Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of self-powered flexible biomedical sensors

Tan Pu-Chuan Zhao Chao-Chao Fan Yu-Bo Li Zhou

Citation:

Research progress of self-powered flexible biomedical sensors

Tan Pu-Chuan, Zhao Chao-Chao, Fan Yu-Bo, Li Zhou
PDF
HTML
Get Citation
  • In recent years, flexible biomedical sensors have received extensive attention and achieved great development. However, the battery life of flexible biomedical sensors is limited, which has become a bottleneck restricting the development of flexible biomedical sensors. The concept of self-powered flexible biomedical sensor provides an important idea for solving battery life problem. This review summarizes the research progress of self-powered flexible biomedical sensors over the years. Besides, this review discusses several self-powered flexible biomedical sensors based on different power generation technologies and different materials, as well as their respective advantages and scope of application. Further, some representative research works are selected and discussed in detail. Self-powered flexible biomedical sensors can be divided into wearable self-powered flexible biomedical sensors and implantable self-powered flexible biomedical sensors according to their working positions, which can be used to collect important physiological indicators such as human respiration, pulse, temperature, etc. Finally, this paper also predicts and evaluates the future research direction of self-powered flexible biomedical sensors.
      Corresponding author: Fan Yu-Bo, yubofan@buaa.edu.cn ; Li Zhou, zli@binn.cas.cn
    [1]

    Zhao L M, Li H, Meng J P, Li Z 2020 Infomat. 2 212Google Scholar

    [2]

    Lou Z, Li L, Wang L L, Shen G Z 2017 Small 13 1791Google Scholar

    [3]

    Liu Z, Li H, Shi B J, Fan Y B, Wang Z L, Li Z 2019 Adv. Funct. Mater. 29 8820Google Scholar

    [4]

    Hong Y, Cheng X L, Liu G J, Hong D S, He S S, Wang B J, Sun X M, Peng H S 2019 Chin. J. Polym. Sci. 37 737Google Scholar

    [5]

    Shi B J, Liu Z, Zheng Q, Meng J P, Ouyang H, Zou Y, Jiang D J, Qu X C, Yu M, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 ACS Nano 13 6017Google Scholar

    [6]

    Xu J, Ku Z L, Zhang Y Q, Chao D L, Fan H J 2016 Adv. Mater. Technol-Us 1 74Google Scholar

    [7]

    Jinno H, Fukuda K, Xu X M, Park S, Suzuki Y, Koizumi M, Yokota T, Osaka I, Takimiya K, Someya T 2017 Nat Energy 2 780Google Scholar

    [8]

    Wang X, Wang S, Yang Y, Wang Z L 2015 ACS Nano 9 4553Google Scholar

    [9]

    Bandodkar A J, Wang J 2016 Electroanalysis 28 1188Google Scholar

    [10]

    Leonov V, Van Hoof C, Vullers R J M 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, June 3–5, 2009 195

    [11]

    Cha S, Kim S M, Kim H, Ku J, Sohn J I, Park Y J, Song B G, Jung M H, Lee E K, Choi B L, Park J J, Wang Z L, Kim J M, Kim K 2011 Nano Lett. 11 5142Google Scholar

    [12]

    Tan P C, Zheng Q, Zou Y, Shi B J, Jiang D J, Qu X C, Ouyang H, Zhao C C, Cao Y, Fan Y B, Wang Z L, Li Z 2019 Adv. Energy Mater. 9 1875Google Scholar

    [13]

    Zhang Z T, Li X Y, Guan G Z, Pan S W, Zhu Z J, Ren D Y, Peng H S 2014 Angew. Chem. Int. Edit. 53 11571Google Scholar

    [14]

    Chai Z S, Zhang N N, Sun P, Huang Y, Zhao C X, Fang H J, Fan X, Mai W J 2016 ACS Nano 10 9201Google Scholar

    [15]

    Chen X Q, Dai W, Wu T, Luo W, Yang J P, Jiang W, Wang L J 2018 Coatings 8 244Google Scholar

    [16]

    Du Y, Cai K F, Chen S, Wang H X, Shen S Z, Donelson R, Lin T 2015 Sci. Rep-Uk 5 6411Google Scholar

    [17]

    Zou Y, Tan P C, Shi B J, Ouyang H, Jiang D J, Liu Z, Li H, Yu M, Wang C, Qu X C, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 Nat. Commun. 10 2695Google Scholar

