Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of terahertz semiconductor optical frequency combs

Liao Xiao-Yu Cao Jun-Cheng Li Hua

Citation:

Research progress of terahertz semiconductor optical frequency combs

Liao Xiao-Yu, Cao Jun-Cheng, Li Hua
PDF
HTML
Get Citation
  • Optical frequency comb consists of a series of equally spaced and highly stable frequency lines. Due to the advantages of the ultra-high frequency stability and ultra-low phase noise, the optical frequency combs have important applications in high precision spectroscopy, imaging, communications, etc. In the terahertz frequency range, semiconductor-based electrically pumped terahertz quantum cascade lasers have the characteristics of high output power and wide frequency coverage, and are the ideal candidates for generating terahertz optical frequency combs. In this article, we first briefly introduce the research progress of the optical frequency comb in the communication and the mid-infrared bands. Then we mainly review the research progress of the optical frequency combs based on the terahertz semiconductor quantum cascade laser (QCL) operating in free-running, active frequency stabilization and passive frequency stabilization modes. In free running mode, the terahertz QCL frequency comb is mainly limited by the large group velocity dispersion which results in a small comb bandwidth. Therefore, the dispersion compensation is one of the important methods to stabilize the optical frequency comb and broaden the spectral bandwidth. At present, the active frequency stabilization mode is a relatively matured method to realize the optical frequency combs in terahertz QCLs. In this article, we also detail the methods and applications of terahertz QCL dual-comb operations, including on-chip dual-comb and dual-comb spectroscopy. Compared with the Fourier transform infrared spectroscopy and time domain spectroscopy, the terahertz dual-comb spectroscopy has advantages in fast data acquisition (real-time) and high spectral resolution. The emergence of the dual-comb technique not only verifies the concept of optical frequency combs, but also further promotes the applications of frequency combs.
      Corresponding author: Li Hua, hua.li@mail.sim.ac.cn
    • Funds: Project supported by the National Science Fund for Excellent Young Scholars of China (Grant No. 62022084), the National Natural Science Foundation of China (Grant Nos. 61875220, 61575214, 61404150, 61405233, 61704181), the “From 0 to 1” Innovation Program of Chinese Academy of Sciences, China (Grant No. ZDBC-LY-JSC009), the Major National Development Project of Scientific Instrument and Equipment, China (Grant Nos. 2017YFF0106302, 2017YFA0701005), the Shanghai Outstanding Academic Leaders Plan, China (Grant No. 20XD1424700), and the Shanghai Youth Top Talent Support Program, China.
    [1]

    Diddams S A 2010 J. Opt. Soc. Am. B 27 B51Google Scholar

    [2]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [3]

    Schliesser A, Picqué N, Hänsch T W 2012 Nat. Photon. 6 440Google Scholar

    [4]

    Füser H, Bieler M 2014 J. Infrared Millim. Terahertz Waves 35 585Google Scholar

    [5]

    Reichert J, Niering M, Holzwarth R, Weitz M, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 3232Google Scholar

    [6]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 5102Google Scholar

    [7]

    Beha K, Cole D C, Del’Haye P, Coillet A, Diddams S A, Papp S B 2017 Optica 4 406Google Scholar

    [8]

    Kourogi M, Nakagawa K i, Ohtsu M 1993 IEEE J. Quantum Electron. 29 2693Google Scholar

    [9]

    Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar

    [10]

    Wang C, Zhang M, Yu M, Zhu R, Hu H, Loncar M 2019 Nat. Commun. 10 978Google Scholar

    [11]

    Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar

    [12]

    Fischer C, W. Sigrist M 1970 Top. Appl. Phys. 99Google Scholar

    [13]

    Gubin M A, Kireev A N, Konyashchenko A V, Kryukov P G, Shelkovnikov A S, Tausenev A V, Tyurikov D A 2009 Appl. Phys. B 95 661Google Scholar

    [14]

    Adler F, Cossel K, J Thorpe M, Hartl I, Fermann M, Ye J 2009 Opt. Lett. 34 1330Google Scholar

    [15]

    Scalari G, Faist J, Picqué N 2019 Appl. Phys. Lett. 114 150401Google Scholar

    [16]

    Jun Y, Schnatz H, Hollberg L W 2003 IEEE J. Sel. Top. Quantum Electron. 9 1041Google Scholar

    [17]

    Wang Y, Soskind M G, Wang W, Wysocki G 2014 Appl. Phys. Lett. 104 031114Google Scholar

    [18]

    Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38Google Scholar

    [19]

    Siegel P 2002 IEEE Trans. Microw. Theory Tech. 50 910Google Scholar

    [20]

    Ferguson B, Zhang X 2002 Nat. Mater. 1 26Google Scholar

    [21]

    Cao J 2003 Phys. Rev. Lett. 91 237401Google Scholar

    [22]

    Tonouchi M 2007 Nat. Photon. 1 97Google Scholar

    [23]

    Walther C, Fischer M, Scalari G, Terazzi R, Hoyler N, Faist J 2007 Appl. Phys. Lett. 91 131122Google Scholar

    [24]

    Carr G, Martin M, McKinney W, Jordan K, Neil G, Williams G 2002 Nature 420 153Google Scholar

    [25]

