Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Unified phase diagram of Fe-based superconductors based on electron correlation strength

Xu Hai-Chao Niu Xiao-Hai Ye Zi-Rong Feng Dong-Lai

Citation:

Unified phase diagram of Fe-based superconductors based on electron correlation strength

Xu Hai-Chao, Niu Xiao-Hai, Ye Zi-Rong, Feng Dong-Lai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The similarities between the Fe-based superconductors and cuprate superconductors imply a possible unified picture of high temperature superconductivity. However, various chemical doping effects in Fe-based superconductors can lead to qualitatively similar phase diagrams that show diverse and complicated details, which pose great challenges of establishing a unified picture. Studying how chemical doping affects the electronic structure and superconductivity, and finding the real universal control parameter for superconductivity, are very important for establishing a unified picture and revealing the mechanism of high temperature superconductivity. In this article, we review a series of angle resolved photoemission studies on the chemical doping effect in Fe-based superconductors, involving both type I Fe-based superconductors with both electron and hole Fermi pockets, and type Ⅱ Fe-based superconductors with only electron Fermi pockets, and involving chemical doping of hetero-valent doping, isovalent doping, and chemical doping at different sites in unit cell. Comprehensive studies and analysis are conducted from various aspects of doping effects, including Fermi surfaces, impurity scattering, and electron correlation, and their roles in evolving the superconductivity. Electron correlation is found to be a universal electronic parameter behind the diverse phase diagrams of Fe-based superconductors, which naturally explains the qualitatively similar phase diagrams of various Fe-base superconductors despite of doping them in different ways. The electron correlation in Fe-based superconductors is closely related to both the carrier type of dopant and the lattice structure parameters, such as bond length. The different impurity scattering effects and different structures may affect the optimal Tc and thus leading to the diversity and complexity in the phase diagram. Fermi surface topology and its evolution with doping may play a secondary role in determining Tc. In order to enhance the Tc, one needs to optimize a moderate electronic correlation while minimizing the impurity scattering in the Fe-anion layer. Our results explain many puzzles and controversies and provide a new view for understanding the phase diagrams, resistivity behaviors, superconducting properties, etc. Our findings also strongly challenge the weak coupling theories based on the Fermi surface nesting, but favors the strong-coupling pairing scenario, where the competition between the electron kinetic energy and the local correlation interactions is a driving parameter of superconducting phase diagram. Like the t-J model of cuprates, in the picture of local antiferromagnetic exchange pairing, superconductivity appears in Fe-based superconductor when the electron correlation strength is at a moderate level. If the correlation is too weak, the system cannot exhibit superconductivity and remains metallic at low temperature. If the correlation is too strong, magnetic order appears in type I Fe-based superconductor, while type Ⅱ Fe-based superconductor shows a bandwidth-control correlated insulating state. The control parameter of the phase diagram is carrier doping for cuprates, but electron correlation strength for Fe-based superconductors. Our experimental results give a unified understanding of iron-based superconductors as a bandwidth-controlled system.
      Corresponding author: Feng Dong-Lai, dlfeng@fudan.edu.cn
    • Funds: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 11704073, 11504342) and the National Key Research and Development Plan of China (Grant Nos. 2016YFA0300200, 2017YFA0303004).
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Johnston D 2010 Adv. Phys. 59 803

    [4]

    Orenstein J, Millis A J 2000 Science 288 468

    [5]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [6]

    Medici L, Giovannetti G, Capone M 2014 Phys. Rev. Lett. 112 177001

    [7]

    Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623

    [8]

    Hu J P, Ding H 2012 Sci. Rep. 2 381

    [9]

    Pratt D K, Tian W, Kreyssig A, Zarestky J L, Nandi S, Ni N, Bud'ko S L, Canfield P C, Goldman A I, McQueeney R J 2009 Phys. Rev. Lett. 103 087001

    [10]

    Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q, Chen X H 2009 Europhys. Lett. 85 17006