    [18]

    Gao L B, Song J, Surjadi J U, Cao K, Han Y, Sun D, Tao X M, Lu Y 2018 ACS Appl. Mater. Inter. 10 28597Google Scholar

    [19]

    Chen Y, Zhang Y, Yuan F F, Ding F, Schmidt O G 2017 Adv. Electron. Mater. 3 540Google Scholar

    [20]

    Zhao C C, Feng H Q, Zhang L J, Li Z, Zou Y, Tan P C, Ouyang H, Jiang D J, Yu M, Wang C, Li H, Xu L L, Wei W, Li Z 2019 Adv. Funct. Mater. 29 8640Google Scholar

    [21]

    Chen B D, Tang W, Jiang T, Zhu L P, Chen X Y, He C, Xu L, Guo H Y, Lin P, Li D, Shao J J, Wang Z L 2018 Nano Energy 45 380Google Scholar

    [22]

    Lin Z M, Wu Z Y, Zhang B B, Wang Y C, Guo H Y, Liu G L, Chen C Y, Chen Y L, Yang J, Wang Z L 2019 Adv. Mater. Technol-Us 4 360Google Scholar

    [23]

    Qu W M, Plotner M, Fischer W J 2001 J. Micromech. Microeng. 11 146Google Scholar

    [24]

    Jiang D, Shi B, Ouyang H, Fan Y, Wang Z L, Li Z 2020 ACS Nano 14 6436Google Scholar

    [25]

    Sun J, Yang A, Zhao C, Liu F, Li Z 2019 Sci. Bull. 64 1336Google Scholar

    [26]

    Shen D Z, Xiao M, Zou G S, Liu L, Duley W W, Zhou Y N 2018 Adv. Mater. 30 5925Google Scholar

    [27]

    Wu W W, Haick H 2018 Adv. Mater. 30 5024Google Scholar

    [28]

    Liu Z, Zhang S, Jin Y M, Ouyang H, Zou Y, Wang X X, Xie L X, Li Z 2017 Semicond. Sci. Tech. 32 64004Google Scholar

    [29]

    Li Z, Zheng Q, Wang Z L, Li Z 2020 Research 25Google Scholar

    [30]

    Ji D, Shi Z, Liu Z, Low S S, Zhu J, Zhang T, Chen Z, Yu X, Lu Y, Lu D, Liu Q 2020 Smart Materials in Medicine 1 1Google Scholar

    [31]

    Lou Z, Wang L L, Shen G Z 2018 Adv. Mater. Technol-Us 3 444Google Scholar

    [32]

    Zheng Q, Jin Y M, Liu Z, Ouyang H, Li H, Shi B J, Jiang W, Zhang H, Li Z, Wang Z L 2016 ACS Appl. Mater. Inter. 8 26697Google Scholar

    [33]

    Yu X, Fu Y P, Cai X, Kafafy H, Wu H W, Peng M, Hou S C, Lv Z B, Ye S Y, Zou D C 2013 Nano Energy 2 1242Google Scholar

    [34]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater. 23 3004Google Scholar

    [35]

    Li Z, Zhu G, Yang R S, Wang A C, Wang Z L 2010 Adv. Mater. 22 2534Google Scholar

    [36]

    Fan F R, Tang W, Wang Z L 2016 Adv. Mater. 28 4283Google Scholar

    [37]

    Nguyen V, Zhu R, Yang R S 2015 Nano Energy 14 49Google Scholar

    [38]

    Kwak S S, Kim H, Seung W, Kim J, Hinchet R, Kim S W 2017 ACS Nano 11 10733Google Scholar

    [39]

    Zheng Q, Shi B J, Fan F R, Wang X X, Yan L, Yuan W W, Wang S H, Liu H, Li Z, Wang Z L 2014 Adv. Mater. 26 5851Google Scholar

    [40]

    Zhang D, Zhang K W, Wang Y M, Wang Y H, Yang Y 2019 Nano Energy 56 25Google Scholar

    [41]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [42]

    We J H, Kim S J, Cho B J 2014 Energy 73 506Google Scholar

    [43]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1335Google Scholar

    [44]

    Feng R, Tang F, Zhang N, Wang X H 2019 ACS Appl. Mater. Inter. 11 38616Google Scholar

    [45]

    Zhang D, Song Y D, Ping L, Xu S W, Yang D, Wang Y H, Yang Y 2019 Nano Res. 12 2982Google Scholar

