Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Translation compensation and micro-motion parameter estimation of laser micro-Doppler effect

Guo Li-Ren Hu Yi-Hua Dong Xiao Li Min-Le

Translation compensation and micro-motion parameter estimation of laser micro-Doppler effect

Guo Li-Ren, Hu Yi-Hua, Dong Xiao, Li Min-Le
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Precise target identification is significant for commanding and identifying enemies. The micro-Doppler effect (MDE) can reflect the subtle movement characteristics of the targets, which provides a new way of detecting and recognizing the target. However, the current research mainly focuses on the micro-motion feature extraction and classification of the targets, which is not capable of identifying the targets of the same type. In fact, by accurately estimating the micro-motion parameters and combining sufficient prior knowledge, the target can be accurately identified. Compared with the microwave radar, the laser detected MDE has high sensitivity and precision in micro-motion parameter estimation. This is more conducive to realizing the accurate classification and fine identification of the targets. In real detection, the MDE always exists in the moving targets. This will generate a mixed echo signal modeled by the polynomial phase signal and sinusoidal frequency modulation (SFM) signal. So far, there have been no effective methods of estimating the micro-motion parameters in such mixed signals. In this regard, a set of translational motion compensation and micro-motion parameter estimation methods is proposed in this paper. A bandwidth searching method based on the fractional Fourier transform (FrFT) is presented to precisely estimate the translation parameters, which will be used to realize the compensation for the translational motion. The advanced particle filtering (PF) method using the static parameter model is designed for the micro-motion parameters in the remaining SFM term. Given the lack of particle diversity in static parameter PF, the Markov chain Monte Carlo sampling is employed, which also helps to improve the algorithm efficiency. Meanwhile, a new likelihood function in calculating the particle weights is designed by using the cumulative residual. With this improvement, the correct convergence under multi-dimensional parameter condition is guaranteed. The proposed method can avoid the influence from error transfer and achieve efficient and accurate estimation. Compared with the typical method that combines the time-frequency analysis and the polynomial fitting through the simulation, the proposed FrFT method is verified to have little computation complexity and high estimation accuracy, where the relative estimation errors of the translational parameters are kept at 0.64% and 0.45%, respectively. The waveform similarity of the SFM signal phase between the compensated signal and the real one indicates that the accuracy fully meets the requirement for accurate estimation of the micro-motion parameters. Further, the simulation result also shows the high efficiency of the improved PF algorithm. The convergence time consumed by the proposed algorithm is 0.353 s, while the traditional method needs 0.844 s. In the end, the comparison with the experimental data from the traditional inverse Radon transform shows the effectiveness and necessity of the proposed method. The research results are conducive to the accurate and rapid estimation of micro-motion parameters, which lays a foundation for the fine target recognition based on the MDE.
      Corresponding author: Hu Yi-Hua, skl_hyh@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271353).
    [1]

    Chen V C 2011 The Micro-Doppler Effect in Radar (London: Artech House) p20

    [2]

    Zhang D H 2016 M. S. Thesis (Beijing: Institute of Technology) (in Chinese) [张德华 2016 硕士学位论文 (北京: 北京理工大学)]

    [3]

    Pawan S, Ahmad F, Amin M 2011 Signal Process. 6 1409

    [4]

    Yang W G, Qu W X, Zhang R Y 2016 J. Equip. Acad. 27 107 (in Chinese) [杨文革, 屈文星, 张若禹 2016 装备学院学报 27 107]

    [5]

    Gini F, Giannakis G B 1999 IEEE Trans. Signal Process. 47 363

    [6]

    Han X, Du L, Liu H W 2015 J. Electron. Inform. Technol. 37 961 (in Chinese) [韩勋, 杜兰, 刘宏伟 2015 电子与信息学报 37 961]

    [7]

    Hong L, Dai F, Wang X 2016 IEEE Geosci. Remote Sens. Lett. 13 1349

    [8]

    Simeunovic M, Popovic-Bugarin V, Djurovic I 2017 IEEE Trans. Aerosp. Electron. Syst. 53 1273

    [9]

    Du L, Li L, Wang B 2016 IEEE Sens. J. 16 3756

    [10]

    Shu C Y, Huang P L, Ji J Z 2016 Syst. Engin. Electron. 38 259 (in Chinese) [束长勇, 黄沛霖, 姬金祖 2016 系统工程与电子技术 38 259]

    [11]

    Li K L 2010 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [李康乐 2010 博士学位论文 (长沙: 国防科学技术大学)]

    [12]

    Wang Z F, Wang Y, Xu L 2017 IEEE Signal Proc. Lett. 24 1238

    [13]