    [11]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519

    [12]

    Ye Z R, Zhang Y, Chen F, Xu M, Ge Q Q, Jiang J, Xie B P, Feng D L 2012 Phys. Rev. B 86 035136

    [13]

    Eom M J, Na S W, Hoch C, Kremer R K, Kim J S 2012 Phys. Rev. B 85 024536

    [14]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [15]

    Liu T J, Hu J, Zhao B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Proke K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, Broholm C 2010 Nat. Mater. 9 718

    [16]

    Parker D R, Smith M J P, Lancaster T, Steele A J, Franke I, Baker P J, Pratt F L, Pitcher M J, Blundell S J, Clarke S J 2010 Phys. Rev. Lett. 104 057007

    [17]

    Pitcher M J, Lancaster T, Wright J D, Franke I, Steele A J, Baker P J, Pratt F L, Thomas W T, Parker D R, Blundell S J, Clarke S J 2010 J. Am. Chem. Soc. 132 10467

    [18]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [19]

    Iimura S, Matsuishi S, Sato H, Hanna T, Muraba Y, Kim S W, Kim J E, Takata M, Hosono H 2012 Nat. Commun. 3 943

    [20]

    Liu C, Palczewski A D, Dhaka R S, Kondo T, Fernandes R M, Mun E D, Hodovanets H, Thaler A N, Schmalian J, Bud'ko S L, Canfield P C, Kaminski A 2011 Phys. Rev. B 84 020509

    [21]

    Richard P, Sato T, Nakayama K, Takahashi T, Ding H 2011 Rep. Prog. Phys. 74 124512

    [22]

    Mazin I I, Schmalian J 2009 Physica C 469 614

    [23]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [24]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [25]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nat. Mater. 10 273

    [26]

    Tan S Y, Xia M, Zhang Y, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Juan J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [27]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605

    [28]

    Fujita K, Noda T, Kojima K M, Eisaki H, Uchida S 2005 Phys. Rev. Lett. 95 097006

    [29]

    Kirshenbaum K, Saha S R, Ziemak S, Drye T, Paglione J 2012 Phys. Rev. B 86 140505

    [30]

    Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J, Mandrus D 2008 Phys. Rev. Lett. 101 117004

    [31]

    Wang Y, Kreisel A, Hirschfeld P J, Mishra V 2013 Phys. Rev. B 87 094504

    [32]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508

    [33]

    Lee C H, Iyo A, Eisaki H, Kito H, Fernandez-Diaz M T, Ito T, Kihou K, Matsuhata H, Braden M, Yamada K 2008 J. Phys. Soc. Jpn. 77 083704

    [34]

    Mizuguhci Y, Hara Y, Deguchi K, Tsuda S, Yamaguchi T, Takeda K, Kotegawa H, Tou H, Takano Y 2010 Supercond. Sci. Technol. 23 054013

    [35]

    Ye Z R, Zhang Y, Chen F, Xu M, Jiang J, Niu X H, Wen C H P, Xing L Y, Wang X C, Jin C Q, Xie B P, Feng D L 2014 Phys. Rev. X 4 031041

    [36]

    Niu X H, Chen S D, Jiang J, Ye Z R, Yu T L, Xu D F, Xu M, Feng Y, Yan Y J, Xie B P, Zhao J, Gu D C, Sun L L, Mao Q H, Wang H D, Fang M H, Zhang C J, Hu J P, Sun Z, Feng D L 2016 Phys. Rev. B 93 054516

    [37]

    Ye Z R, Zhang Y, Xie B P, Feng D L 2013 Chin. Phys. B 22 087407

    [38]

    Yi M, Zhang Y, Shen Z X, Lu D H 2017 npj Quantum Materials 2 57

    [39]

    Kondo J 1964 Prog. Theor. Phys. 32 37

    [40]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [41]