    [46]

    Xue H, Yang Q, Wang D, Luo W, Wang W, Lin M, Liang D, Luo Q 2017 Nano Energy 38 147Google Scholar

    [47]

    Wen Z, Chen J, Yeh M H, Guo H, Li Z, Fan X, Zhang T, Zhu L, Wang Z L 2015 Nano Energy 16 38Google Scholar

    [48]

    Lin Z M, Chen J, Li X S, Zhou Z H, Meng K Y, Wei W, Yang J, Wang Z L 2017 ACS Nano 11 8830Google Scholar

    [49]

    Ma Y, Zheng Q, Liu Y, Shi B J, Xue X, Ji W P, Liu Z, Jin Y M, Zou Y, Zhao A, Zhang W, Wang X X, Jiang W, Xun Z Y, Wang Z L, Li Z, Zhang H 2016 Nano Lett. 16 6042Google Scholar

    [50]

    Ouyang H, Tian J J, Sun G L, Zou Y, Liu Z, Li H, Zhao L M, Shi B J, Fan Y B, Fan Y F, Wang Z L, Li Z 2017 Adv. Mater. 29 3456Google Scholar

    [51]

    Park S, Heo S W, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino Masaki, Yokota T, Fukuda K, Tajima K, Someya T 2018 Nature 561 516Google Scholar

    [52]

    Yang Y, Zhou Y S, Wu J M, Wang Z L 2012 ACS Nano 6 8456Google Scholar

    [53]

    Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Nat. Commun. 6 8356Google Scholar

    [54]

    Yang Y, Zhang H L, Lin Z H, Zhou Y S, Jing Q S, Su Y J, Yang J, Chen J, Hu C G, Wang Z L 2013 ACS Nano 7 9213Google Scholar

    [55]

    Pu X J, Guo H Y, Tang Q, Chen J, Feng L, Liu G L, Wang X, Xi Y, Hu C G, Wang Z L 2018 Nano Energy 54 453Google Scholar

    [56]

    Chen H T, Song Y, Cheng X L, Zhang H X 2019 Nano Energy 56 252Google Scholar

    [57]

    Han W, He H, Zhang L, Dong C, Zeng H, Dai Y, Xing L, Zhang Y, Xue X 2017 ACS Appl. Mater. Inter. 9 29526Google Scholar

    [58]

    Chen T, Shi Q F, Zhu M L, He T Y Y, Sun L N, Yang L, Lee C 2018 ACS Nano 12 11561Google Scholar

    [59]

    Guo H Y, Pu X J, Chen J, Meng Y, Yeh M H, Liu G L, Tang Q, Chen B D, Liu D, Qi S, Wu C S, Hu C G, Wang J, Wang Z L 2018 Sci. Robot. 3 2516Google Scholar

    [60]

    Wang X D, Zhang Y F, Zhang X J, Huo Z H, Li X Y, Que M L, Peng Z C, Wang H, Pan C F 2018 Adv. Mater. 30 6738Google Scholar

    [61]

    Zhong T Y, Zhang M Y, Fu Y M, Han Y C, Guan H Y, He H X, Zhao T M, Xing L L, Xue X Y, Zhang Y, Zhan Y 2019 Nano Energy 63 103884Google Scholar

    [62]

    Jiang X Z, Sun Y J, Fan Z Y, Zhang T Y 2016 ACS Nano 10 7696Google Scholar

    [63]

    Chen J X, Wen H J, Zhang G L, Lei F, Feng Q, Liu Y, Cao X D, Dong H 2020 ACS Appl. Mater. Inter. 12 67565Google Scholar

    [64]

    Meng K, Zhao S, Zhou Y, Wu Y, Zhang S, He Q, Wang X, Zhou Z, Fan W, Tan X, Yang J, Chen J 2020 Matter 2 896Google Scholar

    [65]

    Niu S M, Matsuhisa N, Beker L, Li J X, Wang S H, Wang J C, Jiang Y W, Yan X Z, Yun Y, Burnett W, Poon A S Y, Tok J B, Chen X D, Bao Z N 2019 Nat. Electron. 2 361Google Scholar

    [66]

