Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nucleic acid-metal complex and its application in atomic-scale manufacturing

Li Sheng-Kai Hao Qing Peng Tian-Huan Chen Zhuo Tan Wei-Hong

Citation:

Nucleic acid-metal complex and its application in atomic-scale manufacturing

Li Sheng-Kai, Hao Qing, Peng Tian-Huan, Chen Zhuo, Tan Wei-Hong
PDF
HTML
Get Citation
  • Atomic-scale and close-to-atomic scale manufacturing, a frontier hot issue in international academic research, is a cutting-edge manufacturing technique in which atoms are directly used as the manipulation object and atomic-scale structures with specific functions are established to meet the requirements for mass productions. This review focuses on precise atomic-scale manufacturing technology of nucleic acid materials. Firstly, the basic structures and functions of nucleic acid materials are introduced, and the basic principles of the interaction between DNA and metal atoms are discussed. Then the development process and breakthrough progress of nucleic acid materials-mediated precise atomic-scale manufacturing are introduced from the aspects of natural nucleic acid materials, artificial base “molecular elements”, and nucleic acid nanostructures. Finally, the challenges and opportunities in this field are systematically summarized and some suggestions for future development are given.
      Corresponding author: Peng Tian-Huan, pengtianhuan@hnu.edu.cn ; Chen Zhuo, zhuochen@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21522501) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ1007)
    [1]

    房丰洲 2020 中国机械工程 31 1009Google Scholar

    Fang F 2020 Chinese Mech. Eng. 31 1009Google Scholar

    [2]

    李沫, 李倩, 张健 2016 太赫兹科学与电子信息学报 14 793Google Scholar

    Li M, Li Q, Zhang J 2016 J. Terahertz Sci. Electron. Inf. Technol. 14 793Google Scholar

    [3]

    Jiang D, England C G, Cai W 2016 J. Control. Release 239 27Google Scholar

    [4]

    Dai Z, Leung H M, Lo P K 2017 Small 13 1602881Google Scholar

    [5]

    Lippert B 2000 Coord. Chem. Rev. 200 487Google Scholar

    [6]

    Morris D L 2014 Biomol. Concepts 5 397Google Scholar

    [7]

    Liu J, Lu Y 2004 J. Am. Chem. Soc. 126 12298Google Scholar

    [8]

    Cai W, Xie S, Zhang J, Tang D, Tang Y 2018 Biosens. Bioelectron. 117 3128Google Scholar

    [9]

    Jia X, Li J, Han L, Ren J, Yang X, Wang E 2012 ACS Nano 6 3311Google Scholar

    [10]

    Chen A, Ma S, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 3203Google Scholar

    [11]

    Fu J, Zhang Z, Li G 2019 Chinese Chem. Let. 30 285Google Scholar

    [12]

    Wagenknecht H A 2003 Angew. Chem. Int. Ed. 42 3204Google Scholar

    [13]

    Wheate N J, Walker S, Craig G E, Oun R 2010 Dalton Trans. 39 8113Google Scholar

    [14]

    Erxleben A 2017 CHIMIA 71 102Google Scholar

    [15]

    Belmont P, Constan, J F, Demeunynck M 2001 Chem. Soc. Rev. 30 70Google Scholar

    [16]

    Shamsi M H, Kraatz H B 2013 J. Inorg. Organomet. Polym. Mater. 23 4Google Scholar

    [17]

    Sigel H 1993 Chem. Soc. Rev. 22 255Google Scholar

    [18]

    Pages B J, Ang D L, Wright E P, Aldrich-Wright J R 2015 Dalton Trans. 44 3505Google Scholar

    [19]

    Müller J 2010 Metallomics 2 318Google Scholar

    [20]

    Kellett A, Molphy Z, Slator C, McKee V, Farrell N P 2019 Chem. Soc. Rev. 48 971Google Scholar

    [21]

    Ono A, Togashi H 2004 Angew. Chem. 116 4400Google Scholar

    [22]

    Jiang X, Wang H, Wang H, Yuan R, Chai Y 2016 Anal. Chem. 88 9243Google Scholar

    [23]

    Zhang B, Guo L H 2012 Biosens. Bioelectron. 37 112Google Scholar

    [24]

    Huang J, Gao X, Jia J, Kim J K, Li Z 2014 Anal. Chem. 86 3209Google Scholar

    [25]

    Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamato I, Tanaka Y 2008 Chem. Commun. 39 4825Google Scholar

    [26]

    Zhao C, Qu K, Song Y, Xu C, Ren J, Qu X 2010 Chem. Eur. J. 16 8147Google Scholar

    [27]

    Zheng Y, Yang C, Yang F, Yang X 2014 Anal. Chem. 86 3849Google Scholar

    [28]

    Park S, Sugiyama H 2010 Angew. Chem. Int. Ed. 49 3870Google Scholar

    [29]

    Wang C, Li Y, Jia G, Liu Y, Lu S, Li C 2012 Chem. Commun. 48 6232Google Scholar

    [30]

    Cepeda V, Fuertes M A, Castilla J, Alonso C, Quevedo C, Perez J M 2007 Anti-Cancer. Agents Med. Chem. 7 3Google Scholar

    [31]

    Wang D, Lippard S J 2005 Nat. Rev. Drug Discovery 4 307Google Scholar

    [32]

    Hartinger C G, Zorbas-Seifried S, Jakupec M A, Kynast B, Zorbas H, Keppler B K 2006 J. Inorg. Biochem. 100 891Google Scholar

    [33]

    Komor A C, Barton J K 2013 Chem. Commun. 49 3617Google Scholar

    [34]

    Wu T, Liu J, Liu M, Liu S, Zhao S. Tian R, Wei D, Liu Y, Zhao Y, Xiao H, Ding B 2019 Angew. Chem. In. Ed. 58 14224Google Scholar

    [35]

    Chen Y. Xu J, Su J, Xiang Y, Yuan R, Chai Y 2012 Anal. Chem. 84 7750Google Scholar

    [36]

    Wang H, Yuan Y, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 5797Google Scholar

    [37]

    Li S K, Chen A Y, Chai Y Q, Yuan R, Zhuo Y 2016 Electrochim. Acta 212 767Google Scholar

    [38]

    Kosman J, Juskowiak B 2011 Anal. Chim. Acta 707 7Google Scholar

    [39]

    Yang X, Li T, Li B, Wang E 2010 Analyst 135 71Google Scholar

    [40]

    Huang R, He L, Xia Y, Xu H, Liu C, Xie H, Wang S, Peng Li, Liu Y, Liu Y, He N, Li Z 2019 Small 15 1900735Google Scholar

    [41]

    Golub E, Freeman R, Willner I 2011 Angew. Chem. 123 11914Google Scholar

    [42]

    Chen Y, Phipps M L, Werner J H, Chakraborty S, Martinez J S 2018 Accounts Chem. Res. 51 2756Google Scholar

    [43]

    Petty J T, Zheng J, Hud N V, Dickson R M 2004 J. Am. Chem. Soc. 126 5207Google Scholar

    [44]

    Sharma J, Yeh H C, Yoo H, Werner J H, Martinez J S 2010 Chem. Commun. 46 3280Google Scholar

    [45]

    Lan G Y, Chen W Y, Chang H T 2011 RSC Adv. 1 802Google Scholar

    [46]

    Gwinn E G, O'Neill P, Guerrero A J, Bouwmeester D, Fygenson D K 2008 Adv. Mater. 20 279Google Scholar

    [47]

    Feng L, Huang Z, Ren J, Qu X 2012 Nucleic Acids Res. 40 e122Google Scholar

    [48]

    Liu Y Q, Zhang M, Yin B C, Ye B C 2012 Anal. Chem. 84 5165Google Scholar

    [49]

    Liu J J, Song X R, Wang Y W, Zheng A X, Chen G N, Yang H H 2012 Anal. Chim. Acta 749 70Google Scholar

    [50]

    Lyu D, Li J, Wang X, Guo W, Wang E 2018 Anal. Chem. 91 2050Google Scholar

    [51]

    Thomas A C 2012 Chem. Commun. 48 6845Google Scholar

    [52]

    Qing Z, He X, He D, Wang K, Xu F, Qing T, Yang X 2013 Angew. Chem. In. Ed. 52 9719Google Scholar

    [53]

    Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, Li B 2017 Microchim. Acta 184 773Google Scholar

    [54]

    Ai J, Guo W, Li B, Li T, Li D, Wang E 2012 Talanta 88 450Google Scholar

    [55]

    Fu Y, Zhao X, Zhang J, Li W 2014 J. Phys. Chem. C 118 18116Google Scholar

    [56]