    Xu H C, Zhang Y, Xu M, Peng R, Shen X P, Strocov V N, Shi M, Kobayashi M, Schmitt T, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 087603

    [42]

    Vildosola V, Pourovskii L, Arita R, Biermann S, Georges A 2008 Phys. Rev. B 78 064518

    [43]

    Sharma S, Bharathi A, Vinod K, Sundar C S, Srihari V, Sen S, Ghosh H, Sinha A K, Deb S K 2015 Acta Cryst. B 71 61

    [44]

    Qian T, Wang X P, Jin W C, Zhang P, Richard P, Xu G, Dai X, Fang Z, Guo J G, Chen X L, Ding H 2011 Phys. Rev. Lett. 106 187001

    [45]

    Zhao L, Mou D, Liu S, Jia X, He J, Peng Y, Yu L, Liu X, Liu G, He S, Dong X, Zhang J, He J B, Wang D M, Chen G F, Guo J G, Chen X L, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Xu Z, Chen C, Zhou X J 2011 Phys. Rev. B 83 140508

    [46]

    Mou D, Liu S, Jia X, He J, Peng Y, Zhao L, Yu L, Liu G, He S, Dong X, Zhang J, Wang H, Dong C, Fang M, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Xu Z, Chen C, Zhou X J 2011 Phys. Rev. Lett. 106 107001

    [47]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325

    [48]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [49]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2013 Nat. Mater. 12 15

    [50]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [51]

    Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 107001

    [52]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044

    [53]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Europhys. Lett. 94 27009

    [54]

    Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q, Fang M H 2011 Europhys. Lett. 93 47004

    [55]

    Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P, Feng D L 2011 Phys. Rev. X 1 021020

    [56]

    Zhao J, Cao H, Bourret-Courchesne E, Lee D H, Birgeneau R J 2012 Phys. Rev. Lett. 109 267003

    [57]

    Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H X, Li J Q 2011 Phys. Rev. B 83 140505

    [58]

    Gu D, Sun L, Wu Q, Zhang C, Guo J, Gao P, Wu Y, Dong X, Dai X, Zhao Z 2012 Phys. Rev. B 85 174523

    [59]

    Lei H C, Abeykoon M, Bozin E S, Wang K, Warren J B, Petrovic C 2011 Phys. Rev. Lett. 107 137002

    [60]

    Yi M, Lu D H, Yu R, Riggs S C, Chu J H, L B, Liu Z K, Lu M, Cui Y T, Hashimoto M, Mo S K, Hussain Z, Chu C W, Fisher I R, Si Q, Shen Z X 2013 Phys. Rev. Lett. 110 067003

    [61]

    Cai P, Ye C, Ruan W, Zhou X, Wang A, Zhang M, Chen X, Wang Y 2012 Phys. Rev. B 85 094512

    [62]

    Luttinger J M 1960 Phys. Rev. 119 1153

    [63]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [64]

    Zhu J X, Yu R, Wang H, Zhao L L, Jones M D, Dai J, Abrahams E, Morosan E, Fang M, Si Q 2010 Phys. Rev. Lett. 104 216405

    [65]

    Shein I R, Ivanovskii A L 2011 J. Supercond. Nov. Magn. 24 2215

    [66]

    Toulemonde P, Cottin D S, Lepoittevin C, Strobel P, Marcus J 2013 J. Phys.: Condens. Matter 25 075703

    [67]

    He J, Liu X, Zhang W, Zhao L, Liu D, He S, Mou D, Li F, Tang C, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2014 Proc. Natl. Acad. Sci. USA 111 18501

    [68]

    Fang Y, Xie D H, Zhang W, Chen F, Feng W, Xie B P, Feng D L, Lai X C, Tan S Y 2016 Phys. Rev. B 93 184503

    [69]

    Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005

    [70]

    Cao H Y, Chen S Y, Xiang H J, Gong X G 2015 Phys. Rev. B 91 020504

    [71]