    Yu X G, Xie Z Q, Yu Y, Lee J, Vazquez-Guardado A, Luan H W, Ruban J, Ning X, Akhtar A, Li D F, Ji B W, Liu Y M, Sun R J, Cao J Y, Huo Q Z, Zhong Y S, Lee C, Kim S, Gutruf P, Zhang C X, Xue Y G, Guo Q L, Chempakasseril A, Tian P L, Lu W, Jeong J, Yu Y, Cornman J, Tan C, Kim B, Lee K, Feng X, Huang Y G, Rogers J 2019 Nature 476 575Google Scholar

    [67]

    Dhanabalan S C, Dhanabalan B, Chen X, Ponraj J S, Zhang H 2019 Nanoscale 11 3046Google Scholar

    [68]

    Cao Y, Morrissey T G, Acome E, Allec S I, Wong B M, Keplinger C, Wang C 2018 Adv. Mater. 29 5099Google Scholar

  • 图 1  自驱动柔性生物医学传感器的设计思路 (a)主动式生物医学传感器直接收集各种生理信号并转化为电信号; (b)能源式生物医学传感器收集能量再为商用传感器提供能量

    Figure 1.  Design concept of self-powered flexible biomedical sensor: (a) Active biomedical sensors directly collect various physiological signals and convert them into electrical signals; (b) energy-type biomedical sensors collect energy and provide energy for commercial sensors.

    图 2  压电纳米发电机的工作原理[34] (a) ZnO的晶体结构模型; (b) ZnO纳米线的压电势; (c) ZnO纳米线压电势有限元分析; (d) 压电纳米发电机的发电机制

    Figure 2.  Working mechanism of piezoelectric nanogenerator[34]: (a) Crystal model of ZnO; (b) piezoelectric potential of ZnO nanowire; (c) finite element analysis of piezoelectric potential of ZnO nanowires; (d) mechanism of piezoelectric nanogenerator.

    图 3  摩擦纳米发电机的4种工作模式[36] (a) 接触分离式摩擦纳米发电机; (b) 滑动式摩擦纳米发电机; (c) 单电极模式摩擦纳米发电机; (d) 独立层式摩擦纳米发电机

    Figure 3.  Four working modes of triboelectric nanogenerator[36]: (a) Vertical contact separation mode; (b) lateral sliding mode; (c) single-electrode mode; (d) freestanding triboelectric-layer mode.

    图 4  热电发电机的发电原理[41]

    Figure 4.  Working mechanism of thermoelectric generator based on spin Seebeck effect[41].

    图 5  自驱动柔性呼吸传感器 (a)基于柔性压电纳米发电机的穿戴式自驱动呼吸传感器[27]; (b)与N95口罩集成的热释电可穿戴呼吸传感器[46]; (c)基于摩擦纳米发电机的主动式酒精呼吸分析仪[47]

    Figure 5.  Self-powered flexible respiratory sensor: (a) Wearable self-powered active sensor for respiration monitoring based on a flexible piezoelectric nanogenerator[27]; (b) wearable respiration sensor based on a pyroelectric nanogenerator integrated with an N95 respira-tor[46]; (c) blow-driven triboelectric nanogenerator as an active alcohol breath analyzer[47].

    图 6  自驱动柔性脉搏传感器 (a)用于实时生物医学监测的自驱动多功能植入式传感器[49]; (b)基于摩擦电效应的柔性自驱动超灵敏脉搏传感器[50]; (c)基于有机光伏电池的自驱动超柔性生物传感器[51]

    Figure 6.  Self-powered flexible pulse sensor: (a) Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring[49]; (b) flexible self-powered ultrasensitive pulse sensor based on triboelectric effect[50]; (c) self-powered ultra-flexible biosensor based on nanograting-patterned organic photovoltaics[51].

    图 7  自驱动柔性体温传感器 (a)基于热释电发电机的自驱动温度传感器[52]; (b)由热电材料制成的自驱动温度-压力双参数传感器[53]; (c)基于复合发电机的温度传感器系统[8]

    Figure 7.  Self-powered flexible temperature sensor. (a) Self-powered temperature sensor based on a PyNG[52]; (b) self-powered temperature-pressure dual-parameter sensor fabricated by organic thermoelectric materials[53]; (c) wireless temperature sensor system based on hybridized nanogenerator[8].

    图 8  自驱动柔性人工感觉器官 (a)用于机器人和助听器的自驱动听觉传感器[59]; (b)用于可穿戴电子设备的自驱动触觉传感器[60]; (c)用于智能嗅觉替换的摩擦电-脑-行为闭环[61]

    Figure 8.  Self-powered flexible artificial sense organ: (a) Self-powered triboelectric auditory sensor for social robotics and hearing aids[59]; (b) self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics[60]; (c) an artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution[61].