    Li W, Li W, Hu Y, Xia Y, Shen Q, Nie Z, Huang Y, Yao S 2013 Biosen. Bioelectron. 47 345Google Scholar

    [57]

    Wu L L, Wang L Y, Xie Z J, Pan N, Peng C F 2016 Sens. Actuators, B 235 110Google Scholar

    [58]

    Navani N K, Li Y 2006 Curr. Opin. Chem. Biol. 10 272Google Scholar

    [59]

    Stoltenburg R, Reinemann C, Strehlitz B 2007 Biomol. Eng. 24 381Google Scholar

    [60]

    Zhan S, Wu Y, Wang L, Zhan X, Zhou P 2016 Biosens Bioelectron. 86 353Google Scholar

    [61]

    Dass C R, Choong P F, Khachigian L M 2008 Mol. Cancer Ther. 7 243Google Scholar

    [62]

    McGhee C E, Loh K Y, Lu Y 2017 Curr. Opin. Biotechnol. 45 191Google Scholar

    [63]

    Fan H, Zhang X, Lu Y 2017 Sci. China Chem. 60 591Google Scholar

    [64]

    Li L, Xu S, Yan H, Li X, Yazd H S, Li X, Huang T, Cui C, Jiang J, Tan W 2020 Angew. Chem. Int. Ed. 59 2Google Scholar

    [65]

    Pang X, Cui C, Wan S., Jiang Y, Zhang L, Xia L, Li L, Li X, Tan W 2018 Cancers 10 47Google Scholar

    [66]

    Meng H M, Liu H, Kuai H, Peng R, Mo L, Zhang X B 2016 Chem. Soc. Rev. 45 2583Google Scholar

    [67]

    Li S, Xu J, Wang S, Xia X, Chen L, Chen Z 2019 Chinese Chem. Lett. 30 1581Google Scholar

    [68]

    Zhang D, Yin L, Meng Z, Yu A, Guo L, Wang H 2014 Anal. Chim. Acta 812 161Google Scholar

    [69]

    Lei Y M, Huang W X, Zhao M, Chai Y Q, Yuan R, Zhuo Y 2015 Anal. Chem. 87 7787

    [70]

    陈俊俊, 李称, 徐斐, 曹慧, 叶泰, 于劲松, 袁敏 2018 工业微生物 3 11Google Scholar

    Chen J J, Li C, Xu F, Cao H, Ye T, Y u, J S, Yuan M 2018 Industrial Microorganisms 3 11Google Scholar

    [71]

    Williamson J R 1994 Annu. Rev. Bioph. Biom. 23 703Google Scholar

    [72]

    Chung C H, Kim J H, Jung J, Chung B H 2013 Biosen. Bioelectron. 41 827Google Scholar

    [73]

    Peng Y, Li Y, Li L, Zhu J J 2018 J. Hazard. Mater. 359 121Google Scholar

    [74]

    Breaker R R, Joyce G F 1994 Chem. Biol. 1 223Google Scholar

    [75]

    Ihms H E, Lu Y 2012 Humana Press 848 297Google Scholar

    [76]

    Liang W B, Zhuo Y, Zheng Y N, Xiong C Y, Chai Y Q, Yuan R 2017 ACS Appl. Mater. Interfaces 9 39812Google Scholar

    [77]

    Hong C, Kim D M, Baek A, Chung H, Jung W, Kim D E 2015 Chem. Commun. 51 5641Google Scholar

    [78]

    Chen J, Zuehlke A, Deng B, Peng H, Hou X, Zhang H 2017 Anal. Chem. 89 12888Google Scholar

    [79]

    Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W 2015 Angew. Chem. 127 4883Google Scholar

    [80]

    Wang H, Wang H, Wu Q, Liang M, Liu X, Wang F 2019 Chem. Sci. 10 9597Google Scholar

    [81]

    Khakshoor O, Kool E T 2011 Chem. Commun. 47 7018Google Scholar

    [82]

    Pinheiro V B, Holliger P 2012 Curr. Opin. Chem. Biol. 16 245Google Scholar

    [83]

    Nielsen P E, Haaima G 1997 Chem. Soc. Rev. 26 73Google Scholar

    [84]

    Corradini R, Sforza S, Tedeschi T, Totsingan F, Manicardi A, Marchelli R 2011 Curr. Top. Med. Chem. 11 1535Google Scholar