    Yang H, Wang Z, Fang D, Li S, Kariyado T, Chen G, Ogata M, Das T, Balatsky A V, Wen H H 2012 Phys. Rev. B 86 214512

    [72]

    Usui H, Kuroki K 2011 Phys. Rev. B 84 024505

    [73]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [74]

    Cui S T, Zhu S Y, Wang A F, Kong S, Ju S L, Luo X G, Chen X H, Zhang G B, Sun Z 2012 Phys. Rev. B 86 155143

    [75]

    Xiang Y Y, Wang F, Wang D, Wang Q H, Lee D H 2012 Phys. Rev. B 86 134508

    [76]

    Deng S, Khler J, Simon A 2009 Phys. Rev. B 80 214508

    [77]

    Yan X W, Gao M, Lu Z Y, Xiang T 2011 Phys. Rev. B 84 054502

    [78]

    Shen X P, Chen S D, Ge Q Q, Ye Z R, Chen F, Xu H C, Tan S Y, Niu X H, Fan Q, Xie B P, Feng D L 2013 Phys. Rev. B 88 115124

    [79]

    Tafti F F, Juneau-Fecteau A, Delage M E, Rene de Cotret S, Reid J Ph, Wang A F, Luo X G, Chen X H, Doiron-Leyraud N, Taillefer L 2013 Nat. Phys. 9 349

    [80]

    Saito T, Onari S, Kontani H 2010 Phys. Rev. B 82 144510

    [81]

    Seo K, Bernevig B A, Hu J 2008 Phys. Rev. Lett. 101 206404.

    [82]

    Shishido H, Bangura A F, Coldea A I, Tonegawa S, Hashimoto K, Kasahara S, Rourke P M C, Ikeda H, Terashima T, Settai R, Onuki Y, Vignolles D, Proust C, Vignolle B, McCollam A, Matsuda Y, Shibauchi T, Carrington A 2010 Phys. Rev. Lett. 104 057008

    [83]

    Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R, Shen Z X 2008 Nature 455 81

    [84]

    Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L, Wang N L 2009 Phys. Rev. B 79 140509

    [85]

    Li S, Cruz C, Huang Q, Chen Y, Lynn J W, Hu J, Huang Y L, Hsu F C, Yeh K W, Wu M K, Dai P 2009 Phys. Rev. B 79 054503

    [86]

    Yi M, Wang M, Kemper A F, Mo S K, Hussain Z, Bourret-Courchesne E, Lanzara A, Hashimoto M, Lu D H, Shen Z X, Birgeneau R J 2015 Phys. Rev. Lett. 115 256403

    [87]

    Fang C, Wu Y L, Thomale R, Bernevig B A, Hu J 2011 Phys. Rev. X 1 011009

    [88]

    Hu J P, Hao N N 2012 Phys. Rev. X 2 021009

    [89]

    Hu J P 2013 Phys. Rev. X 3 031004

    [90]

    Ma T X, Lin H Q, Hu J P 2013 Phys. Rev. Lett. 110 107002

    [91]

    Dai P, Hu J, Dagotto E 2012 Nat. Phys. 8 709

    [92]

    Wang M, Zhang C, Lu X, Tan G, Luo H, Song Y, Wang M, Zhang X, Goremychkin E A, Perring T G, Maier T A, Yin Z, Haule K, Kotliar G, Dai P 2013 Nat. Commun. 4 2874

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Johnston D 2010 Adv. Phys. 59 803

    [4]

    Orenstein J, Millis A J 2000 Science 288 468

    [5]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [6]

    Medici L, Giovannetti G, Capone M 2014 Phys. Rev. Lett. 112 177001

    [7]

    Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623

    [8]

    Hu J P, Ding H 2012 Sci. Rep. 2 381

    [9]

    Pratt D K, Tian W, Kreyssig A, Zarestky J L, Nandi S, Ni N, Bud'ko S L, Canfield P C, Goldman A I, McQueeney R J 2009 Phys. Rev. Lett. 103 087001

