Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Variational study of the 2DEG wave function in InAlN/GaN heterostructures

Li Qun Chen Qian Chong Jing

Variational study of the 2DEG wave function in InAlN/GaN heterostructures

Li Qun, Chen Qian, Chong Jing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The variational method has been widely used to study the electronic structures of heterostructure materials in spite of this method being less accurate than the numerical method, because analytical formulas for some electrical parameters can be derived using this method. However, effects of surface states on the two-dimensional electron gas (2DEG) have not been taken into account in the variational studies of GaN-based heterostructures. In the present study, analytical formulas for the electron wave function and ground state energy level of the 2DEG in InAlN/GaN heterostructures are derived using the variational method, and the influences of structural parameters of InAlN/GaN heterostructures on the electrical properties are discussed. In the theoretical model, evenly distributed surface states below the conduction band are assumed to be the origin of the 2DEG, and the polarization charges at the InAlN surface and the InAlN/GaN interface due to spontaneous and piezoelectric polarization effects in InAlN/GaN heterostructures are taken into account. A trial envelope wave function with two variational parameters is used to derive the expectation value of the total energy per electron. The variational parameters are determined by minimizing the expectation value. The model predicts a linear conduction band profile in InAlN barrier layer and an approximately triangular-shaped potential well on the GaN side of the InAlN/GaN interface. Electrons released from the surface states are confined in the potential well, forming the 2DEG. The 2DEG sheet density for the lattice-matched InAlN/GaN heterostructure with a 15 nm InAlN layer is 1.961013 cm-2, and the average distance from the InAlN/GaN interface of electrons is 2.23 nm. The 2DEG sheet density increases rapidly with InAlN thickness increasing when the InAlN layer exceeds the critical thickness, and starts to be saturated above 15 nm. The dependence of the calculated 2DEG sheet density on the InAlN thickness quantitatively agrees with recently reported experimental data. The increasing 2DEG sheet density results in increasing the ground state energy level and Fermi energy, and the energy spacing between the two also increases for containing more electrons. The polarization discontinuity at the InAlN/GaN interface decreases with increasing In mole fraction, causing the 2DEG sheet density to decrease, and thus the ground state energy level and the Fermi energy to decrease. This model is conducive to understanding the electrical behaviors of InAlN/GaN heterostructures and providing readily applicable formulas for studying the electron transport and optical transitions.
      Corresponding author: Li Qun, liqun@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11647053) and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 17JK0552).
    [1]

    Li Q, Zhang J W, Meng L, Hou X 2014 Phys. Status Solidi B 251 755

    [2]

    Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zheng Y D 2013 Acta Phys. Sin. 62 150202 (in Chinese)[张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 物理学报 62 150202]

    [3]

    Tien N T, Thao D N, Thao P T B, Quang D N 2015 Physica B 479 62

    [4]

    Manouchehri F, Valizadeh P, Kabir M Z 2014 J. Vac. Sci. Technol. A 32 021104

    [5]

    Stern F 1972 Phys. Rev. B 5 4891

    [6]

    Fouillant C, Alibert C 1994 Am. J. Phys. 62 564

    [7]

    Hao Y, Zhang J F, Zhang J C, Ma X H, Zheng X F 2015 Chin. Sci. Bull. 60 874 (in Chinese)[郝跃, 张金风, 张进成, 马晓华, 郑雪峰 2015 科学通报 60 874]

    [8]

    Fang Y L, Feng Z H, Yin J Y, Zhang Z R, Lv Y J, Dun S B, Liu B, Li C M, Cai S J 2015 Phys. Status Solidi B 252 1006

    [9]

    Arulkumaran S, Ng G I, Ranjan K, Kumar C M M, Foo S C, Ang K S, Vicknesh S, Dolmanan S B, Bhat T, Tripathy S 2015 Jpn. J. Appl. Phys. 54 04DF12

    [10]

    Goyal N, Fjeldly T A 2016 IEEE Trans. Electron Dev. 63 881

    [11]

    Jiao W, Kong W, Li J, Collar K, Kim T H, Losurdo M, Brown A S 2016 Appl. Phys. Lett. 109 082103

    [12]

    Gordon L, Miao M S, Chowdhury S, Higashiwaki M, Mishra U K, van de Walle C G 2010 J. Phys. D: Appl. Phys. 43 505501

