranz P W, Hufford G A 1992 J. Quant. Spectrosc. Radiat. Transfer 48 629

    [13]

    Fuhrhop R, Grenfell T C, Heygster G, Johnsen K P, Schlssel P, Schrader M, Simmer C 1998 Radio Sci. 33 303

    [14]

    Wang Y Q, Shi J C, Liu Z H, Peng Y J, Liu W J 2013 itScience China Earth Sciences 56 93

    [15]

    Wang Y Q, Feng W L, Shi J C, Qiu Y B, Liu Z H 2014 J. Infrared Millim. Waves 33 192 (in Chinese) [王永前, 冯文兰, 施建成, 邱玉宝, 刘志红 2014 红外与毫米波学报 33 192]

    [16]

    Shi J K, Lu W, Yan W, Ai W H 2013 Acta Phys. Sin. 62 078402 (in Chinese) [施健康, 陆文, 严卫, 艾未华 2013 物理学报 62 078402]

    [17]

    Zhou X, Yang X F, Li Z W, Yu Y, Ma S 2012 Acta Phys. Sin. 61 149202 (in Chinese) [周旋, 杨晓峰, 李紫薇, 于暘, 马胜 2012 物理学报 61 149202]

    [18]

    Yan W, Lu W, Shi J K, Ren J Q, Wang R 2011 Acta Phys. Sin. 60 099401 (in Chinese) [严卫, 陆文, 施健康, 任建奇, 王蕊 2011 物理学报 60 099401]

    [19]

    Zu X Y, Zhou J 2012 Chin. Phys. B 21 019501

    [20]

    Liu Y, Peng Q Z, Shao H Z, Peng Q H, Wang L 2013 Acta Phys. Sin. 62 078406 (in Chinese) [刘允, 彭启琮, 邵怀宗, 彭启航, 王玲 2013 物理学报 62 078406]

    [21]

    Stewart R H 1985 Methods of Satellite Oceanography (Berkeley: University of California Press) p360

    [22]

    Liu Y G 2009 Satellite Oceanography (Beijing: Higher Education Press) pp201-221 (in Chinese) [刘玉光 2009 卫星海洋学(北京: 高等教育出版社) 第201–221页]

    [23]

    Wang Z Z 2005 Ph. D. Dissertation (Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences) (in Chinese) [王振占 2005 博士学位论文 (北京: 中国科学院空间科学与应用研究中心)]

    [24]

    Seelye M (translated by Jiang X W) 2008 An Introduction to Ocean Remote Sensing (Beijing: Ocean Press) pp86-99 (in Chinese) [西利 M著 (蒋兴伟译) 2008 海洋遥感导论 (北京: 海洋出版社) 第86–99页]

    [25]

    Yueh S H, Tang W Q, Fore A G, Neumann G, Hayashi A, Freedman A, Chaubell J, Lagerloef G S E 2013 IEEE Trans. Geosci. Remote Sensing 51 4619

  • [1]

    Bettenhausen M H, Smith C K, Bevilacqua R M, Wang N Y, Gaiser P W, Cox S K 2006 IEEE Trans. Geosci. Remote Sensing 44 597

    [2]

    Yueh S H, West R, Wilson W J, Li F K, Njoku E G, Rahmat-Samii Y 2001 IEEE Trans. Geosci. Remote Sensing 39 1049

    [3]

    Skou N, Hoffman-Bang D 2005 IEEE Trans. Geosci. Remote Sensing 43 2210

    [4]

    Camps A, Font J, Mercè V, Gabarro Ć, Corbella I, Duffo N, Torres F, Blanch S, Aguasca A, Villarino R, Enrique L, Miranda J J, Arenas J J, Julia à, Etcheto J, Caselles V, Weill A, Boutin J, Contardo S, Niclós R, Rivas R, Reising S C, Wursteisen P, Berger M, Martín-Neira M 2004 IEEE Trans. Geosci. Remote Sensing 42 804

    [5]

    Wentz F J, Spencer R W 1998 J. Atmos. Sci. 55 1613

    [6]

    Meissner T, Wentz F J 2009 IEEE Trans. Geosci. Remote Sensing 47 3065

    [7]

    Hariharan T A, Pandey P C 1983 Proc. Indian Acad. Sci. 6 233

    [8]

    Liebe H J 1989 Int. J. Infrared and Millimeter Waves 10 631

    [9]

    Liebe H J, Hufford G A, Cotton M G 1993 AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel Palma De Mallorca, Spain, May 17-21 1993 p3.1

    [10]

    Rosenkranz P W 1998 Radio sci. 33 919

    [11]