    Woolard D L, Brown R, Pepper M, Kemp M 2005 Proc. IEEE 93 1722Google Scholar

    [26]

    Federici J, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar

    [27]

    Kawase K, Ogawa Y, Yuuki W, Inoue H 2003 Opt. Express 11 2549Google Scholar

    [28]

    Chen J, Chen Y, Zhao H, Bastiaans G, Zhang X C 2007 Opt. Express 15 12060Google Scholar

    [29]

    Kawase K, Shibuya T, Hayashi S i, Suizu K 2010 C. R. Physique 11 510Google Scholar

    [30]

    Fischer B, Walther M, Jepsen P 2002 Phys. Med. Biol. 47 3807Google Scholar

    [31]

    Siegel P 2004 IEEE Trans. Microw. Theory Tech. 52 2438Google Scholar

    [32]

    Castro-Camus E, Johnston M B 2008 Chem. Phys. Lett. 455 289Google Scholar

    [33]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M 2004 Electron. Lett. 40 124Google Scholar

    [34]

    Grant P D, Laframboise S R, Dudek R, Graf M, Bezinger A, Liu H 2009 Electron. Lett. 45 952Google Scholar

    [35]

    Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H 2011 Electron. Lett. 47 1002Google Scholar

    [36]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [37]

    Tani M, Hirota Y, Que C T, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M 2007 J. Infrared Millim. Waves 27 531Google Scholar

    [38]

    Yasui T, Kabetani Y, Saneyoshi E, Yokoyama S, Araki T 2006 Appl. Phys. Lett. 88 241104Google Scholar

    [39]

    Scalari G, Walther C, Fischer M, Terazzi R, Beere H, Ritchie D, Faist J 2009 Laser Photon. Rev. 3 45Google Scholar

    [40]

    Belkin M A, Fan J A, Hormoz S, Capasso F, Khanna S P, Lachab M, Davies A G, Linfield E H 2008 Opt. Express 16 3242Google Scholar

    [41]

    Brandstetter M, Deutsch C, Krall M, Detz H, MacFarland D C, Zederbauer T, Andrews A M, Schrenk W, Strasser G, Unterrainer K 2013 Appl. Phys. Lett. 103 171113Google Scholar

    [42]

    Danylov A, Erickson N, Light A, Waldman J 2015 Opt. Lett. 40 5090Google Scholar

    [43]

    Williams B S 2007 Nat. Photon. 1 517Google Scholar

    [44]

    Li H, Laffaille P, Gacemi D, Apfel M, Sirtori C, Leonardon J, Santarelli G, Rosch M, Scalari G, Beck M, Faist J, Hansel W, Holzwarth R, Barbieri S 2015 Opt. Express 23 33270Google Scholar

    [45]

    Friedli P, Sigg H, Hinkov B, Hugi A, Riedi S, Beck M, Faist J 2013 Appl. Phys. Lett. 102 222104Google Scholar

    [46]

    Gmachl C, Sivco D, Colombelli R, Capasso F, Cho A 2002 Nature 415 883Google Scholar

    [47]

    Villares G, Riedi S, Wolf J, Kazakov D, Süess M J, Jouy P, Beck M, Faist J 2016 Optica 3 252Google Scholar

    [48]

    Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, Beck M 2016 Nanophotonics 5 272Google Scholar

    [49]

    Villares G, Faist J 2015 Opt. Express 23 1651Google Scholar

    [50]

    Zhou K, Li H, Wan W J, Li Z P, Liao X Y, Cao J C 2019 Appl. Phys. Lett. 114 191106Google Scholar

    [51]

    Li H, Cao J, T. Lu J 2008 J. Appl. Phys. 103 103113Google Scholar

    [52]

    Burghoff D, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2015 Opt. Express 23 1190Google Scholar

    [53]

    Cappelli F, Villares G, Riedi S, Faist J 2015 Optica 2 836Google Scholar

    [54]

    Wienold M, Schrottke L, Giehler M, Hey R, Anders W, Grahn H T 2010 Appl. Phys. Lett. 97 071113Google Scholar

    [55]

    Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014 J. Phys. D Appl. Phys. 47 374008Google Scholar

    [56]

    Turčinková D, Scalari G, Castellano F, Amanti M I, Beck M, Faist J 2011 Appl. Phys. Lett. 99 191104Google Scholar

    [57]

    Rösch M, Beck M, Süess M J, Bachmann D, Unterrainer K, Faist J, Scalari G 2018 Nanophotonics 7 237Google Scholar

    [58]

    Rösch M, Scalari G, Beck M, Faist J 2014 Nat. Photon. 9 42Google Scholar

    [59]

    Williams B S, Kumar S, Callebaut H, Hu Q, Reno J L 2003 Appl. Phys. Lett. 83 2124Google Scholar

    [60]

    Finneran I, Good J, Holland D, Carroll P, Allodi M, Blake G 2015 Phys. Rev. Lett. 114 163902Google Scholar

    [61]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nat. Photon. 8 462Google Scholar

    [62]

    Hillbrand J, Jouy P, Beck M, Faist J 2018 Opt. Lett. 43 1746Google Scholar

    [63]

    Yang Y, Burghoff D, Reno J, Hu Q 2017 Opt. Lett. 42 3888Google Scholar

    [64]