    [13]

    Quang D N, Tung N H, Tuoc V N, Minh N V, Huy H A, Hien D T 2006 Phys. Rev. B 74 205312

    [14]

    Ando T 1982 J. Phys. Soc. Jpn. 51 3900

    [15]

    Yang P, L Y W, Wang X B 2015 Acta Phys. Sin. 64 197303 (in Chinese)[杨鹏, 吕燕伍, 王鑫波 2015 物理学报 64 197303]

    [16]

    Cao Y, Jena D 2007 Appl. Phys. Lett. 90 182112

    [17]

    Kaun S W, Ahmadi E, Mazumder B, Wu F, Kyle E C H, Burke P G, Mishra U K, Speck J S 2014 Semicond. Sci. Technol. 29 045011

    [18]

    Dong X, Li Z H, Li Z Y, Zhou J J, Li L, Li Y, Zhang L, Xu X J, Xu X, Han C L 2010 Chin. Phys. Lett. 27 037102

    [19]

    Zhang J F, Wang P Y, Xue J S, Zhou Y B, Zhang J C, Hao Y 2011 Acta Phys. Sin. 60 117305 (in Chinese)[张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃 2011 物理学报 60 117305]

    [20]

    Xue J S, Zhang J C, Zhang W, Li L, Meng F N, Lu M, Jing N, Hao Y 2012 J. Cryst. Growth 343 110

    [21]

    Čičo K, Gregu෌ov D, Gaži, oltys J, Kuzmk J, Carlin J F, Grandjean N, Pogany D, Frhlich K 2010 Phys. Status Solidi C 7 108

  • [1]

    Li Q, Zhang J W, Meng L, Hou X 2014 Phys. Status Solidi B 251 755

    [2]

    Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zheng Y D 2013 Acta Phys. Sin. 62 150202 (in Chinese)[张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 物理学报 62 150202]

    [3]

    Tien N T, Thao D N, Thao P T B, Quang D N 2015 Physica B 479 62

    [4]

    Manouchehri F, Valizadeh P, Kabir M Z 2014 J. Vac. Sci. Technol. A 32 021104

    [5]

    Stern F 1972 Phys. Rev. B 5 4891

    [6]

    Fouillant C, Alibert C 1994 Am. J. Phys. 62 564

    [7]

    Hao Y, Zhang J F, Zhang J C, Ma X H, Zheng X F 2015 Chin. Sci. Bull. 60 874 (in Chinese)[郝跃, 张金风, 张进成, 马晓华, 郑雪峰 2015 科学通报 60 874]

    [8]

    Fang Y L, Feng Z H, Yin J Y, Zhang Z R, Lv Y J, Dun S B, Liu B, Li C M, Cai S J 2015 Phys. Status Solidi B 252 1006

    [9]

    Arulkumaran S, Ng G I, Ranjan K, Kumar C M M, Foo S C, Ang K S, Vicknesh S, Dolmanan S B, Bhat T, Tripathy S 2015 Jpn. J. Appl. Phys. 54 04DF12

    [10]

    Goyal N, Fjeldly T A 2016 IEEE Trans. Electron Dev. 63 881

    [11]

    Jiao W, Kong W, Li J, Collar K, Kim T H, Losurdo M, Brown A S 2016 Appl. Phys. Lett. 109 082103

    [12]

    Gordon L, Miao M S, Chowdhury S, Higashiwaki M, Mishra U K, van de Walle C G 2010 J. Phys. D: Appl. Phys. 43 505501

    [13]

    Quang D N, Tung N H, Tuoc V N, Minh N V, Huy H A, Hien D T 2006 Phys. Rev. B 74 205312

    [14]

    Ando T 1982 J. Phys. Soc. Jpn. 51 3900

    [15]

    Yang P, L Y W, Wang X B 2015 Acta Phys. Sin. 64 197303 (in Chinese)[杨鹏, 吕燕伍, 王鑫波 2015 物理学报 64 197303]

    [16]

    Cao Y, Jena D 2007 Appl. Phys. Lett. 90 182112

    [17]