    [10]

    Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q, Chen X H 2009 Europhys. Lett. 85 17006

    [11]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519

    [12]

    Ye Z R, Zhang Y, Chen F, Xu M, Ge Q Q, Jiang J, Xie B P, Feng D L 2012 Phys. Rev. B 86 035136

    [13]

    Eom M J, Na S W, Hoch C, Kremer R K, Kim J S 2012 Phys. Rev. B 85 024536

    [14]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [15]

    Liu T J, Hu J, Zhao B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Proke K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, Broholm C 2010 Nat. Mater. 9 718

    [16]

    Parker D R, Smith M J P, Lancaster T, Steele A J, Franke I, Baker P J, Pratt F L, Pitcher M J, Blundell S J, Clarke S J 2010 Phys. Rev. Lett. 104 057007

    [17]

    Pitcher M J, Lancaster T, Wright J D, Franke I, Steele A J, Baker P J, Pratt F L, Thomas W T, Parker D R, Blundell S J, Clarke S J 2010 J. Am. Chem. Soc. 132 10467

    [18]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [19]

    Iimura S, Matsuishi S, Sato H, Hanna T, Muraba Y, Kim S W, Kim J E, Takata M, Hosono H 2012 Nat. Commun. 3 943

    [20]

    Liu C, Palczewski A D, Dhaka R S, Kondo T, Fernandes R M, Mun E D, Hodovanets H, Thaler A N, Schmalian J, Bud'ko S L, Canfield P C, Kaminski A 2011 Phys. Rev. B 84 020509

    [21]

    Richard P, Sato T, Nakayama K, Takahashi T, Ding H 2011 Rep. Prog. Phys. 74 124512

    [22]

    Mazin I I, Schmalian J 2009 Physica C 469 614

    [23]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [24]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [25]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nat. Mater. 10 273

    [26]

    Tan S Y, Xia M, Zhang Y, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Juan J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [27]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605

    [28]

    Fujita K, Noda T, Kojima K M, Eisaki H, Uchida S 2005 Phys. Rev. Lett. 95 097006

    [29]

    Kirshenbaum K, Saha S R, Ziemak S, Drye T, Paglione J 2012 Phys. Rev. B 86 140505

    [30]

    Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J, Mandrus D 2008 Phys. Rev. Lett. 101 117004

    [31]

    Wang Y, Kreisel A, Hirschfeld P J, Mishra V 2013 Phys. Rev. B 87 094504

    [32]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508

    [33]

    Lee C H, Iyo A, Eisaki H, Kito H, Fernandez-Diaz M T, Ito T, Kihou K, Matsuhata H, Braden M, Yamada K 2008 J. Phys. Soc. Jpn. 77 083704

    [34]

    Mizuguhci Y, Hara Y, Deguchi K, Tsuda S, Yamaguchi T, Takeda K, Kotegawa H, Tou H, Takano Y 2010 Supercond. Sci. Technol. 23 054013

    [35]

    Ye Z R, Zhang Y, Chen F, Xu M, Jiang J, Niu X H, Wen C H P, Xing L Y, Wang X C, Jin C Q, Xie B P, Feng D L 2014 Phys. Rev. X 4 031041

    [36]

    Niu X H, Chen S D, Jiang J, Ye Z R, Yu T L, Xu D F, Xu M, Feng Y, Yan Y J, Xie B P, Zhao J, Gu D C, Sun L L, Mao Q H, Wang H D, Fang M H, Zhang C J, Hu J P, Sun Z, Feng D L 2016 Phys. Rev. B 93 054516

    [37]

    Ye Z R, Zhang Y, Xie B P, Feng D L 2013 Chin. Phys. B 22 087407

    [38]

    Yi M, Zhang Y, Shen Z X, Lu D H 2017 npj Quantum Materials 2 57

    [39]

    Kondo J 1964 Prog. Theor. Phys. 32 37

    [40]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [41]