    图 9  自驱动柔性生物传感器的重要研究方向 (a)多功能的传感系统[63]; (b)无线信号传输[65]; (c)柔性人机界面[66]

    Figure 9.  Core research directions of self-powered flexible biomedical sensor: (a) Multifunctional sensing system[63]; (b) wireless signal transmission[65]; (c) flexible man-machine interface[66].

  • [1]

    Zhao L M, Li H, Meng J P, Li Z 2020 Infomat. 2 212Google Scholar

    [2]

    Lou Z, Li L, Wang L L, Shen G Z 2017 Small 13 1791Google Scholar

    [3]

    Liu Z, Li H, Shi B J, Fan Y B, Wang Z L, Li Z 2019 Adv. Funct. Mater. 29 8820Google Scholar

    [4]

    Hong Y, Cheng X L, Liu G J, Hong D S, He S S, Wang B J, Sun X M, Peng H S 2019 Chin. J. Polym. Sci. 37 737Google Scholar

    [5]

    Shi B J, Liu Z, Zheng Q, Meng J P, Ouyang H, Zou Y, Jiang D J, Qu X C, Yu M, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 ACS Nano 13 6017Google Scholar

    [6]

    Xu J, Ku Z L, Zhang Y Q, Chao D L, Fan H J 2016 Adv. Mater. Technol-Us 1 74Google Scholar

    [7]

    Jinno H, Fukuda K, Xu X M, Park S, Suzuki Y, Koizumi M, Yokota T, Osaka I, Takimiya K, Someya T 2017 Nat Energy 2 780Google Scholar

    [8]

    Wang X, Wang S, Yang Y, Wang Z L 2015 ACS Nano 9 4553Google Scholar

    [9]

    Bandodkar A J, Wang J 2016 Electroanalysis 28 1188Google Scholar

    [10]

    Leonov V, Van Hoof C, Vullers R J M 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, June 3–5, 2009 195

    [11]

    Cha S, Kim S M, Kim H, Ku J, Sohn J I, Park Y J, Song B G, Jung M H, Lee E K, Choi B L, Park J J, Wang Z L, Kim J M, Kim K 2011 Nano Lett. 11 5142Google Scholar

    [12]

    Tan P C, Zheng Q, Zou Y, Shi B J, Jiang D J, Qu X C, Ouyang H, Zhao C C, Cao Y, Fan Y B, Wang Z L, Li Z 2019 Adv. Energy Mater. 9 1875Google Scholar

    [13]

    Zhang Z T, Li X Y, Guan G Z, Pan S W, Zhu Z J, Ren D Y, Peng H S 2014 Angew. Chem. Int. Edit. 53 11571Google Scholar

    [14]

    Chai Z S, Zhang N N, Sun P, Huang Y, Zhao C X, Fang H J, Fan X, Mai W J 2016 ACS Nano 10 9201Google Scholar

    [15]

    Chen X Q, Dai W, Wu T, Luo W, Yang J P, Jiang W, Wang L J 2018 Coatings 8 244Google Scholar

    [16]

    Du Y, Cai K F, Chen S, Wang H X, Shen S Z, Donelson R, Lin T 2015 Sci. Rep-Uk 5 6411Google Scholar

    [17]

    Zou Y, Tan P C, Shi B J, Ouyang H, Jiang D J, Liu Z, Li H, Yu M, Wang C, Qu X C, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 Nat. Commun. 10 2695Google Scholar

    [18]

    Gao L B, Song J, Surjadi J U, Cao K, Han Y, Sun D, Tao X M, Lu Y 2018 ACS Appl. Mater. Inter. 10 28597Google Scholar

    [19]

    Chen Y, Zhang Y, Yuan F F, Ding F, Schmidt O G 2017 Adv. Electron. Mater. 3 540Google Scholar

    [20]

    Zhao C C, Feng H Q, Zhang L J, Li Z, Zou Y, Tan P C, Ouyang H, Jiang D J, Yu M, Wang C, Li H, Xu L L, Wei W, Li Z 2019 Adv. Funct. Mater. 29 8640Google Scholar

    [21]