    [85]

    Whittell G R, Manners I 2007 Adv. Mater. 19 3439Google Scholar

    [86]

    James H R 2012 Chem. Commun. 48 12165Google Scholar

    [87]

    Clever G H, Shionoya M 2010 Coord. Chem. Rev. 254 2391Google Scholar

    [88]

    Johannsen S, Megger N, Böhme D, Sige R K, Mn F, Manicard Nat. Chem. 2 229

    [89]

    Zhu T, Wu Q, Chen P, Ding Y 2009 J. Organomet. Chem. 694 21Google Scholar

    [90]

    Li D, Song S, Fan C 2010 Accounts Chem. Res. 43 631Google Scholar

    [91]

    Abdullah R, Xie S, Wang R, Jin C, Du Y, Fu T, Li J, Zhang L, Tan W 2018 Anal. Chem. 91 2074Google Scholar

    [92]

    Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing F L, Tan W 2014 J. Am. Chem. Soc. 136 2731Google Scholar

    [93]

    Jin C, Liu X, Bai H, Wang R, Tan J, Peng X, Tan W 2017 ACS Nano 11 12087Google Scholar

    [94]

    Jin C, He J, Zou J, Xuan W, Fu T, Wang R, Tan W 2019 Nat. Commun. 10 2704Google Scholar

    [95]

    Xie S, Qiu L, Cui L, Liu H, Sun Y, Liang H, Ding D, He L, Liu H, Zhang J, Chen, Z. Zhang X, Tan W 2017 Chem 3 1021Google Scholar

    [96]

    Tan J, Li H, Hu X, Abdullah R, Xie S, Zhang L, Zhao M, Luo Q, Li Y, Sun Z, Yuan Q, Tan W 2019 Chem 5 1775Google Scholar

    [97]

    Zhang L, Abdullah R, H X, Bai H, Fan H, He L, Liang H, Zou J, Liu Y, Zhang, X. Tan W 2019 J. Am. Chem. Soc. 141 4282Google Scholar

    [98]

    Kallenbach N R, Ma R I, Seeman N C 1983 Nature 305 829Google Scholar

    [99]

    Seeman N C 2003 Nature 421 427Google Scholar

    [100]

    Aldaye F A, Palmer A L, Sleiman H F 2008 Science 321 1795Google Scholar

    [101]

    Seeman N C 2010 Annu. Rev. Biochem. 79 6Google Scholar

    [102]

    Wang Z G, Ding B 2014 Accounts Chem. Res. 47 1654Google Scholar

    [103]

    Veneziano R, Moyer T J, Stone M B, Wamhoff E C, Read B J, Mukherjee S, Shepherd T R, Das J, Schief W R, Irvine D J, Bathe M 2020 Nat. Nanotechnol. 15 716Google Scholar

    [104]

    He X, Dong L, Wang W, Lin N, Mi Y 2013 Chem. Commun. 49 2906Google Scholar

    [105]

    Liu Y, Chen Q, Liu J, Yang X, Guo Q, Li L, Liu W, Wang K 2017 Anal. Chem. 89 3590Google Scholar

    [106]

    Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H 2009 Nano Lett. 9 2445Google Scholar

    [107]

    Sadowski J P, Calvert C R, Zhang D Y, Pierce N A, Yin P 2014 ACS Nano 8 3251Google Scholar

    [108]

    Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X 2017 Angew. Chem. 129 12702Google Scholar

    [109]

    Shiu S C C, Fraser L A, Ding Y, Tanner J A 2018 Molecules 23 1695Google Scholar

    [110]

    Um S H, Lee J B, Park N, Kwon, S Y, Umbach C C, Luo D 2006 Nat. Mater. 5 797Google Scholar

    [111]

    Shahbazi M A, Baulethk N, Kwon, S Y, Umbach C C Adv. Therap. 1 1800042

    [112]

    He Y, Tian Y, Chen Y, Deng Z, Ribbe A E, Mao C 2005 Angew. Chem. Int. Ed. 44 6694Google Scholar

    [113]

    He Y, Chen Y, Liu H, Ribbe A E, Mao C 2005 J. Am. Chem. Soc. 127 12202Google Scholar

    [114]

    Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M, Shih W M 2009 Nucleic Acids Res. 37 5001Google Scholar

    [115]

    Bila H, Kurisinkal E E, Bastings M M 2019 Biomater. Sci. 7 532Google Scholar

    [116]