    Yang Y C, Tong N N, Feng C Q 2013 Sci. Sin.: Inform. 43 1172 (in Chinese) [杨有春, 童宁宁, 冯存前 2013 中国科学: 信息科学 43 1172]

    [14]

    Zhang S N, Zhao H C, Xiong G 2014 Acta Phys. Sin. 63 158401 (in Chinese) [张淑宁, 赵惠昌, 熊刚 2014 物理学报 63 158401]

    [15]

    Zhu H, Zhang S N, Zhao H C 2015 Digital Signal Process. 40 224

    [16]

    Guo L R, Hu Y H, Wang Y P 2016 Proc. SPIE 10021 100211Z

    [17]

    Hu Y, Guo L, Dong X 2016 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS) Shanghai, China, November 2-4, 2016 p264

    [18]

    Zhu H, Zhang S N, Zhao H C 2014 Acta Phys. Sin. 63 058401 (in Chinese) [朱航, 张淑宁, 赵惠昌 2014 物理学报 63 058401]

    [19]

    Zhang W P 2014 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese) [张文鹏 2014硕士学位论文 (长沙: 国防科技大学)]

    [20]

    Lu W L, Xie J W, Wang H M, Sheng C 2016 Acta Phys. Sin. 65 080202 (in Chinese) [路文龙, 谢军伟, 王和明, 盛川 2016 物理学报 65 080202]

    [21]

    Zhu H, Zhang S 2013 Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC) Shengyang, China, December 20-22, 2013 p908

    [22]

    Gelman A, Carlin J B, Stern H S 2012 Bayesian Data Analysis (3rd Ed.) (Boca Raton: CRC Press) p106

    [23]

    Jouin M, Gouriveau R, Hissel D 2016 Mech. Syst. Signal Proc. 72 2

    [24]

    Wang C, Xu C F, Feng Q 2017 J. Beijing Institute Technol. 37 318 (in Chinese) [王才, 徐成发, 冯祺 2017 北京理工大学学报 37 318]

  • [1]

    Chen V C 2011 The Micro-Doppler Effect in Radar (London: Artech House) p20

    [2]

    Zhang D H 2016 M. S. Thesis (Beijing: Institute of Technology) (in Chinese) [张德华 2016 硕士学位论文 (北京: 北京理工大学)]

    [3]

    Pawan S, Ahmad F, Amin M 2011 Signal Process. 6 1409

    [4]

    Yang W G, Qu W X, Zhang R Y 2016 J. Equip. Acad. 27 107 (in Chinese) [杨文革, 屈文星, 张若禹 2016 装备学院学报 27 107]

    [5]

    Gini F, Giannakis G B 1999 IEEE Trans. Signal Process. 47 363

    [6]

    Han X, Du L, Liu H W 2015 J. Electron. Inform. Technol. 37 961 (in Chinese) [韩勋, 杜兰, 刘宏伟 2015 电子与信息学报 37 961]

    [7]

    Hong L, Dai F, Wang X 2016 IEEE Geosci. Remote Sens. Lett. 13 1349

    [8]

    Simeunovic M, Popovic-Bugarin V, Djurovic I 2017 IEEE Trans. Aerosp. Electron. Syst. 53 1273

    [9]

    Du L, Li L, Wang B 2016 IEEE Sens. J. 16 3756

    [10]

    Shu C Y, Huang P L, Ji J Z 2016 Syst. Engin. Electron. 38 259 (in Chinese) [束长勇, 黄沛霖, 姬金祖 2016 系统工程与电子技术 38 259]

    [11]

    Li K L 2010 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [李康乐 2010 博士学位论文 (长沙: 国防科学技术大学)]

    [12]

    Wang Z F, Wang Y, Xu L 2017 IEEE Signal Proc. Lett. 24 1238

    [13]

    Yang Y C, Tong N N, Feng C Q 2013 Sci. Sin.: Inform. 43 1172 (in Chinese) [杨有春, 童宁宁, 冯存前 2013 中国科学: 信息科学 43 1172]

    [14]

    Zhang S N, Zhao H C, Xiong G 2014 Acta Phys. Sin. 63 158401 (in Chinese) [张淑宁, 赵惠昌, 熊刚 2014 物理学报 63 158401]

    [15]

    Zhu H, Zhang S N, Zhao H C 2015 Digital Signal Process. 40 224

    [16]

    Guo L R, Hu Y H, Wang Y P 2016 Proc. SPIE 10021 100211Z

    [17]

    Hu Y, Guo L, Dong X 2016 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS) Shanghai, China, November 2-4, 2016 p264

    [18]

