Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of mode radiation characteristics in a non-magnetized cold plasma column

Li Wen-Qiu Wang Gang Su Xiao-Bao

Citation:

Analysis of mode radiation characteristics in a non-magnetized cold plasma column

Li Wen-Qiu, Wang Gang, Su Xiao-Bao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The electromagnetic surface waves which propagate along a non-magnetized cold plasma column have a great value in the application of plasma antenna. In this paper, the dispersion properties, the transmission power distributions, and the radiation patterns for these electromagnetic surface waves which have lower frequencies than the electron plasma frequency are analyzed numerically. Based on Helmholtz equation, the specific expression of dispersion equation is derivedby the field matching method, then the exact values of complex axial wave vector kz under different wave frequencies are obtained by solving the transcendental dispersion relation. Using the specific value of kz obtained above, the exact expressions of transmission power profile in the plasma column and field profiles in the three regions, i.e., plasma, dielectric, and free space are derived, respectively. Finally, based on the complex form of electric conductivity that is derived from the Boltzmann-Vlasov equation with Krook term and the complex axial wave vector kz obtained above, the influence of the parameter pea/c on phase property, and the dependence of radiation pattern and transmission power profile on wave frequency of the non-magnetized cold plasma column in a cylindrical dielectric tube system are analyzed. The results show that the electron plasma frequency has a significant influence on the phase property, which is evidently confirmed by the fact that the propagation velocities of the three modes m=0, m=1 and m=2 are all near to the light speed when the value of parameter pea/c gradually increases. Meanwhile, through the investigation of the radiation patterns for the three modes, an important conclusion is that the radiation pattern has evident dependence on wave frequency. While the radiation direction of the main lobe is in the axial direction for the m=1 mode, the m1 modes each have an angle between the radiation direction of the main lobe and the axial direction, this crucial conclusion is in good agreement with the theoretical calculation results obtained from other researcher. Further, we find that with the increase of wave frequency, the angle between the main lobe radiation direction and the axial direction turns smaller for each of m=0 and m=2 modes, and the width of main lobe gradually narrows for each of all modes, and the amplitude of the first side lobe becomes notable for each of m=0 and m=2 modes and ignorable for the m=1 mode. Also, the transmission power increases as the wave frequency increases for each of all modes. These theoretical calculation results provide a detailed theoretical reference for the designing of plasma stealth and high-precision requirements of plasma antenna design, and giving a comprehensive optimization guidance for the modulation of plasma antenna.
      Corresponding author: Li Wen-Qiu, beiste@163.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA8035040C).
    [1]

    Trivelpiece A W, Gould R W 1959J.Appl.Phys. 30 1784

    [2]

    Alexeff I 1968Phys.Fluids 11 1591

    [3]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2011Radioelectron.Commun.Syst. 54 613

    [4]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2014Radioelectron.Commun.Syst. 57 474

    [5]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2014J.Commun.Technol.Electron. 59 269

    [6]

    Ye H Q, Gao M, Tang C J 2011IEEE Trans.Antennas Propag. 59 1497

    [7]

    Wu K B, Hsu J Y 2012Phys.Plasmas 19 022111

    [8]

    Jia G, Xiang N, Wang X, Huang Y, Lin Y 2016Phys.Plasmas 23 012504

    [9]

    Kalaee M J, Katoh Y 2016Phys.Plasmas 23 072119

    [10]

    Chen S Q 2001International Aviation 2001 10

    [11]

    Lin M, Xu H J, Wei X L, Liang H, Zhang Y H 2015Acta Phys.Sin. 64 055201(in Chinese)[林敏, 徐浩军, 魏小龙, 梁华, 张艳华2015物理学报64 055201]

    [12]

    Chen F F 1991Plasma Phys.Controlled Fusion 33 339

    [13]

    Zhao G W, Xu Y M, Chen C 2006Acta Phys.Sin. 55 3458(in Chinese)[赵国伟, 徐跃民, 陈诚2006物理学报55 3458]

    [14]

    Zhao G W, Wang Z J, Xu Y M, Liang Z W, Xu J 2007Acta Phys.Sin. 56 5304(in Chinese)[赵国伟, 王之江, 徐跃民, 梁志伟, 徐杰2007物理学报56 5304]

  • [1]

    Trivelpiece A W, Gould R W 1959J.Appl.Phys. 30 1784

    [2]

    Alexeff I 1968Phys.Fluids 11 1591

    [3]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2011Radioelectron.Commun.Syst. 54 613

    [4]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2014Radioelectron.Commun.Syst. 57 474

    [5]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2014J.Commun.Technol.Electron. 59 269

    [6]

    Ye H Q, Gao M, Tang C J 2011IEEE Trans.Antennas Propag. 59 1497

    [7]

    Wu K B, Hsu J Y 2012Phys.Plasmas 19 022111

    [8]

    Jia G, Xiang N, Wang X, Huang Y, Lin Y 2016Phys.Plasmas 23 012504

    [9]

    Kalaee M J, Katoh Y 2016Phys.Plasmas 23 072119

    [10]

    Chen S Q 2001International Aviation 2001 10

    [11]

    Lin M, Xu H J, Wei X L, Liang H, Zhang Y H 2015Acta Phys.Sin. 64 055201(in Chinese)[林敏, 徐浩军, 魏小龙, 梁华, 张艳华2015物理学报64 055201]

    [12]

    Chen F F 1991Plasma Phys.Controlled Fusion 33 339

    [13]

    Zhao G W, Xu Y M, Chen C 2006Acta Phys.Sin. 55 3458(in Chinese)[赵国伟, 徐跃民, 陈诚2006物理学报55 3458]

    [14]

    Zhao G W, Wang Z J, Xu Y M, Liang Z W, Xu J 2007Acta Phys.Sin. 56 5304(in Chinese)[赵国伟, 王之江, 徐跃民, 梁志伟, 徐杰2007物理学报56 5304]

Metrics
  • Abstract views:  4817
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  08 October 2016
  • Accepted Date:  06 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回