    Rothemund P W K 2006 Nature 440 297Google Scholar

    [117]

    Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M 2016 Science 352 1534Google Scholar

    [118]

    Schreiber R, Do J, Roller E M, Zhang T, Sch, ler, V J, Nickels P C, Feldmann J, Liedl T 2014 Nat. Nanotechnol. 9 74Google Scholar

    [119]

    Zhan P, Wen T, Wang Z G, He Y, Shi J, Wang T. Liu X, Lu G, Ding B 2018 Angew. Chem. Int. Ed. 57 2846Google Scholar

    [120]

    Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R N, Bokor J 2010 J. Am. Chem. Soc. 132 3248Google Scholar

    [121]

    Tian Y, Wang T, Liu W, Xin H L, Li H, Ke Y, M. Shih W, Gang O 2015 Nat. Nanotechnol. 10 637Google Scholar

    [122]

    Jia S, Wang J, Xie M, Sun J, Liu H, Zhang Y, Chao J, Li J, Wang L, Lin J, Gothelf K V, Fan C 2019 Nat. Commun. 10 5597Google Scholar

    [123]

    Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C 2018 Nature 559 593Google Scholar

    [124]

    Schreiber R, Luong N, Fan, Z, Kuzyk A, Nickels P C, Zhang T, Smith D M, Yurke B, Kuang W, Govorov A O, Liedl T 2013 Nat. Commun. 4 1Google Scholar

    [125]

    Urban M J, Dutta P K, Wang P, Duan, X, Shen X, Ding B, Ke Y, Liu N 2016 J. Am. Chem. Soc. 138 5495Google Scholar

    [126]

    Wang P, Meyer T A, Pan V, Dutta P K, Ke Y 2017 Chem 2 359Google Scholar

    [127]

    Loretan M, Domljanovic I, Lakatos M, Re Y 2017 Ding B, Ke Y Materials 13 2185Google Scholar

    [128]

    Fu J, Liu M, Liu Y, Woodbury N W, Yan H 2012 J. Am. Chem. Soc. 134 5516Google Scholar

    [129]

    Liu N, Dai M, Saka S K, Yin P 2019 Nat. Chem. 11 1001Google Scholar

    [130]

    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775Google Scholar

    [131]

    Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240Google Scholar

    [132]

    Geng Y, Liu J, Pound E, Gyawali S, Harb J N, Woolley A T 2011 J. Mater. Chem. 21 12126Google Scholar

    [133]

    Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482Google Scholar

    [134]

    Pilo-Pais M, Goldberg S, Samano E, LaBean T H, Finkelstein G 2011 Nano Lett. 11 3489Google Scholar

    [135]

    Helmi S, Ziegler C, Kauert D J, Seidel R 2014 Nano Lett. 14 6693Google Scholar

    [136]

    Sun W, Boulais E, Hakobyan Y, Wang W L, Guan A, Bathe M, Yin P 2014 Science 346 6210Google Scholar

  • 图 1  (a) 5种天然核酸碱基单体结构; (b) B-DNA双螺旋结构模型; (c) 通过氢键相连的DNA碱基互补配对形式

    Figure 1.  (a) Structure of five natural nucleic acid bases; (b) structure model of B-DNA; (c) DNA base pairing through hydrogen bonds.

    图 2  金属离子与DNA之间的两种作用方式

    Figure 2.  Two modes of interaction between metal ions and DNA.

    图 3  (a) T-Hg2+-T和C-Ag+-C结构示意图; (b) 顺铂与DNA相互作用形成的1, 2-链内加合物[18]; (c) 用于铂药物靶向递送的纳米抗体偶联DNA纳米平台示意图[34]

    Figure 3.  (a) Illustration of T-Hg2+-T and C-Ag+-C complexes induced fluorescence quenching; (b) 1, 2-intrastrand adducts formed between cisplatin and DNA[18]; (c) illustration of a nanobody-conjugated DNA nanoplatform for targeted platinum drug delivery[34].

    图 4  制备不同DNA@Ag-NCs-阳离子聚电解质复合物用于细胞成像以及NIH/3T3细胞的共聚焦激光扫描显微镜成像图[50]

    Figure 4.  Preparation of different fluorescent DNA-AgNCs-cationic polyelectrolyte complexes for cell imaging and confocal laser scanning microscopy images of NIH/3T3 cells[50].