    Barbieri S, Gellie P, Santarelli G, Ding L, Maineult W, Sirtori C, Colombelli R, Beere H, Ritchie D 2010 Nat. Photon. 4 636Google Scholar

    [65]

    Gellie P, Barbieri S, Lampin J-F, Filloux P, Manquest C, Sirtori C, Sagnes I, Khanna S P, Linfield E H, Davies A G, Beere H, Ritchie D 2010 Opt. Express 18 20799Google Scholar

    [66]

    Faist J, Beck M, Aellen T, Gini E 2001 Appl. Phys. Lett. 78 147Google Scholar

    [67]

    Amanti M I, Scalari G, Terazzi R, Fischer M, Beck M, Faist J, Rudra A, Gallo P, Kapon E 2009 New J. Phys. 11 125022Google Scholar

    [68]

    Wienold M, Schrottke L, Giehler M, Hey R, Grahn H T 2011 J. Appl. Phys. 109 073112Google Scholar

    [69]

    Barbieri S, Ravaro M, Gellie P, Santarelli G, Manquest C, Sirtori C, Khanna S P, Linfield E H, Davies A G 2011 Nat. Photon. 5 306Google Scholar

    [70]

    Wan W J, Li H, Zhou T, Cao J C 2017 Sci. Rep. 7 44109Google Scholar

    [71]

    Wang F, Nong H, Fobbe T, Pistore V, Houver S, Markmann S, Jukam N, Amanti M, Sirtori C, Moumdji S, Colombelli R, Li L, Linfield E, Davies G, Mangeney J, Tignon J, Dhillon S 2017 Laser Photon. Rev. 11 1700013Google Scholar

    [72]

    Wienold M, Röben B, Schrottke L, Grahn H T 2014 Opt. Express 22 30410Google Scholar

    [73]

    Coldren L A, Miller B I, Iga K, Rentschler J A 1981 Appl. Phys. Lett. 38 315Google Scholar

    [74]

    Tsang W T, Olsson N A, Logan R A 1983 Electron. Lett. 19 488Google Scholar

    [75]

    Coldren L, Koch T 1984 IEEE J. Quantum Electron. 20 659Google Scholar

    [76]

    Ebeling K J, Coldren L A, Miller B I, Rentschler J A 1983 Appl. Phys. Lett. 42 6Google Scholar

    [77]

    Li Z, Li H, Wan W, Zhou K, Cao J, Chang G, Xu G 2018 Opt. Express 26 32675Google Scholar

    [78]

    Oustinov D, Jukam N, Rungsawang R, Madeo J, Barbieri S, Filloux P, Sirtori C, Marcadet X, Tignon J, Dhillon S 2010 Nat. Commun. 1 69Google Scholar

    [79]

    Udem T, Reichert J, Holzwarth R, Diddams S, Jones D, Ye J, Cundiff S, Hansch T, Hall J 2007 The Hydrogen Atom (Berlin Heidelberg: Springer-Verlag) p125

    [80]

    Auston D H, Cheung K P 1985 J. Opt. Soc. Am. B 2 606Google Scholar

    [81]

    Liang G, Hu X, Yu X, Shen Y, Li L H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F, Wang Q J 2015 ACS Photonics 2 1559Google Scholar

    [82]

    Li H, Yan M, Wan W, Zhou T, Zhou K, Li Z, Cao J, Yu Q, Zhang K, Li M, Nan J, He B, Zeng H 2019 Adv. Sci. 6 1900460Google Scholar

    [83]

    Han P Y, Tani M, Usami M, Kono S, Kersting R, Zhang X C 2001 J. Appl. Phys. 89 2357Google Scholar

    [84]

    Hu G, Mizuguchi T, Oe R, Nitta K, Zhao X, Minamikawa T, Li T, Zheng Z, Yasui T 2018 Sci. Rep. 8 11155Google Scholar

    [85]

    Jerez B, Walla F, Betancur A, Martin-Mateos P, de Dios C, Acedo P 2019 Opt. Lett. 44 415Google Scholar

    [86]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hänsch T W, Picqué N 2010 Nat. Photon. 4 55Google Scholar

    [87]

    Rösch M, Scalari G, Villares G, Bosco L, Beck M, Faist J 2016 Appl. Phys. Lett. 108 171104Google Scholar

    [88]

    Li Z, Wan W, Zhou K, Liao X, Yang S, Fu Z, Cao J C, Li H 2019 Phys. Rev. Appl. 12 044068Google Scholar

    [89]

    Yang Y, Burghoff D, Hayton D J, Gao J R, Reno J L, Hu Q 2016 Optica 3 499Google Scholar

    [90]

    Richter H, Semenov A D, Pavlov S G, Mahler L, Tredicucci A, Beere H E, Ritchie D A, Il’in K S, Siegel M, Hübers H W 2008 Appl. Phys. Lett. 93 141108Google Scholar

    [91]

    Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, Zeng H 2020 ACS Photonics 7 49Google Scholar

    [92]

    Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2019 Optica 6 766Google Scholar

  • 图 1  (a) 光频梳的时域和频域光谱[3]; (b)自参考方法测量光频梳的偏移频率[2]

    Figure 1.  (a) Time domain and frequency domain spectra of the optical frequency comb[3]; (b) measuring the offset frequency of the optical comb using a self-reference method[2].

