Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of photo-chromic properties of remote phosphor film and white light emitting diode mixed with TiO2 particles

Zhuo Ning-Ze Zhang Na Li Bo-Chao Li Wen-Quan He Qing-Yang Shi Feng-Hua Zhu Yue-Hua Xing Hai-Dong Wang Hai-Bo

Citation:

Investigation of photo-chromic properties of remote phosphor film and white light emitting diode mixed with TiO2 particles

Zhuo Ning-Ze, Zhang Na, Li Bo-Chao, Li Wen-Quan, He Qing-Yang, Shi Feng-Hua, Zhu Yue-Hua, Xing Hai-Dong, Wang Hai-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the hot pressing method, the remote phosphor films are prepared by adding TiO2 particles into YAG:Ce and silicon binder, and then they are packaged into white light emitting diode (WLED) device with chip on board (COB) blue light source. The photo-chromic properties and mechanism are studied and calculated. Based on Mie theory and Henyey-Greenstein function, forward scattering is the main light scattering form of YAG:Ce phosphor powder, while the forward scattering intensity is close to the back scattering intensity of TiO2 particles. The emission spectral intensity and relative luminance of remote phosphor film change with increasing the concentration of TiO2 particles, and the optimum concentration is 0.966 g/cm3. Forward transmission intensity and back reflection intensity are calculated and analyzed, when the concentration of TiO2 is low, the forward transmission intensity of blue light is stronger than that of yellow light and the main transmission form is forward transmission, while the forward and backward intensity of yellow light are similar because of isotropy. With increasing the concentration of TiO2, the forward intensity of blue light gradually decreases, and the transmission intensity is lower than that of yellow light. The forward and backward intensity of yellow light reach their maxima when the TiO2 concentration is 0.966 g/cm3. The main reason for this phenomenon is that the increasing of the utilization ratio between blue light and transmission of yellow light is affected by the strong scattering ability of TiO2. Finally the WLEDs are packaged by remote phosphor films and COB blue light source, the luminous flux of WLED reaches 415.28 lm (at 300 mA and 9.3 V) at a concentration of 0.966 g/cm3, which is increased by 8.15% compared with the concentration in the case of no TiO2 mixing. Besides, the correlated color temperature changes from cool white 6900 K to warm white 3832 K gradually. Consequently, the adding of TiO2 particles can not only improve the emission intensity of remote phosphor film and the luminous flux of WLED, but also regulate the correlated color temperature.
      Corresponding author: Wang Hai-Bo, Wanghaibo88@163.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA03 A107) and the Scientific and Technological Achievements Transformation Plan of Jiangsu Province, China(Grant No. BA2014073).
    [1]

    Zukauskas A, Shur M S, Caska R 2002 Introduction to Solid-State Lighting (New York: John Wiley) pp1-6

    [2]

    Liu S, Luo X B 2011 LED Packaging for Lighting Applications (New York: John Wiley) pp1-28

    [3]

    Hu R, Luo X B, Zheng H 2012 J. Appl. Phys. 21 09 MK05

    [4]

    Xiao H, L Y J, Xu Y X, Zhu L H, Chen G L, Gao Y L, Fan X G, Xue R C 2014 Chin. J. Lumin. 35 66 (in Chinese) [肖华, 吕毅军, 徐云鑫, 朱丽虹, 陈国龙, 高玉琳, 范贤光, 薛睿超 2014 发光学报 35 66]

    [5]

    Dong M Z, Wei J, Ye H Y, Yuan C M, Zhang G Q 2013 J. Semicond. 34 053007

    [6]

    Tsai P Y, Huang H K, Sung J M, Kan M C, Wang Y H 2015 IEEE Electr. Dev. Lett. 36 250

    [7]

    Narendran N, Gu F, Freyssinier-Nova J P, Zhu Y 2005 Phys. Status Solid A 202 R60

    [8]

    Allen S C, Steckl A J 2007 J. Disp. Technol. 3 155

    [9]

    Lin M T, Ying S P, Lin M Y, Tai K Y, Tai S C, Liu C H, Chen J C, Sun C C 2010 Photon. Technol. Lett. 22 574

    [10]

    Lin M T, Ying S P, Lin M Y, Tai K Y, Tai S C, Liu C H, Chen J C, Sun C C 2014 IEEE Trans. Dev. Mat. Re. 14 358

    [11]

    Xiao H, Lu Y J, Shin T M, Zhu L H, Lin S Q, Pagni P J, Chen Z 2014 IEEE Photon. J. 6 1

    [12]

    Tian H, Liu J W, Qiu K, Song J, Wang D J 2012 Chin. Phys. B 21 098504

    [13]