    图 5  (a) 由中心阳离子稳定的4个G碱基和人端粒G-四链体DNA的X射线结构[18]; (b) 金属离子依赖性DNAzyme的结构示意图[62]

    Figure 5.  (a) Illustration of four guanine bases stabilized by a central cation and X-ray structure of human telomeric G-quadruplex DNA[18]; (b) illustration of metal ions dependent DNAzyme[62].

    图 6  (a) (Fc-TT)8序列的合成步骤[86]; (b) Fc人工碱基单体的合成步骤[91]

    Figure 6.  (a) Synthesis procedure of (Fc-TT)8[86]; (b) synthesis procedure of Fc artificial base monomer[91].

    图 7  (a) 适体-Fen两亲分子的示意图以及在不同条件下的ApFAs的TEM图像[96]; (b) DOX/Sgc8-NFs-Fc的制备及其通过类芬顿反应在癌细胞中的自降解过程[97]

    Figure 7.  (a) Schematic of aptamer-Fen amphiphilic molecules and TEM images of ApFAs at different conditions[96]; (b) preparation of DOX/Sgc8-NFs-Fc and its autodegradation process in cancer cells through Fenton-like reaction[97].

    图 8  (a) 二维DNA折纸[116]; (b) 三维多面体DNA折纸[117]

    Figure 8.  (a) 2D DNA origami[116]; (b) 3D polyhedral DNA origami[117].

    图 9  (a) 利用三角折纸对不同大小AuNPs进行空间排布[120]; (b) DNA折纸介导的GOx和HRP的距离可控共组装[128]

    Figure 9.  (a) 2D arrangement of Au NPs using triangle DNA origami[120]; (b) DNA nanostructure-directed coassembly of GOx and HRP enzymes with control over interenzyme distances[128].

    图 10  (a) 基于DNA折纸的金领结纳米结构用于单分子表面增强拉曼散射分析[119]; (b) 用“Action-PAINT”实现单分策略的多点超分辨图案[129]

    Figure 10.  (a) Gold bowtie nanostructures based on DNA origami for single-molecule surface-enhanced Raman scattering analysis[119]; (b) multipoint super-resolution patterning using “Action-PAINT” strategy[129].

    图 11  (a) 使用DNA缩合和固有的金属化图案模拟纳米印刷电路板[122]; (b)利用不同DNA折纸为模板生长SiO2[123]

    Figure 11.  (a) Fabricating nano-printed circuit boards mimics with DNA condensation and intrinsic metallization patterning[122]; (b) growth of SiO2 with different morphology by various DNA origami[123].

  • [1]

    房丰洲 2020 中国机械工程 31 1009Google Scholar

    Fang F 2020 Chinese Mech. Eng. 31 1009Google Scholar

    [2]

    李沫, 李倩, 张健 2016 太赫兹科学与电子信息学报 14 793Google Scholar

    Li M, Li Q, Zhang J 2016 J. Terahertz Sci. Electron. Inf. Technol. 14 793Google Scholar

    [3]

    Jiang D, England C G, Cai W 2016 J. Control. Release 239 27Google Scholar

    [4]

    Dai Z, Leung H M, Lo P K 2017 Small 13 1602881Google Scholar

    [5]

    Lippert B 2000 Coord. Chem. Rev. 200 487Google Scholar

    [6]

    Morris D L 2014 Biomol. Concepts 5 397Google Scholar

    [7]

    Liu J, Lu Y 2004 J. Am. Chem. Soc. 126 12298Google Scholar

    [8]

    Cai W, Xie S, Zhang J, Tang D, Tang Y 2018 Biosens. Bioelectron. 117 3128Google Scholar

    [9]

    Jia X, Li J, Han L, Ren J, Yang X, Wang E 2012 ACS Nano 6 3311Google Scholar

    [10]

    Chen A, Ma S, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 3203Google Scholar

    [11]

    Fu J, Zhang Z, Li G 2019 Chinese Chem. Let. 30 285Google Scholar

    [12]

    Wagenknecht H A 2003 Angew. Chem. Int. Ed. 42 3204Google Scholar

    [13]

    Wheate N J, Walker S, Craig G E, Oun R 2010 Dalton Trans. 39 8113Google Scholar

    [14]

    Erxleben A 2017 CHIMIA 71 102Google Scholar

    [15]