    图 2  (a)铌酸锂微环谐振腔的显微图; (b) EO梳的输出光谱, 带宽超过80 nm, 频梳线超过900条, 左侧插图为虚线框的放大, 右侧插图为在不同调制指数β的情况下测量的透射光谱[9]

    Figure 2.  (a) Micrograph of a fabricated lithium niobate microring resonator. (b) Output spectrum of the EO comb generated from the microring resonator, the bandwidth exceeding 80 nm and more than 900 comb lines. The left inset shows a magnified view of the dotted. The right inset shows the measured transmission spectrum for several different modulation indices $\beta $[9].

    图 3  (a)两个间隔为$\delta $的初始频率v1v2; (b)四波混频过程后的频率分布图, 绿色曲线为产生的新的频率边带, 频率分别为${v_1} - \delta $${v_2} + \delta $[44]

    Figure 3.  (a) Initial mode frequencies, ${v_1}$ and ${v_2}$, separated by $\delta $; (b) final frequencies resulting from four-wave mixing, with the two sidebands at ${v_1} - \delta $ and ${v_2} + \delta $ shown in green[44].

    图 4  (a)不同脊条宽度下器件的钳制增益和总损耗与频率的关系; (b)不同脊条宽度下的总GVD, 其中4.05—4.35 THz的阴影区域代表THz QCL的激射区域[50]

    Figure 4.  (a) Calculated clamped gain and total loss as function of frequency for lasers with different ridge widths; (b) total GVDs at different ridge widths. The shaded area from 4.05 to 4.35 THz represents the lasing range of the THz QCL[50].

    图 5  (a)计算器件的横截面增益gc, 蓝色曲线为有源区单独每一部分的增益曲线, 绿色曲线为有源区总的增益曲线, 插图为激光器有源区的设计模型; (b)激光器的发射光谱, 跨越了一个倍频程[58]

    Figure 5.  (a) Calculated gain cross-section gc. Blue curves: individual designs. Green curve: total active region. Inset: design of the laser active region. (b) Octave-spanning spectrum of laser[58].

    图 6  (a)啁啾波纹型结构, 红色为较长波长的波, 蓝色为较短波长的波; (b)温度为50 K时, THz QCL梳的光谱, 黄线表示为水汽吸收[61]; (c)两段式器件结构示意图, 直流部分为蓝色, FP的一部分为红色; (d)每一段结构的电流-电压特性, 粉色阴影区域表示激光器的动态范围, 插图为实际设备空气间隙的SEM照片[63]

    Figure 6.  (a) Schematic of the chirped corrugation. The red wave has longer wavelength, while the blue wave has shorter wavelength. (b) Spectrum of the THz QCL comb at a temperature of 50 K. Atmospheric absorption is shown in yellow[61]. (c) Schematic of the device in a two-section configuration. The DC section is shown in blue; part of the FP section is in red. (d) Current-voltage characteristics for each section. The pink-shaded area indicates the entire dynamic range of lasing. The inset shows the SEM photo for the air gap in the real device[63].

    图 7  THz QCL主动锁模实验装置图, THz QCL发射频率为2.5 THz, 重复频率为13.3 GHz[69]

    Figure 7.  Experimental setup of THz QCL active mode-locking. The emitting frequency of THz QCL is 2.5 THz and its repetition frequency is 13.3 GHz[69].

    图 8  (a), (b)对THz QCL同时进行注入和锁相的情况下, 改变RF功率和电流得到的拍频信号图; (c), (d)对应条件下在时域内测得的波形, 图中的黑点为实验值, 红色曲线为理论计算值, 其中假设了所有模式具有等相位[69]

    Figure 8.  (a), (b) In the case of simultaneous injection and phase-locking of THz QCL, the beat-note signal diagram obtained by changing the RF power and the current. (c), (d) The waveforms are measured in the time domain under the corresponding conditions. The black dots in the figure are experimental values. The red curves are the result of theoretical calculations by assuming that all modes have equal phase[69].

    图 9  (a) RF调制THz QCL实验装置图; (b)不同调制电流下的THz发射光谱图, 蓝色曲线为从HITRAN数据库提取3.9—4.2 THz范围内的水吸收线[70]

    Figure 9.  (a) Experimental setup of RF modulation to THz QCL; (b) THz emission spectra under different modulation current. The water absorption lines in the frequency range from 3.9 to 4.4 THz extracted from the HITRAN database[70]

    图 10  (a)通过注入相干THz脉冲实现QCL载波相位固定的实验装置; (b)在不同输入THz脉冲幅度条件下测量的QCL输出光场, THz脉冲幅度正比于天线电压, 分别为1 V (绿色曲线)、0.25 V (蓝色曲线)和0.06 V (灰色曲线)[78]

    Figure 10.  (a) Experimental setup for achieving the carrier phase fixed in QCL by injecting coherent THz pulse. (b) Measured fields of the QCL output for various input THz pulse amplitudes. The THz pulse amplitude is proportional to the antenna voltage with 1 V (green curve), 0.25 V (blue curve) and 0.06 V (grey curve)[78].