    Liebe H J 1985 Radio Sci. 20 1069

    [12]

    Liebe H J, Rosenkranz P W, Hufford G A 1992 J. Quant. Spectrosc. Radiat. Transfer 48 629

    [13]

    Fuhrhop R, Grenfell T C, Heygster G, Johnsen K P, Schlssel P, Schrader M, Simmer C 1998 Radio Sci. 33 303

    [14]

    Wang Y Q, Shi J C, Liu Z H, Peng Y J, Liu W J 2013 itScience China Earth Sciences 56 93

    [15]

    Wang Y Q, Feng W L, Shi J C, Qiu Y B, Liu Z H 2014 J. Infrared Millim. Waves 33 192 (in Chinese) [王永前, 冯文兰, 施建成, 邱玉宝, 刘志红 2014 红外与毫米波学报 33 192]

    [16]

    Shi J K, Lu W, Yan W, Ai W H 2013 Acta Phys. Sin. 62 078402 (in Chinese) [施健康, 陆文, 严卫, 艾未华 2013 物理学报 62 078402]

    [17]

    Zhou X, Yang X F, Li Z W, Yu Y, Ma S 2012 Acta Phys. Sin. 61 149202 (in Chinese) [周旋, 杨晓峰, 李紫薇, 于暘, 马胜 2012 物理学报 61 149202]

    [18]

    Yan W, Lu W, Shi J K, Ren J Q, Wang R 2011 Acta Phys. Sin. 60 099401 (in Chinese) [严卫, 陆文, 施健康, 任建奇, 王蕊 2011 物理学报 60 099401]

    [19]

    Zu X Y, Zhou J 2012 Chin. Phys. B 21 019501

    [20]

    Liu Y, Peng Q Z, Shao H Z, Peng Q H, Wang L 2013 Acta Phys. Sin. 62 078406 (in Chinese) [刘允, 彭启琮, 邵怀宗, 彭启航, 王玲 2013 物理学报 62 078406]

    [21]

    Stewart R H 1985 Methods of Satellite Oceanography (Berkeley: University of California Press) p360

    [22]

    Liu Y G 2009 Satellite Oceanography (Beijing: Higher Education Press) pp201-221 (in Chinese) [刘玉光 2009 卫星海洋学(北京: 高等教育出版社) 第201–221页]

    [23]

    Wang Z Z 2005 Ph. D. Dissertation (Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences) (in Chinese) [王振占 2005 博士学位论文 (北京: 中国科学院空间科学与应用研究中心)]

    [24]

    Seelye M (translated by Jiang X W) 2008 An Introduction to Ocean Remote Sensing (Beijing: Ocean Press) pp86-99 (in Chinese) [西利 M著 (蒋兴伟译) 2008 海洋遥感导论 (北京: 海洋出版社) 第86–99页]

    [25]

    Yueh S H, Tang W Q, Fore A G, Neumann G, Hayashi A, Freedman A, Chaubell J, Lagerloef G S E 2013 IEEE Trans. Geosci. Remote Sensing 51 4619

  • Citation:
Metrics
  • Abstract views:  2159
  • PDF Downloads:  12772
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2014
  • Accepted Date:  29 October 2014
  • Published Online:  05 April 2015

A rapid atmospheric correction model for L-band microwave radiometer under the cloudless condition

  • 1. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences Beijing 100101, China;
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 41371355).

Abstract: Atmospheric correction is very important to the accurate retrieval of geophysical parameters from spaceborne L-band radiometers. In this paper, the L-band upwelling and downwelling radiation brightness temperature and transmittance above sea surface are calculated using the atmospheric radiation transfer model based on NCEP temperature and humidity profile data. A regression model, i.e., radiation-vapor model, is established to describe the relationship between the three atmospheric radiation parameters and the atmospheric water vapor content as well as the sea surface pressure. Using this model, the atmospheric radiation parameters can be calculated and used to correct the atmospheric effects in L-band microwave radiometer observation. In order to test the proposed model, the atmospheric radiation parameters are calculated by this model and compared with the SSM/I water vapor content data and the NCEP surface pressure data. Finally, the model outputs are compared with the Aquarius satellite data. Results indicate that the radiation brightness temperature calculated by the proposed model is lower than the Aquarius data about 0.335 K and the root-mean-square error between them is about 0.086 K after correcting the systematic errors. The atmospheric transmittance calculated by the proposed model agrees well with the Aquarius data. Besides, the proposed model uses fewer input data and is faster and more stable than other existing models.

Reference (25)

Catalog

    /

    返回文章
    返回