    Xu H C, Zhang Y, Xu M, Peng R, Shen X P, Strocov V N, Shi M, Kobayashi M, Schmitt T, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 087603

    [42]

    Vildosola V, Pourovskii L, Arita R, Biermann S, Georges A 2008 Phys. Rev. B 78 064518

    [43]

    Sharma S, Bharathi A, Vinod K, Sundar C S, Srihari V, Sen S, Ghosh H, Sinha A K, Deb S K 2015 Acta Cryst. B 71 61

    [44]

    Qian T, Wang X P, Jin W C, Zhang P, Richard P, Xu G, Dai X, Fang Z, Guo J G, Chen X L, Ding H 2011 Phys. Rev. Lett. 106 187001

    [45]

    Zhao L, Mou D, Liu S, Jia X, He J, Peng Y, Yu L, Liu X, Liu G, He S, Dong X, Zhang J, He J B, Wang D M, Chen G F, Guo J G, Chen X L, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Xu Z, Chen C, Zhou X J 2011 Phys. Rev. B 83 140508

    [46]

    Mou D, Liu S, Jia X, He J, Peng Y, Zhao L, Yu L, Liu G, He S, Dong X, Zhang J, Wang H, Dong C, Fang M, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Xu Z, Chen C, Zhou X J 2011 Phys. Rev. Lett. 106 107001

    [47]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325

    [48]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [49]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2013 Nat. Mater. 12 15

    [50]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [51]

    Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 107001

    [52]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044

    [53]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Europhys. Lett. 94 27009

    [54]

    Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q, Fang M H 2011 Europhys. Lett. 93 47004

    [55]

    Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P, Feng D L 2011 Phys. Rev. X 1 021020

    [56]

    Zhao J, Cao H, Bourret-Courchesne E, Lee D H, Birgeneau R J 2012 Phys. Rev. Lett. 109 267003

    [57]

    Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H X, Li J Q 2011 Phys. Rev. B 83 140505

    [58]

    Gu D, Sun L, Wu Q, Zhang C, Guo J, Gao P, Wu Y, Dong X, Dai X, Zhao Z 2012 Phys. Rev. B 85 174523

    [59]

    Lei H C, Abeykoon M, Bozin E S, Wang K, Warren J B, Petrovic C 2011 Phys. Rev. Lett. 107 137002

    [60]

    Yi M, Lu D H, Yu R, Riggs S C, Chu J H, L B, Liu Z K, Lu M, Cui Y T, Hashimoto M, Mo S K, Hussain Z, Chu C W, Fisher I R, Si Q, Shen Z X 2013 Phys. Rev. Lett. 110 067003

    [61]

    Cai P, Ye C, Ruan W, Zhou X, Wang A, Zhang M, Chen X, Wang Y 2012 Phys. Rev. B 85 094512

    [62]

    Luttinger J M 1960 Phys. Rev. 119 1153

    [63]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [64]

    Zhu J X, Yu R, Wang H, Zhao L L, Jones M D, Dai J, Abrahams E, Morosan E, Fang M, Si Q 2010 Phys. Rev. Lett. 104 216405

    [65]

    Shein I R, Ivanovskii A L 2011 J. Supercond. Nov. Magn. 24 2215

    [66]

    Toulemonde P, Cottin D S, Lepoittevin C, Strobel P, Marcus J 2013 J. Phys.: Condens. Matter 25 075703

    [67]

    He J, Liu X, Zhang W, Zhao L, Liu D, He S, Mou D, Li F, Tang C, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2014 Proc. Natl. Acad. Sci. USA 111 18501

    [68]

    Fang Y, Xie D H, Zhang W, Chen F, Feng W, Xie B P, Feng D L, Lai X C, Tan S Y 2016 Phys. Rev. B 93 184503

    [69]

    Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005

    [70]

    Cao H Y, Chen S Y, Xiang H J, Gong X G 2015 Phys. Rev. B 91 020504

    [71]