    Belmont P, Constan, J F, Demeunynck M 2001 Chem. Soc. Rev. 30 70Google Scholar

    [16]

    Shamsi M H, Kraatz H B 2013 J. Inorg. Organomet. Polym. Mater. 23 4Google Scholar

    [17]

    Sigel H 1993 Chem. Soc. Rev. 22 255Google Scholar

    [18]

    Pages B J, Ang D L, Wright E P, Aldrich-Wright J R 2015 Dalton Trans. 44 3505Google Scholar

    [19]

    Müller J 2010 Metallomics 2 318Google Scholar

    [20]

    Kellett A, Molphy Z, Slator C, McKee V, Farrell N P 2019 Chem. Soc. Rev. 48 971Google Scholar

    [21]

    Ono A, Togashi H 2004 Angew. Chem. 116 4400Google Scholar

    [22]

    Jiang X, Wang H, Wang H, Yuan R, Chai Y 2016 Anal. Chem. 88 9243Google Scholar

    [23]

    Zhang B, Guo L H 2012 Biosens. Bioelectron. 37 112Google Scholar

    [24]

    Huang J, Gao X, Jia J, Kim J K, Li Z 2014 Anal. Chem. 86 3209Google Scholar

    [25]

    Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamato I, Tanaka Y 2008 Chem. Commun. 39 4825Google Scholar

    [26]

    Zhao C, Qu K, Song Y, Xu C, Ren J, Qu X 2010 Chem. Eur. J. 16 8147Google Scholar

    [27]

    Zheng Y, Yang C, Yang F, Yang X 2014 Anal. Chem. 86 3849Google Scholar

    [28]

    Park S, Sugiyama H 2010 Angew. Chem. Int. Ed. 49 3870Google Scholar

    [29]

    Wang C, Li Y, Jia G, Liu Y, Lu S, Li C 2012 Chem. Commun. 48 6232Google Scholar

    [30]

    Cepeda V, Fuertes M A, Castilla J, Alonso C, Quevedo C, Perez J M 2007 Anti-Cancer. Agents Med. Chem. 7 3Google Scholar

    [31]

    Wang D, Lippard S J 2005 Nat. Rev. Drug Discovery 4 307Google Scholar

    [32]

    Hartinger C G, Zorbas-Seifried S, Jakupec M A, Kynast B, Zorbas H, Keppler B K 2006 J. Inorg. Biochem. 100 891Google Scholar

    [33]

    Komor A C, Barton J K 2013 Chem. Commun. 49 3617Google Scholar

    [34]

    Wu T, Liu J, Liu M, Liu S, Zhao S. Tian R, Wei D, Liu Y, Zhao Y, Xiao H, Ding B 2019 Angew. Chem. In. Ed. 58 14224Google Scholar

    [35]

    Chen Y. Xu J, Su J, Xiang Y, Yuan R, Chai Y 2012 Anal. Chem. 84 7750Google Scholar

    [36]

    Wang H, Yuan Y, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 5797Google Scholar

    [37]

    Li S K, Chen A Y, Chai Y Q, Yuan R, Zhuo Y 2016 Electrochim. Acta 212 767Google Scholar

    [38]

    Kosman J, Juskowiak B 2011 Anal. Chim. Acta 707 7Google Scholar

    [39]

    Yang X, Li T, Li B, Wang E 2010 Analyst 135 71Google Scholar

    [40]

    Huang R, He L, Xia Y, Xu H, Liu C, Xie H, Wang S, Peng Li, Liu Y, Liu Y, He N, Li Z 2019 Small 15 1900735Google Scholar

    [41]

    Golub E, Freeman R, Willner I 2011 Angew. Chem. 123 11914Google Scholar

    [42]

    Chen Y, Phipps M L, Werner J H, Chakraborty S, Martinez J S 2018 Accounts Chem. Res. 51 2756Google Scholar

    [43]

    Petty J T, Zheng J, Hud N V, Dickson R M 2004 J. Am. Chem. Soc. 126 5207Google Scholar

    [44]

    Sharma J, Yeh H C, Yoo H, Werner J H, Martinez J S 2010 Chem. Commun. 46 3280Google Scholar

    [45]

    Lan G Y, Chen W Y, Chang H T 2011 RSC Adv. 1 802Google Scholar

    [46]

    Gwinn E G, O'Neill P, Guerrero A J, Bouwmeester D, Fygenson D K 2008 Adv. Mater. 20 279Google Scholar