    图 11  (a)石墨烯耦合QCL结构示意图, 插图为THz波在复合腔中的传播示意图; (b)具有GiSAM与不具有GiSAM的双光梳和线宽[82]

    Figure 11.  (a) Schematic of the graphene-coupled QCL. Inset: Illustration of the terahertz light propagation in the compound cavity. (b) Dual-comb and linewidth with and without GiSAM[82].

    图 12  (a)片上双光梳的实验原理图; (b)双光梳光谱, 其中蓝色曲线为光谱图, 插图为放大的两相邻梳齿的峰值, 红色曲线为从本地振荡梳中提取出的多外差光谱[87]; (c)双RF注入下的片上双光梳结构示意图, 插图为实际双光梳装置的光学照片; (d)自由运行模式和RF注入模式下的下转换双光梳谱[88]

    Figure 12.  (a) Schematics of the dual-comb on chip. (b) Optical spectrum (blue curve). The inset shows that the modes consist of two peaks corresponding to the two combs. In red is the corresponding multi-heterodyne spectrum extracted from the current bias of the LO laser[87]. (c) Schematics of the on-chip dual-comb system under double injection. The inset shows an optical photo of the mounted dual-comb device. (d) The down-converted dual-comb spectra in free-running mode and under a microwave double injection[88].

    图 13  (a)分离式双光梳实验装置图, 插图显示了铜支架上的两个通过硅透镜耦合的频率梳; (b)在HEB上得到的多外差信号光谱[89]; (c)紧凑型双光梳实验模拟图, 插图为实际实验装置[91]

    Figure 13.  (a) Experimental setup for separating dual-comb system. Inset shows real laser frequency combs on the copper mount, both of which are silicon lens-coupled. (b) Multiheterodyne signal obtained from the HEB[89]. (c) Experimental simulation diagram for compact dual-comb system. The illustration shows the actual experimental device[91].

    图 14  (a)双光梳高光谱成像系统; (b)在光路中放入(红色)或者不放入(蓝色)硅片获取的拍频信号光谱; (c)根据(a)计算出的透射光谱; (d)在零水汽(蓝色)和相对湿度为23% (红色)下获取的拍频信号光谱; (e)根据(d)计算的透射光谱, 蓝色曲线为从2016 HITRAN数据库获得的参数[92]

    Figure 14.  (a) Dual-comb hyperspectral imaging system. (b) Beat note spectra acquired with (red) or without (blue) a silicon wafer inserted in the beam path. (c) Transmission spectra calculated from the beat note spectra in (b). (d) Beat note spectra acquired with zero gas (blue) and atmospheric water vapor at 23% relative humidity (red). (e) Transmission spectra calculated from (d); the blue curve is extracted from the HITRAN 2016 database[92].

  • [1]

    Diddams S A 2010 J. Opt. Soc. Am. B 27 B51Google Scholar

    [2]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [3]

    Schliesser A, Picqué N, Hänsch T W 2012 Nat. Photon. 6 440Google Scholar

    [4]

    Füser H, Bieler M 2014 J. Infrared Millim. Terahertz Waves 35 585Google Scholar

    [5]

    Reichert J, Niering M, Holzwarth R, Weitz M, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 3232Google Scholar

    [6]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hansch T W 2000 Phys. Rev. Lett. 84 5102Google Scholar

    [7]

    Beha K, Cole D C, Del’Haye P, Coillet A, Diddams S A, Papp S B 2017 Optica 4 406Google Scholar

    [8]

    Kourogi M, Nakagawa K i, Ohtsu M 1993 IEEE J. Quantum Electron. 29 2693Google Scholar

    [9]

    Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar

    [10]

    Wang C, Zhang M, Yu M, Zhu R, Hu H, Loncar M 2019 Nat. Commun. 10 978Google Scholar

    [11]

    Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar

    [12]

    Fischer C, W. Sigrist M 1970 Top. Appl. Phys. 99Google Scholar

    [13]

    Gubin M A, Kireev A N, Konyashchenko A V, Kryukov P G, Shelkovnikov A S, Tausenev A V, Tyurikov D A 2009 Appl. Phys. B 95 661Google Scholar

    [14]

    Adler F, Cossel K, J Thorpe M, Hartl I, Fermann M, Ye J 2009 Opt. Lett. 34 1330Google Scholar

    [15]

    Scalari G, Faist J, Picqué N 2019 Appl. Phys. Lett. 114 150401Google Scholar

    [16]

    Jun Y, Schnatz H, Hollberg L W 2003 IEEE J. Sel. Top. Quantum Electron. 9 1041Google Scholar

    [17]

    Wang Y, Soskind M G, Wang W, Wysocki G 2014 Appl. Phys. Lett. 104 031114Google Scholar

    [18]

    Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38Google Scholar

    [19]

    Siegel P 2002 IEEE Trans. Microw. Theory Tech. 50 910Google Scholar

    [20]

    Ferguson B, Zhang X 2002 Nat. Mater. 1 26Google Scholar

    [21]

    Cao J 2003 Phys. Rev. Lett. 91 237401Google Scholar

    [22]

    Tonouchi M 2007 Nat. Photon. 1 97Google Scholar

    [23]

    Walther C, Fischer M, Scalari G, Terazzi R, Hoyler N, Faist J 2007 Appl. Phys. Lett. 91 131122Google Scholar