    Zhu H, Zhang S N, Zhao H C 2014 Acta Phys. Sin. 63 058401 (in Chinese) [朱航, 张淑宁, 赵惠昌 2014 物理学报 63 058401]

    [19]

    Zhang W P 2014 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese) [张文鹏 2014硕士学位论文 (长沙: 国防科技大学)]

    [20]

    Lu W L, Xie J W, Wang H M, Sheng C 2016 Acta Phys. Sin. 65 080202 (in Chinese) [路文龙, 谢军伟, 王和明, 盛川 2016 物理学报 65 080202]

    [21]

    Zhu H, Zhang S 2013 Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC) Shengyang, China, December 20-22, 2013 p908

    [22]

    Gelman A, Carlin J B, Stern H S 2012 Bayesian Data Analysis (3rd Ed.) (Boca Raton: CRC Press) p106

    [23]

    Jouin M, Gouriveau R, Hissel D 2016 Mech. Syst. Signal Proc. 72 2

    [24]

    Wang C, Xu C F, Feng Q 2017 J. Beijing Institute Technol. 37 318 (in Chinese) [王才, 徐成发, 冯祺 2017 北京理工大学学报 37 318]

  • [1] Chen Yong, Zhao Hui-Chang, Chen Si, Zhang Shu-Ning. Imaging algorithm for missile-borne SAR using the fractional Fourier transform. Acta Physica Sinica, 2014, 63(11): 118403. doi: 10.7498/aps.63.118403
    [2] Zou Lu-Juan, Wang Bo, Feng Jiu-Chao. A digital watermarking algorithm based on chaos and fractional Fourier transformation. Acta Physica Sinica, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
    [3] Qiao Yao-Jun, Han Qing-Sheng, Li Wei. The new insight into the optical pulse propagation theory and minimum-distortion propagation based on thefractional Fourier transformation. Acta Physica Sinica, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [4] Li Xiu-Kun, Meng Xiang-Xia, Xia Zhi. Characteristics of the geometrical scattering waves from underwater target in fractional Fourier transform domain. Acta Physica Sinica, 2015, 64(6): 064302. doi: 10.7498/aps.64.064302
    [5] Tang Bin, Li Ke, Du Zheng-Cong. The hybrid annealed particle filter. Acta Physica Sinica, 2006, 55(3): 999-1004. doi: 10.7498/aps.55.999
    [6] Ning Xiao-Lei, Wang Hong-Li, Zhang Qi, Chen Lian-Hua. Interval diffracted particle filter. Acta Physica Sinica, 2010, 59(7): 4426-4433. doi: 10.7498/aps.59.4426
    [7] Zhang Qi, Qiao Yu-Kun, Kong Xiang-Yu, Si Xiao-Sheng. Study on stochastic perturbation strong tracking particle filter. Acta Physica Sinica, 2014, 63(11): 110505. doi: 10.7498/aps.63.110505
    [8] Chen Zhi-Min, Tian Meng-Chu, Wu Pan-Long, Bo Yu-Ming, Gu Fu-Fei, Yue Cong. Intelligent particle filter based on bat algorithm. Acta Physica Sinica, 2017, 66(5): 050502. doi: 10.7498/aps.66.050502
    [9] Leng Hong-Ze, Song Jun-Qiang, Cao Xiao-Qun, Yang Jin-Hui. Improved particle filter in data assimilation. Acta Physica Sinica, 2012, 61(7): 070501. doi: 10.7498/aps.61.070501
    [10] Zhang Shu-Ning, Zhao Hui-Chang, Xiong Gang, Guo Chang-Yong. Separation and parameter estimation of single channel sinusoidal frequency modulated signal mixture sources based on particle filtering. Acta Physica Sinica, 2014, 63(15): 158401. doi: 10.7498/aps.63.158401
    [11] Zhu Zhi-Yu, Yang Guan-Xiao. Stiefel manifold particle filtering. Acta Physica Sinica, 2010, 59(12): 8316-8321. doi: 10.7498/aps.59.8316
    [12] Sheng Zheng, Chen Jia-Qing, Xu Ru-Hai. Tracking refractivity from radar clutter using particle filter. Acta Physica Sinica, 2012, 61(6): 069301. doi: 10.7498/aps.61.069301
    [13] Xing Hong-Yan, Zhang Qiang, Xu Wei. Fractal property of sea clutter FRFT spectrum for small target detection. Acta Physica Sinica, 2015, 64(11): 110502. doi: 10.7498/aps.64.110502
    [14] ZHAO DAO-MU, WANG SHAO-MIN. MISALIGNED FRACTIONAL FOURIER TRANSFORMS AND THEIR OPTICAL IMPLEMENTATION. Acta Physica Sinica, 2001, 50(10): 1935-1938. doi: 10.7498/aps.50.1935
    [15] Cui Hua-Kun, Wang Da-Yong, Wang Yun-Xin, Liu Chang-Geng, Zhao Jie, Li Yan. Automatic procedure for non-coplanar aberration compensation in lensless Fourier transform digital holography. Acta Physica Sinica, 2011, 60(4): 044201. doi: 10.7498/aps.60.044201
    [16] Sui Zhan, Zhu Qi-Hua, Zhang Ying, Zuo Yan-Lei, Zhao Lei. Design of Rugate filter for gain narrowing compensation. Acta Physica Sinica, 2009, 58(6): 3977-3982. doi: 10.7498/aps.58.3977
    [17] ZHAO ZHENG, LIU LIAO. HAWKING EFFECT AS A COMPENSATE EFFECT UNDER THE COORDINATE-SCALE TRANSFORMATION. Acta Physica Sinica, 1993, 42(9): 1537-1542. doi: 10.7498/aps.42.1537
    [18] Liu Song, Luo Chun-Rong, Zhai Shi-Long, Chen Huai-Jun, Zhao Xiao-Peng. Inverse Doppler effect of acoustic metamaterial with negative mass density. Acta Physica Sinica, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [19] Lü Bai-Da, Wu Ping, Chen Tian-Lu. Fractional Fourier transform of beams in the use of the Wigner distribution function method. Acta Physica Sinica, 2005, 54(2): 658-664. doi: 10.7498/aps.54.658
    [20] Ni Long, Chen Xiao. Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential. Acta Physica Sinica, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
  • Citation:
Metrics
  • Abstract views:  270
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  28 December 2017
  • Accepted Date:  26 April 2018
  • Published Online:  05 August 2018