    Kaun S W, Ahmadi E, Mazumder B, Wu F, Kyle E C H, Burke P G, Mishra U K, Speck J S 2014 Semicond. Sci. Technol. 29 045011

    [18]

    Dong X, Li Z H, Li Z Y, Zhou J J, Li L, Li Y, Zhang L, Xu X J, Xu X, Han C L 2010 Chin. Phys. Lett. 27 037102

    [19]

    Zhang J F, Wang P Y, Xue J S, Zhou Y B, Zhang J C, Hao Y 2011 Acta Phys. Sin. 60 117305 (in Chinese)[张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃 2011 物理学报 60 117305]

    [20]

    Xue J S, Zhang J C, Zhang W, Li L, Meng F N, Lu M, Jing N, Hao Y 2012 J. Cryst. Growth 343 110

    [21]

    Čičo K, Gregu෌ov D, Gaži, oltys J, Kuzmk J, Carlin J F, Grandjean N, Pogany D, Frhlich K 2010 Phys. Status Solidi C 7 108

  • [1] Xiong Zhuang, Wang Zhen-Xin, Naoum C. Bacalis. Accuracy study for excited atoms (ions):A new variational method. Acta Physica Sinica, 2014, 63(5): 053104. doi: 10.7498/aps.63.053104
    [2] Xiong Tao, Zhang Jie, Chen Xiang-Lei, Ye Bang-Jiao, Du Huai-Jiang, Weng Hui-Min. Calculation of positron wave function in the single crystal solid. Acta Physica Sinica, 2010, 59(10): 7374-7377. doi: 10.7498/aps.59.7374
    [3] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [4] Wang Xian-Bin, Zhao Zheng-Ping, Feng Zhi-Hong. Simulation study of two-dimensional electron gas in N-polar GaN/AlGaN heterostructure. Acta Physica Sinica, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [5] Ma Song-Song, Shu Tian-Yu, Zhu Jia-Qi, Li Kai, Wu Hui-Zhen. Recent progress on Ⅳ-Ⅵ compound semiconductor heterojunction two-dimensional electron gas. Acta Physica Sinica, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [6] Zhang Yang, Gu Shu-Lin, Ye Jian-Dong, Huang Shi-Min, Gu Ran, Chen Bin, Zhu Shun-Ming, Zhen You-Dou. Two-dimensional electron Gas in ZnMgO/ZnO heterostructures. Acta Physica Sinica, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [7] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming, Liu Jian, Liu Xin-Yu. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [8] Kong Yue-Chan, Zheng You-Dou, Zhou Chun-Hong, Deng Yong-Zhen, Gu Shu-Lin, Shen Bo, Zhang Rong, Han Ping, Jiang Ruo-Lian, Shi Yi. Influence of polarizations and doping in AlGaN barrier on the two-dimensional electron-gas in AlGaN/GaN heterostruture. Acta Physica Sinica, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [9] Xu Zhi-Jun, Nie Qing-Miao, Li Peng-Hua. Study of the ground state wave function in optical lattice by using the genetic algorithm. Acta Physica Sinica, 2009, 58(5): 2878-2883. doi: 10.7498/aps.58.2878
    [10] Wang Ping-Ya, Zhang Jin-Feng, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. Transport properties of two-dimensional electron gas in lattice-matched InAlN/GaN and InAlN/AlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117304. doi: 10.7498/aps.60.117304
    [11] Lü Jie, Tang Ning, Shen Bo, Zhang Fu-Jia, Zhu Bo, Gui Yong-Sheng, Zhou Wen-Zheng, Shang Li-Yan, Guo Shao-Ling, Chu Jun-Hao. The weak antilocalization and localization phenomenon in AlGaN/GaN two-dimensional electron gas. Acta Physica Sinica, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [12] Kong Yue-Chan, Zheng You-Dou, Chu Rong-Ming, Gu Shu-Lin. Influnce of Al-content on the property of the two-dimensional electron gases in AlxGa1-xN/GaN heterostructures. Acta Physica Sinica, 2003, 52(7): 1756-1760. doi: 10.7498/aps.52.1756
    [13] Zhang Jin-Feng, Wang Ping-Ya, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. High electron mobility lattice-matched InAlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [14] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [15] Li Jia-Dong, Cheng Jun-Jie, Miao Bin, Wei Xiao-Wei, Zhang Zhi-Qiang, Li Hai-Wen, Wu Dong-Min. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [16] Zhou Jie, Yang Shuang-Bo. Wave function fractal dimensions for the periodically kicked free top. Acta Physica Sinica, 2014, 63(22): 220507. doi: 10.7498/aps.63.220507
    [17] Zhou Jie, Yang Shuang-Bo. Multifractal behaviors of the wave function for the periodically kicked free top. Acta Physica Sinica, 2015, 64(20): 200505. doi: 10.7498/aps.64.200505
    [18] Wang Qi, Gu Yong-Jian, Guo Guang-Can, Wang Zhong-Chun. Eigenenergies and wave functions of the Tavis-Cummings system driven by an external classical coherent field. Acta Physica Sinica, 2005, 54(1): 107-112. doi: 10.7498/aps.54.107
    [19] Ni Jin-Yu, Hao Yue, Zhang Jin-Cheng, Duan Huan-Tao, Zhang Jin-Feng. Influence of high-temperature AlN interlayer on the electrical properties of AlGaN/GaN heterostructure and HEMTs. Acta Physica Sinica, 2009, 58(7): 4925-4930. doi: 10.7498/aps.58.4925
    [20] Li Ming-Rui, Zhou Gang, Chu Zhe, Dai Xiang-Hui, Wu Hai-Jun, Fan Ru-Yu. Applicability of resonating valence bond wave function with quantum Monte Carlo method for modeling high pressure liquid hydrogen. Acta Physica Sinica, 2013, 62(15): 156101. doi: 10.7498/aps.62.156101
  • Citation:
Metrics
  • Abstract views:  351
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  13 August 2017
  • Accepted Date:  02 October 2017
  • Published Online:  20 January 2018