    [24]

    Carr G, Martin M, McKinney W, Jordan K, Neil G, Williams G 2002 Nature 420 153Google Scholar

    [25]

    Woolard D L, Brown R, Pepper M, Kemp M 2005 Proc. IEEE 93 1722Google Scholar

    [26]

    Federici J, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar

    [27]

    Kawase K, Ogawa Y, Yuuki W, Inoue H 2003 Opt. Express 11 2549Google Scholar

    [28]

    Chen J, Chen Y, Zhao H, Bastiaans G, Zhang X C 2007 Opt. Express 15 12060Google Scholar

    [29]

    Kawase K, Shibuya T, Hayashi S i, Suizu K 2010 C. R. Physique 11 510Google Scholar

    [30]

    Fischer B, Walther M, Jepsen P 2002 Phys. Med. Biol. 47 3807Google Scholar

    [31]

    Siegel P 2004 IEEE Trans. Microw. Theory Tech. 52 2438Google Scholar

    [32]

    Castro-Camus E, Johnston M B 2008 Chem. Phys. Lett. 455 289Google Scholar

    [33]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M 2004 Electron. Lett. 40 124Google Scholar

    [34]

    Grant P D, Laframboise S R, Dudek R, Graf M, Bezinger A, Liu H 2009 Electron. Lett. 45 952Google Scholar

    [35]

    Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H 2011 Electron. Lett. 47 1002Google Scholar

    [36]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [37]

    Tani M, Hirota Y, Que C T, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M 2007 J. Infrared Millim. Waves 27 531Google Scholar

    [38]

    Yasui T, Kabetani Y, Saneyoshi E, Yokoyama S, Araki T 2006 Appl. Phys. Lett. 88 241104Google Scholar

    [39]

    Scalari G, Walther C, Fischer M, Terazzi R, Beere H, Ritchie D, Faist J 2009 Laser Photon. Rev. 3 45Google Scholar

    [40]

    Belkin M A, Fan J A, Hormoz S, Capasso F, Khanna S P, Lachab M, Davies A G, Linfield E H 2008 Opt. Express 16 3242Google Scholar

    [41]

    Brandstetter M, Deutsch C, Krall M, Detz H, MacFarland D C, Zederbauer T, Andrews A M, Schrenk W, Strasser G, Unterrainer K 2013 Appl. Phys. Lett. 103 171113Google Scholar

    [42]

    Danylov A, Erickson N, Light A, Waldman J 2015 Opt. Lett. 40 5090Google Scholar

    [43]

    Williams B S 2007 Nat. Photon. 1 517Google Scholar

    [44]

    Li H, Laffaille P, Gacemi D, Apfel M, Sirtori C, Leonardon J, Santarelli G, Rosch M, Scalari G, Beck M, Faist J, Hansel W, Holzwarth R, Barbieri S 2015 Opt. Express 23 33270Google Scholar

    [45]

    Friedli P, Sigg H, Hinkov B, Hugi A, Riedi S, Beck M, Faist J 2013 Appl. Phys. Lett. 102 222104Google Scholar

    [46]

    Gmachl C, Sivco D, Colombelli R, Capasso F, Cho A 2002 Nature 415 883Google Scholar

    [47]

    Villares G, Riedi S, Wolf J, Kazakov D, Süess M J, Jouy P, Beck M, Faist J 2016 Optica 3 252Google Scholar

    [48]

    Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, Beck M 2016 Nanophotonics 5 272Google Scholar

    [49]

    Villares G, Faist J 2015 Opt. Express 23 1651Google Scholar

    [50]

    Zhou K, Li H, Wan W J, Li Z P, Liao X Y, Cao J C 2019 Appl. Phys. Lett. 114 191106Google Scholar

    [51]

    Li H, Cao J, T. Lu J 2008 J. Appl. Phys. 103 103113Google Scholar

    [52]

    Burghoff D, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2015 Opt. Express 23 1190Google Scholar

    [53]

    Cappelli F, Villares G, Riedi S, Faist J 2015 Optica 2 836Google Scholar

    [54]

    Wienold M, Schrottke L, Giehler M, Hey R, Anders W, Grahn H T 2010 Appl. Phys. Lett. 97 071113Google Scholar

    [55]

    Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014 J. Phys. D Appl. Phys. 47 374008Google Scholar

    [56]

    Turčinková D, Scalari G, Castellano F, Amanti M I, Beck M, Faist J 2011 Appl. Phys. Lett. 99 191104Google Scholar

    [57]

    Rösch M, Beck M, Süess M J, Bachmann D, Unterrainer K, Faist J, Scalari G 2018 Nanophotonics 7 237Google Scholar

    [58]

    Rösch M, Scalari G, Beck M, Faist J 2014 Nat. Photon. 9 42Google Scholar

    [59]

    Williams B S, Kumar S, Callebaut H, Hu Q, Reno J L 2003 Appl. Phys. Lett. 83 2124Google Scholar

    [60]

    Finneran I, Good J, Holland D, Carroll P, Allodi M, Blake G 2015 Phys. Rev. Lett. 114 163902Google Scholar

    [61]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nat. Photon. 8 462Google Scholar

    [62]