Translation compensation and micro-motion parameter estimation of laser micro-Doppler effect

    Corresponding author: Hu Yi-Hua, skl_hyh@163.com
  • 1. State Key Laboratory of Pulsed Power Laser Technology, College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61271353).

Abstract: Precise target identification is significant for commanding and identifying enemies. The micro-Doppler effect (MDE) can reflect the subtle movement characteristics of the targets, which provides a new way of detecting and recognizing the target. However, the current research mainly focuses on the micro-motion feature extraction and classification of the targets, which is not capable of identifying the targets of the same type. In fact, by accurately estimating the micro-motion parameters and combining sufficient prior knowledge, the target can be accurately identified. Compared with the microwave radar, the laser detected MDE has high sensitivity and precision in micro-motion parameter estimation. This is more conducive to realizing the accurate classification and fine identification of the targets. In real detection, the MDE always exists in the moving targets. This will generate a mixed echo signal modeled by the polynomial phase signal and sinusoidal frequency modulation (SFM) signal. So far, there have been no effective methods of estimating the micro-motion parameters in such mixed signals. In this regard, a set of translational motion compensation and micro-motion parameter estimation methods is proposed in this paper. A bandwidth searching method based on the fractional Fourier transform (FrFT) is presented to precisely estimate the translation parameters, which will be used to realize the compensation for the translational motion. The advanced particle filtering (PF) method using the static parameter model is designed for the micro-motion parameters in the remaining SFM term. Given the lack of particle diversity in static parameter PF, the Markov chain Monte Carlo sampling is employed, which also helps to improve the algorithm efficiency. Meanwhile, a new likelihood function in calculating the particle weights is designed by using the cumulative residual. With this improvement, the correct convergence under multi-dimensional parameter condition is guaranteed. The proposed method can avoid the influence from error transfer and achieve efficient and accurate estimation. Compared with the typical method that combines the time-frequency analysis and the polynomial fitting through the simulation, the proposed FrFT method is verified to have little computation complexity and high estimation accuracy, where the relative estimation errors of the translational parameters are kept at 0.64% and 0.45%, respectively. The waveform similarity of the SFM signal phase between the compensated signal and the real one indicates that the accuracy fully meets the requirement for accurate estimation of the micro-motion parameters. Further, the simulation result also shows the high efficiency of the improved PF algorithm. The convergence time consumed by the proposed algorithm is 0.353 s, while the traditional method needs 0.844 s. In the end, the comparison with the experimental data from the traditional inverse Radon transform shows the effectiveness and necessity of the proposed method. The research results are conducive to the accurate and rapid estimation of micro-motion parameters, which lays a foundation for the fine target recognition based on the MDE.

Reference (24)

Catalog

    /

    返回文章
    返回