    Yang H, Wang Z, Fang D, Li S, Kariyado T, Chen G, Ogata M, Das T, Balatsky A V, Wen H H 2012 Phys. Rev. B 86 214512

    [72]

    Usui H, Kuroki K 2011 Phys. Rev. B 84 024505

    [73]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [74]

    Cui S T, Zhu S Y, Wang A F, Kong S, Ju S L, Luo X G, Chen X H, Zhang G B, Sun Z 2012 Phys. Rev. B 86 155143

    [75]

    Xiang Y Y, Wang F, Wang D, Wang Q H, Lee D H 2012 Phys. Rev. B 86 134508

    [76]

    Deng S, Khler J, Simon A 2009 Phys. Rev. B 80 214508

    [77]

    Yan X W, Gao M, Lu Z Y, Xiang T 2011 Phys. Rev. B 84 054502

    [78]

    Shen X P, Chen S D, Ge Q Q, Ye Z R, Chen F, Xu H C, Tan S Y, Niu X H, Fan Q, Xie B P, Feng D L 2013 Phys. Rev. B 88 115124

    [79]

    Tafti F F, Juneau-Fecteau A, Delage M E, Rene de Cotret S, Reid J Ph, Wang A F, Luo X G, Chen X H, Doiron-Leyraud N, Taillefer L 2013 Nat. Phys. 9 349

    [80]

    Saito T, Onari S, Kontani H 2010 Phys. Rev. B 82 144510

    [81]

    Seo K, Bernevig B A, Hu J 2008 Phys. Rev. Lett. 101 206404.

    [82]

    Shishido H, Bangura A F, Coldea A I, Tonegawa S, Hashimoto K, Kasahara S, Rourke P M C, Ikeda H, Terashima T, Settai R, Onuki Y, Vignolles D, Proust C, Vignolle B, McCollam A, Matsuda Y, Shibauchi T, Carrington A 2010 Phys. Rev. Lett. 104 057008

    [83]

    Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R, Shen Z X 2008 Nature 455 81

    [84]

    Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L, Wang N L 2009 Phys. Rev. B 79 140509

    [85]

    Li S, Cruz C, Huang Q, Chen Y, Lynn J W, Hu J, Huang Y L, Hsu F C, Yeh K W, Wu M K, Dai P 2009 Phys. Rev. B 79 054503

    [86]

    Yi M, Wang M, Kemper A F, Mo S K, Hussain Z, Bourret-Courchesne E, Lanzara A, Hashimoto M, Lu D H, Shen Z X, Birgeneau R J 2015 Phys. Rev. Lett. 115 256403

    [87]

    Fang C, Wu Y L, Thomale R, Bernevig B A, Hu J 2011 Phys. Rev. X 1 011009

    [88]

    Hu J P, Hao N N 2012 Phys. Rev. X 2 021009

    [89]

    Hu J P 2013 Phys. Rev. X 3 031004

    [90]

    Ma T X, Lin H Q, Hu J P 2013 Phys. Rev. Lett. 110 107002

    [91]

    Dai P, Hu J, Dagotto E 2012 Nat. Phys. 8 709

    [92]

    Wang M, Zhang C, Lu X, Tan G, Luo H, Song Y, Wang M, Zhang X, Goremychkin E A, Perring T G, Maier T A, Yin Z, Haule K, Kotliar G, Dai P 2013 Nat. Commun. 4 2874

  • [1] Chen Jin-Feng, Zhu Lin-Fan. Electron collision cross section data in plasma etching modeling. Acta Physica Sinica, 2024, 73(9): 095201. doi: 10.7498/aps.73.20231598
Metrics
  • Abstract views:  5353
  • PDF Downloads:  349
  • Cited By: 0
Publishing process
  • Received Date:  16 August 2018
  • Accepted Date:  05 September 2018
  • Published Online:  20 October 2019

/

返回文章
返回