    Hillbrand J, Jouy P, Beck M, Faist J 2018 Opt. Lett. 43 1746Google Scholar

    [63]

    Yang Y, Burghoff D, Reno J, Hu Q 2017 Opt. Lett. 42 3888Google Scholar

    [64]

    Barbieri S, Gellie P, Santarelli G, Ding L, Maineult W, Sirtori C, Colombelli R, Beere H, Ritchie D 2010 Nat. Photon. 4 636Google Scholar

    [65]

    Gellie P, Barbieri S, Lampin J-F, Filloux P, Manquest C, Sirtori C, Sagnes I, Khanna S P, Linfield E H, Davies A G, Beere H, Ritchie D 2010 Opt. Express 18 20799Google Scholar

    [66]

    Faist J, Beck M, Aellen T, Gini E 2001 Appl. Phys. Lett. 78 147Google Scholar

    [67]

    Amanti M I, Scalari G, Terazzi R, Fischer M, Beck M, Faist J, Rudra A, Gallo P, Kapon E 2009 New J. Phys. 11 125022Google Scholar

    [68]

    Wienold M, Schrottke L, Giehler M, Hey R, Grahn H T 2011 J. Appl. Phys. 109 073112Google Scholar

    [69]

    Barbieri S, Ravaro M, Gellie P, Santarelli G, Manquest C, Sirtori C, Khanna S P, Linfield E H, Davies A G 2011 Nat. Photon. 5 306Google Scholar

    [70]

    Wan W J, Li H, Zhou T, Cao J C 2017 Sci. Rep. 7 44109Google Scholar

    [71]

    Wang F, Nong H, Fobbe T, Pistore V, Houver S, Markmann S, Jukam N, Amanti M, Sirtori C, Moumdji S, Colombelli R, Li L, Linfield E, Davies G, Mangeney J, Tignon J, Dhillon S 2017 Laser Photon. Rev. 11 1700013Google Scholar

    [72]

    Wienold M, Röben B, Schrottke L, Grahn H T 2014 Opt. Express 22 30410Google Scholar

    [73]

    Coldren L A, Miller B I, Iga K, Rentschler J A 1981 Appl. Phys. Lett. 38 315Google Scholar

    [74]

    Tsang W T, Olsson N A, Logan R A 1983 Electron. Lett. 19 488Google Scholar

    [75]

    Coldren L, Koch T 1984 IEEE J. Quantum Electron. 20 659Google Scholar

    [76]

    Ebeling K J, Coldren L A, Miller B I, Rentschler J A 1983 Appl. Phys. Lett. 42 6Google Scholar

    [77]

    Li Z, Li H, Wan W, Zhou K, Cao J, Chang G, Xu G 2018 Opt. Express 26 32675Google Scholar

    [78]

    Oustinov D, Jukam N, Rungsawang R, Madeo J, Barbieri S, Filloux P, Sirtori C, Marcadet X, Tignon J, Dhillon S 2010 Nat. Commun. 1 69Google Scholar

    [79]

    Udem T, Reichert J, Holzwarth R, Diddams S, Jones D, Ye J, Cundiff S, Hansch T, Hall J 2007 The Hydrogen Atom (Berlin Heidelberg: Springer-Verlag) p125

    [80]

    Auston D H, Cheung K P 1985 J. Opt. Soc. Am. B 2 606Google Scholar

    [81]

    Liang G, Hu X, Yu X, Shen Y, Li L H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F, Wang Q J 2015 ACS Photonics 2 1559Google Scholar

    [82]

    Li H, Yan M, Wan W, Zhou T, Zhou K, Li Z, Cao J, Yu Q, Zhang K, Li M, Nan J, He B, Zeng H 2019 Adv. Sci. 6 1900460Google Scholar

    [83]

    Han P Y, Tani M, Usami M, Kono S, Kersting R, Zhang X C 2001 J. Appl. Phys. 89 2357Google Scholar

    [84]

    Hu G, Mizuguchi T, Oe R, Nitta K, Zhao X, Minamikawa T, Li T, Zheng Z, Yasui T 2018 Sci. Rep. 8 11155Google Scholar

    [85]

    Jerez B, Walla F, Betancur A, Martin-Mateos P, de Dios C, Acedo P 2019 Opt. Lett. 44 415Google Scholar

    [86]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hänsch T W, Picqué N 2010 Nat. Photon. 4 55Google Scholar

    [87]

    Rösch M, Scalari G, Villares G, Bosco L, Beck M, Faist J 2016 Appl. Phys. Lett. 108 171104Google Scholar

    [88]

    Li Z, Wan W, Zhou K, Liao X, Yang S, Fu Z, Cao J C, Li H 2019 Phys. Rev. Appl. 12 044068Google Scholar

    [89]

    Yang Y, Burghoff D, Hayton D J, Gao J R, Reno J L, Hu Q 2016 Optica 3 499Google Scholar

    [90]

    Richter H, Semenov A D, Pavlov S G, Mahler L, Tredicucci A, Beere H E, Ritchie D A, Il’in K S, Siegel M, Hübers H W 2008 Appl. Phys. Lett. 93 141108Google Scholar

    [91]

    Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, Zeng H 2020 ACS Photonics 7 49Google Scholar

    [92]

    Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2019 Optica 6 766Google Scholar