Variational study of the 2DEG wave function in InAlN/GaN heterostructures

    Corresponding author: Li Qun, liqun@xaut.edu.cn
  • 1. School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China;
  • 2. China Satellite Maritime Tracking and Control Department, Jiangyin 214431, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11647053) and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 17JK0552).

Abstract: The variational method has been widely used to study the electronic structures of heterostructure materials in spite of this method being less accurate than the numerical method, because analytical formulas for some electrical parameters can be derived using this method. However, effects of surface states on the two-dimensional electron gas (2DEG) have not been taken into account in the variational studies of GaN-based heterostructures. In the present study, analytical formulas for the electron wave function and ground state energy level of the 2DEG in InAlN/GaN heterostructures are derived using the variational method, and the influences of structural parameters of InAlN/GaN heterostructures on the electrical properties are discussed. In the theoretical model, evenly distributed surface states below the conduction band are assumed to be the origin of the 2DEG, and the polarization charges at the InAlN surface and the InAlN/GaN interface due to spontaneous and piezoelectric polarization effects in InAlN/GaN heterostructures are taken into account. A trial envelope wave function with two variational parameters is used to derive the expectation value of the total energy per electron. The variational parameters are determined by minimizing the expectation value. The model predicts a linear conduction band profile in InAlN barrier layer and an approximately triangular-shaped potential well on the GaN side of the InAlN/GaN interface. Electrons released from the surface states are confined in the potential well, forming the 2DEG. The 2DEG sheet density for the lattice-matched InAlN/GaN heterostructure with a 15 nm InAlN layer is 1.961013 cm-2, and the average distance from the InAlN/GaN interface of electrons is 2.23 nm. The 2DEG sheet density increases rapidly with InAlN thickness increasing when the InAlN layer exceeds the critical thickness, and starts to be saturated above 15 nm. The dependence of the calculated 2DEG sheet density on the InAlN thickness quantitatively agrees with recently reported experimental data. The increasing 2DEG sheet density results in increasing the ground state energy level and Fermi energy, and the energy spacing between the two also increases for containing more electrons. The polarization discontinuity at the InAlN/GaN interface decreases with increasing In mole fraction, causing the 2DEG sheet density to decrease, and thus the ground state energy level and the Fermi energy to decrease. This model is conducive to understanding the electrical behaviors of InAlN/GaN heterostructures and providing readily applicable formulas for studying the electron transport and optical transitions.

Reference (21)

Catalog

    /

    返回文章
    返回