    Chen B D, Tang W, Jiang T, Zhu L P, Chen X Y, He C, Xu L, Guo H Y, Lin P, Li D, Shao J J, Wang Z L 2018 Nano Energy 45 380Google Scholar

    [22]

    Lin Z M, Wu Z Y, Zhang B B, Wang Y C, Guo H Y, Liu G L, Chen C Y, Chen Y L, Yang J, Wang Z L 2019 Adv. Mater. Technol-Us 4 360Google Scholar

    [23]

    Qu W M, Plotner M, Fischer W J 2001 J. Micromech. Microeng. 11 146Google Scholar

    [24]

    Jiang D, Shi B, Ouyang H, Fan Y, Wang Z L, Li Z 2020 ACS Nano 14 6436Google Scholar

    [25]

    Sun J, Yang A, Zhao C, Liu F, Li Z 2019 Sci. Bull. 64 1336Google Scholar

    [26]

    Shen D Z, Xiao M, Zou G S, Liu L, Duley W W, Zhou Y N 2018 Adv. Mater. 30 5925Google Scholar

    [27]

    Wu W W, Haick H 2018 Adv. Mater. 30 5024Google Scholar

    [28]

    Liu Z, Zhang S, Jin Y M, Ouyang H, Zou Y, Wang X X, Xie L X, Li Z 2017 Semicond. Sci. Tech. 32 64004Google Scholar

    [29]

    Li Z, Zheng Q, Wang Z L, Li Z 2020 Research 25Google Scholar

    [30]

    Ji D, Shi Z, Liu Z, Low S S, Zhu J, Zhang T, Chen Z, Yu X, Lu Y, Lu D, Liu Q 2020 Smart Materials in Medicine 1 1Google Scholar

    [31]

    Lou Z, Wang L L, Shen G Z 2018 Adv. Mater. Technol-Us 3 444Google Scholar

    [32]

    Zheng Q, Jin Y M, Liu Z, Ouyang H, Li H, Shi B J, Jiang W, Zhang H, Li Z, Wang Z L 2016 ACS Appl. Mater. Inter. 8 26697Google Scholar

    [33]

    Yu X, Fu Y P, Cai X, Kafafy H, Wu H W, Peng M, Hou S C, Lv Z B, Ye S Y, Zou D C 2013 Nano Energy 2 1242Google Scholar

    [34]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater. 23 3004Google Scholar

    [35]

    Li Z, Zhu G, Yang R S, Wang A C, Wang Z L 2010 Adv. Mater. 22 2534Google Scholar

    [36]

    Fan F R, Tang W, Wang Z L 2016 Adv. Mater. 28 4283Google Scholar

    [37]

    Nguyen V, Zhu R, Yang R S 2015 Nano Energy 14 49Google Scholar

    [38]

    Kwak S S, Kim H, Seung W, Kim J, Hinchet R, Kim S W 2017 ACS Nano 11 10733Google Scholar

    [39]

    Zheng Q, Shi B J, Fan F R, Wang X X, Yan L, Yuan W W, Wang S H, Liu H, Li Z, Wang Z L 2014 Adv. Mater. 26 5851Google Scholar

    [40]

    Zhang D, Zhang K W, Wang Y M, Wang Y H, Yang Y 2019 Nano Energy 56 25Google Scholar

    [41]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [42]

    We J H, Kim S J, Cho B J 2014 Energy 73 506Google Scholar

    [43]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1335Google Scholar

    [44]

    Feng R, Tang F, Zhang N, Wang X H 2019 ACS Appl. Mater. Inter. 11 38616Google Scholar

    [45]

    Zhang D, Song Y D, Ping L, Xu S W, Yang D, Wang Y H, Yang Y 2019 Nano Res. 12 2982Google Scholar

    [46]

    Xue H, Yang Q, Wang D, Luo W, Wang W, Lin M, Liang D, Luo Q 2017 Nano Energy 38 147Google Scholar

    [47]

    Wen Z, Chen J, Yeh M H, Guo H, Li Z, Fan X, Zhang T, Zhu L, Wang Z L 2015 Nano Energy 16 38Google Scholar

    [48]

    Lin Z M, Chen J, Li X S, Zhou Z H, Meng K Y, Wei W, Yang J, Wang Z L 2017 ACS Nano 11 8830Google Scholar

    [49]