  • [1] Wang Yong-Bo, Tang Xi, Zhao Le-Han, Zhang Xin, Deng Jin, Wu Zheng-Mao, Yang Jun-Bo, Zhou Heng, Wu Jia-Gui, Xia Guang-Qiong. A Tbit/s parallel real-time physical random number scheme based on chaos optical frequency comb of Si3N4 micro-ring. Acta Physica Sinica, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] Guo Zhuang, Ouyang Feng, Lu Zhi-Zhou, Wang Meng-Yu, Tan Qing-Gui, Xie Cheng-Feng, Wei Bin, He Xing-Dao. Analysis and optimization of optical frequency comb spectra of magnesium fluoride microbottle resonator. Acta Physica Sinica, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [3] Jin Xing, Xiao Shen-Yu, Gong Qi-Huang, Yang Qi-Fan. Generation, development, and application of microcombs. Acta Physica Sinica, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [4] Feng Wei, Wei Shu-Ting, Cao Jun-Cheng. 6G technology development vision and terahertz communication. Acta Physica Sinica, 2021, 70(24): 244303. doi: 10.7498/aps.70.20211729
    [5] Zhang Rui-Xue, Li Hong-Guo, Li Zong-Guo. Temporal imaging based on first-order field correlation. Acta Physica Sinica, 2019, 68(10): 104202. doi: 10.7498/aps.68.20190184
    [6] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [7] Zhang Ling-Xiang, Wei Wei, Zhang Zhi-Ming, Liao Wen-Ying, Yang Zhen-Guo, Fan Wan-De, Li Yi-Gang. Propagation properties of vortex beams in a ring photonic crystal fiber. Acta Physica Sinica, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [8] Liu Ting-Yang, Zhang Fu-Min, Wu Han-Zhong, Li Jian-Shuang, Shi Yong-Qiang, Qu Xing-Hua. Absolute distance ranging by means of chirped pulse interferometry. Acta Physica Sinica, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [9] Xu Tian-Hong, Yao Chen, Wan Wen-Jian, Zhu Yong-Hao, Cao Jun-Cheng. Analyses of the output power and beam quality of the tapered terahertz quantum cascade lasers. Acta Physica Sinica, 2015, 64(22): 224212. doi: 10.7498/aps.64.224212
    [10] Gao Feng, Liu Hui, Xu Peng, Wang Ye-Bing, Tian Xiao, Chang Hong. Narrow linewidth laser system used for the intercombination transition spectrum measurement. Acta Physica Sinica, 2014, 63(14): 140704. doi: 10.7498/aps.63.140704
    [11] Zhu Min-Hao, Wu Xue-Jian, Wei Hao-Yun, Zhang Li-Qiong, Zhang Ji-Tao, Li Yan. Closed-loop displacement control system for piezoelectric transducer based on optical frequency comb. Acta Physica Sinica, 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [12] Wang Wei, Yang Bo, Song Hong-Ru, Fan Yue. Characteristic analyses of high birefringence and two zero dispersion points photonic crystal fiber with octagonal lattices. Acta Physica Sinica, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [13] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Study on chromatic dispersion of beam splitter in spatially modulated Fourier transform spectrometer. Acta Physica Sinica, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [14] Zhang Ji-Tao, Wu Xue-Jian, Li Yan, Wei Hao-Yun. Method for improving the accuracy of step height measurement based on optical frequency comb. Acta Physica Sinica, 2012, 61(10): 100601. doi: 10.7498/aps.61.100601
    [15] Wu Xue-Jian, Wei Hao-Yun, Zhu Min-Hao, Zhang Ji-Tao, Li Yan. Frequency measurement of dual frequency He-Ne laser based on a femtosecond optical frequency comb. Acta Physica Sinica, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [16] Han Qing-Sheng, Qiao Yao-Jun, Li Wei. The new insight into the optical pulse propagation theory and minimum-distortion propagation based on thefractional Fourier transformation. Acta Physica Sinica, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [17] Zhao Chao-Ying, Tan Wei-Han. Quantum fluctuations of the optical parametric amplification system under the consideration of dispersion. Acta Physica Sinica, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [18] Huang Xiao-Dong, Zhang Xiao-Min, Wang Jian-Jun, Xu Dang-Peng, Zhang Rui, Lin Hong-Huan, Deng Ying, Geng Yuan-Chao, Yu Xiao-Qiu. The effect of dispersion on FM-AM coversion in high power laser front end. Acta Physica Sinica, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [19] Yin Jing-Chan, Xiao Xiao-Sheng, Yang Chang-Xi. Experimental study of slow light based on four-wave mixing wavelength conversion and dispersion in optical fibers. Acta Physica Sinica, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [20] Deng Yu-Qiang, Wang Qing-Yue, Wu Zu-Bin, Zhang Zhi-Gang. Influence of carrier-envelope phase on synthesizing of fundamental and its second-harmonic pulses. Acta Physica Sinica, 2006, 55(2): 737-742. doi: 10.7498/aps.55.737
Metrics
  • Abstract views:  9130
  • PDF Downloads:  310
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2020
  • Accepted Date:  23 April 2020
  • Available Online:  09 May 2020
  • Published Online:  20 September 2020

/

返回文章
返回