    Chen H C, Chen K J, Lin C C, Wang C H, Han H V, Tsai H H, Kuo H T, Chien S H, Shih M H, Kuo H C 2012 Nanotechnology 231

    [14]

    Song Y H, Ji E K, Bak S H, Kim Y N, Lee D B, Jung M K, Jeong B W, Yoon D H 2016 Chem. Eng. J. 287 511

    [15]

    Henyey L G, Greenstein J L 1941 Astrophys. J. 93 70

    [16]

    Qian K Y, Ma J, Fu W, Luo Y 2012 Acta Phys. Sin. 61 204201 (in Chinese) [钱可元, 马俊, 付伟, 罗毅 2012 物理学报 61 204201]

    [17]

    Liu Z Y 2010 Ph. D. Dissertation(Wuhan: Huazhong University of Science and Technology) (in Chinese) [刘宗源 2010 博士学位论文 (武汉: 华中科技大学)]

    [18]

    Liu Z Y, Liu S, Wang K, Luo X B 2010 Appl. Opt. 49 247

    [19]

    Hsiao S L, Hu N C, Wu C C 2013 Appl. Phys. Express 6 032102

    [20]

    Heller W 1965 J. Phys. Chem. 69 1123

  • [1]

    Zukauskas A, Shur M S, Caska R 2002 Introduction to Solid-State Lighting (New York: John Wiley) pp1-6

    [2]

    Liu S, Luo X B 2011 LED Packaging for Lighting Applications (New York: John Wiley) pp1-28

    [3]

    Hu R, Luo X B, Zheng H 2012 J. Appl. Phys. 21 09 MK05

    [4]

    Xiao H, L Y J, Xu Y X, Zhu L H, Chen G L, Gao Y L, Fan X G, Xue R C 2014 Chin. J. Lumin. 35 66 (in Chinese) [肖华, 吕毅军, 徐云鑫, 朱丽虹, 陈国龙, 高玉琳, 范贤光, 薛睿超 2014 发光学报 35 66]

    [5]

    Dong M Z, Wei J, Ye H Y, Yuan C M, Zhang G Q 2013 J. Semicond. 34 053007

    [6]

    Tsai P Y, Huang H K, Sung J M, Kan M C, Wang Y H 2015 IEEE Electr. Dev. Lett. 36 250

    [7]

    Narendran N, Gu F, Freyssinier-Nova J P, Zhu Y 2005 Phys. Status Solid A 202 R60

    [8]

    Allen S C, Steckl A J 2007 J. Disp. Technol. 3 155

    [9]

    Lin M T, Ying S P, Lin M Y, Tai K Y, Tai S C, Liu C H, Chen J C, Sun C C 2010 Photon. Technol. Lett. 22 574

    [10]

    Lin M T, Ying S P, Lin M Y, Tai K Y, Tai S C, Liu C H, Chen J C, Sun C C 2014 IEEE Trans. Dev. Mat. Re. 14 358

    [11]

    Xiao H, Lu Y J, Shin T M, Zhu L H, Lin S Q, Pagni P J, Chen Z 2014 IEEE Photon. J. 6 1

    [12]

    Tian H, Liu J W, Qiu K, Song J, Wang D J 2012 Chin. Phys. B 21 098504

    [13]

    Chen H C, Chen K J, Lin C C, Wang C H, Han H V, Tsai H H, Kuo H T, Chien S H, Shih M H, Kuo H C 2012 Nanotechnology 231

    [14]

    Song Y H, Ji E K, Bak S H, Kim Y N, Lee D B, Jung M K, Jeong B W, Yoon D H 2016 Chem. Eng. J. 287 511

    [15]

    Henyey L G, Greenstein J L 1941 Astrophys. J. 93 70

    [16]

    Qian K Y, Ma J, Fu W, Luo Y 2012 Acta Phys. Sin. 61 204201 (in Chinese) [钱可元, 马俊, 付伟, 罗毅 2012 物理学报 61 204201]

    [17]

    Liu Z Y 2010 Ph. D. Dissertation(Wuhan: Huazhong University of Science and Technology) (in Chinese) [刘宗源 2010 博士学位论文 (武汉: 华中科技大学)]

    [18]

    Liu Z Y, Liu S, Wang K, Luo X B 2010 Appl. Opt. 49 247

    [19]

    Hsiao S L, Hu N C, Wu C C 2013 Appl. Phys. Express 6 032102

    [20]

    Heller W 1965 J. Phys. Chem. 69 1123

Metrics
  • Abstract views:  4808
  • PDF Downloads:  278
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2015
  • Accepted Date:  09 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回