    Ma Y, Zheng Q, Liu Y, Shi B J, Xue X, Ji W P, Liu Z, Jin Y M, Zou Y, Zhao A, Zhang W, Wang X X, Jiang W, Xun Z Y, Wang Z L, Li Z, Zhang H 2016 Nano Lett. 16 6042Google Scholar

    [50]

    Ouyang H, Tian J J, Sun G L, Zou Y, Liu Z, Li H, Zhao L M, Shi B J, Fan Y B, Fan Y F, Wang Z L, Li Z 2017 Adv. Mater. 29 3456Google Scholar

    [51]

    Park S, Heo S W, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino Masaki, Yokota T, Fukuda K, Tajima K, Someya T 2018 Nature 561 516Google Scholar

    [52]

    Yang Y, Zhou Y S, Wu J M, Wang Z L 2012 ACS Nano 6 8456Google Scholar

    [53]

    Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Nat. Commun. 6 8356Google Scholar

    [54]

    Yang Y, Zhang H L, Lin Z H, Zhou Y S, Jing Q S, Su Y J, Yang J, Chen J, Hu C G, Wang Z L 2013 ACS Nano 7 9213Google Scholar

    [55]

    Pu X J, Guo H Y, Tang Q, Chen J, Feng L, Liu G L, Wang X, Xi Y, Hu C G, Wang Z L 2018 Nano Energy 54 453Google Scholar

    [56]

    Chen H T, Song Y, Cheng X L, Zhang H X 2019 Nano Energy 56 252Google Scholar

    [57]

    Han W, He H, Zhang L, Dong C, Zeng H, Dai Y, Xing L, Zhang Y, Xue X 2017 ACS Appl. Mater. Inter. 9 29526Google Scholar

    [58]

    Chen T, Shi Q F, Zhu M L, He T Y Y, Sun L N, Yang L, Lee C 2018 ACS Nano 12 11561Google Scholar

    [59]

    Guo H Y, Pu X J, Chen J, Meng Y, Yeh M H, Liu G L, Tang Q, Chen B D, Liu D, Qi S, Wu C S, Hu C G, Wang J, Wang Z L 2018 Sci. Robot. 3 2516Google Scholar

    [60]

    Wang X D, Zhang Y F, Zhang X J, Huo Z H, Li X Y, Que M L, Peng Z C, Wang H, Pan C F 2018 Adv. Mater. 30 6738Google Scholar

    [61]

    Zhong T Y, Zhang M Y, Fu Y M, Han Y C, Guan H Y, He H X, Zhao T M, Xing L L, Xue X Y, Zhang Y, Zhan Y 2019 Nano Energy 63 103884Google Scholar

    [62]

    Jiang X Z, Sun Y J, Fan Z Y, Zhang T Y 2016 ACS Nano 10 7696Google Scholar

    [63]

    Chen J X, Wen H J, Zhang G L, Lei F, Feng Q, Liu Y, Cao X D, Dong H 2020 ACS Appl. Mater. Inter. 12 67565Google Scholar

    [64]

    Meng K, Zhao S, Zhou Y, Wu Y, Zhang S, He Q, Wang X, Zhou Z, Fan W, Tan X, Yang J, Chen J 2020 Matter 2 896Google Scholar

    [65]

    Niu S M, Matsuhisa N, Beker L, Li J X, Wang S H, Wang J C, Jiang Y W, Yan X Z, Yun Y, Burnett W, Poon A S Y, Tok J B, Chen X D, Bao Z N 2019 Nat. Electron. 2 361Google Scholar

    [66]

    Yu X G, Xie Z Q, Yu Y, Lee J, Vazquez-Guardado A, Luan H W, Ruban J, Ning X, Akhtar A, Li D F, Ji B W, Liu Y M, Sun R J, Cao J Y, Huo Q Z, Zhong Y S, Lee C, Kim S, Gutruf P, Zhang C X, Xue Y G, Guo Q L, Chempakasseril A, Tian P L, Lu W, Jeong J, Yu Y, Cornman J, Tan C, Kim B, Lee K, Feng X, Huang Y G, Rogers J 2019 Nature 476 575Google Scholar

    [67]

    Dhanabalan S C, Dhanabalan B, Chen X, Ponraj J S, Zhang H 2019 Nanoscale 11 3046Google Scholar

    [68]

    Cao Y, Morrissey T G, Acome E, Allec S I, Wong B M, Keplinger C, Wang C 2018 Adv. Mater. 29 5099Google Scholar

  • [1] Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei. Research progress of flexible energy storage dielectric materials with sandwiched structure. Acta Physica Sinica, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] Du Li-Jie, Chen Jing-Wen, Wang Rong-Ming. Self-driven near infrared photoelectric detector based on C14H31O3P-Ti3C2/Au Schottky junction. Acta Physica Sinica, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [4] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [5] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [6] Zhang Fu-Jian, Chen Yue, Gao Xiang, Liu Zhen, Zhang Zhong-Qiang. Uni-directional self-driving of water droplets on monolayer graphene-covered wedge-shaped copper substrate. Acta Physica Sinica, 2021, 70(20): 200202. doi: 10.7498/aps.70.20210905
    [7] Xuan Xin-Miao, Wang Jia-Heng, Mao Yan-Qi, Ye Li-Juan, Zhang Hong, Li Hong-Lin, Xiong Yuan-Qiang, Fan Si-Qiang, Kong Chun-Yang, Li Wan-Jun. Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate. Acta Physica Sinica, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [8] Wang Chuang, Bao Rong-Rong, Pan Cao-Feng. Research and application of flexible wearable electronics based on nanogenerator in touch sensor. Acta Physica Sinica, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [9] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [10] Shen Mao-Liang, Zhang Yan. Flexible sensor and energy storage device based on piezoelectric nanogenerator. Acta Physica Sinica, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [11] Zhong Ting-Ting, Wu Meng-Hao. Research progress of two-dimensional interlayer-sliding ferroelectricity. Acta Physica Sinica, 2020, 69(21): 217707. doi: 10.7498/aps.69.20201432
    [12] Lan Shun, Pan Hao, Lin Yuan-Hua. Fabrication and applications of flexible inorganic ferroelectric thin films. Acta Physica Sinica, 2020, 69(21): 217708. doi: 10.7498/aps.69.20201365
    [13] Zhang Hong, Zong Yi-Wu, Yang Ming-Cheng, Zhao Kun. The dynamics of self-propelled Janus microspheres near obstacles with different geometries. Acta Physica Sinica, 2019, 68(13): 134702. doi: 10.7498/aps.68.20190711
    [14] Xiong Kai-Xin, Xi Kun, Bao Lei, Zhang Zhong-Liang, Tan Zhi-Jie. Molecular dynamics simulations on DNA flexibility: a comparative study of Amber bsc1 and bsc0 force fields. Acta Physica Sinica, 2018, 67(10): 108701. doi: 10.7498/aps.67.20180326
    [15] Wang Hai-Feng, Li Wang, Gu Guo-Biao, Shen Jun, Teng Qi-Zhi. Static bifurcation analysis of natural circulation inner evaporative cooling system in wind turbine. Acta Physica Sinica, 2016, 65(3): 030501. doi: 10.7498/aps.65.030501
    [16] Liu Hai-Wen, Zhu Shuang-Shuang, Wen Pin, Qin Feng, Ren Bao-Ping, Xiao Xiang, Hou Xin-Yu. A flexible dual-band metamaterial based on hairpin split-ring resonators. Acta Physica Sinica, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [17] Cui Hai-Hang, Tan Xiao-Jun, Zhang Hong-Yan, Chen Li. Experiment and numerical study on the characteristics of self-propellant Janus microspheres near the wall. Acta Physica Sinica, 2015, 64(13): 134705. doi: 10.7498/aps.64.134705
    [18] Lou Li-Fei, Pan Qing-Biao, Wu Zhi-Hua. A flexible microstructure based on graphene for harvesting weak energy. Acta Physica Sinica, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [19] Chai Yu-Hua, Guo Yu-Xiu, Bian Wei, Li Wen, Yang Tao, Yi Ming-Dong, Fan Qu-Li, Xie Ling-Hai, Huang Wei. Progress of flexible organic non-volatile memory field-effect transistors. Acta Physica Sinica, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [20] Dong Jing, Chai Yu-Hua, Zhao Yue-Zhi, Shi Wei-Wei, Guo Yu-Xiu, Yi Ming-Dong, Xie Ling-Hai, Huang Wei. The progress of flexible organic field-effect transistors. Acta Physica Sinica, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
Metrics
  • Abstract views:  14058
  • PDF Downloads:  610
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2020
  • Accepted Date:  29 July 2020
  • Available Online:  03 September 2020
  • Published Online:  05 September 2020

/

返回文章
返回