    [47]

    Feng L, Huang Z, Ren J, Qu X 2012 Nucleic Acids Res. 40 e122Google Scholar

    [48]

    Liu Y Q, Zhang M, Yin B C, Ye B C 2012 Anal. Chem. 84 5165Google Scholar

    [49]

    Liu J J, Song X R, Wang Y W, Zheng A X, Chen G N, Yang H H 2012 Anal. Chim. Acta 749 70Google Scholar

    [50]

    Lyu D, Li J, Wang X, Guo W, Wang E 2018 Anal. Chem. 91 2050Google Scholar

    [51]

    Thomas A C 2012 Chem. Commun. 48 6845Google Scholar

    [52]

    Qing Z, He X, He D, Wang K, Xu F, Qing T, Yang X 2013 Angew. Chem. In. Ed. 52 9719Google Scholar

    [53]

    Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, Li B 2017 Microchim. Acta 184 773Google Scholar

    [54]

    Ai J, Guo W, Li B, Li T, Li D, Wang E 2012 Talanta 88 450Google Scholar

    [55]

    Fu Y, Zhao X, Zhang J, Li W 2014 J. Phys. Chem. C 118 18116Google Scholar

    [56]

    Li W, Li W, Hu Y, Xia Y, Shen Q, Nie Z, Huang Y, Yao S 2013 Biosen. Bioelectron. 47 345Google Scholar

    [57]

    Wu L L, Wang L Y, Xie Z J, Pan N, Peng C F 2016 Sens. Actuators, B 235 110Google Scholar

    [58]

    Navani N K, Li Y 2006 Curr. Opin. Chem. Biol. 10 272Google Scholar

    [59]

    Stoltenburg R, Reinemann C, Strehlitz B 2007 Biomol. Eng. 24 381Google Scholar

    [60]

    Zhan S, Wu Y, Wang L, Zhan X, Zhou P 2016 Biosens Bioelectron. 86 353Google Scholar

    [61]

    Dass C R, Choong P F, Khachigian L M 2008 Mol. Cancer Ther. 7 243Google Scholar

    [62]

    McGhee C E, Loh K Y, Lu Y 2017 Curr. Opin. Biotechnol. 45 191Google Scholar

    [63]

    Fan H, Zhang X, Lu Y 2017 Sci. China Chem. 60 591Google Scholar

    [64]

    Li L, Xu S, Yan H, Li X, Yazd H S, Li X, Huang T, Cui C, Jiang J, Tan W 2020 Angew. Chem. Int. Ed. 59 2Google Scholar

    [65]

    Pang X, Cui C, Wan S., Jiang Y, Zhang L, Xia L, Li L, Li X, Tan W 2018 Cancers 10 47Google Scholar

    [66]

    Meng H M, Liu H, Kuai H, Peng R, Mo L, Zhang X B 2016 Chem. Soc. Rev. 45 2583Google Scholar

    [67]

    Li S, Xu J, Wang S, Xia X, Chen L, Chen Z 2019 Chinese Chem. Lett. 30 1581Google Scholar

    [68]

    Zhang D, Yin L, Meng Z, Yu A, Guo L, Wang H 2014 Anal. Chim. Acta 812 161Google Scholar

    [69]

    Lei Y M, Huang W X, Zhao M, Chai Y Q, Yuan R, Zhuo Y 2015 Anal. Chem. 87 7787

    [70]

    陈俊俊, 李称, 徐斐, 曹慧, 叶泰, 于劲松, 袁敏 2018 工业微生物 3 11Google Scholar

    Chen J J, Li C, Xu F, Cao H, Ye T, Y u, J S, Yuan M 2018 Industrial Microorganisms 3 11Google Scholar

    [71]

    Williamson J R 1994 Annu. Rev. Bioph. Biom. 23 703Google Scholar

    [72]

    Chung C H, Kim J H, Jung J, Chung B H 2013 Biosen. Bioelectron. 41 827Google Scholar

    [73]

    Peng Y, Li Y, Li L, Zhu J J 2018 J. Hazard. Mater. 359 121Google Scholar

    [74]

    Breaker R R, Joyce G F 1994 Chem. Biol. 1 223Google Scholar

    [75]

    Ihms H E, Lu Y 2012 Humana Press 848 297Google Scholar

    [76]

    Liang W B, Zhuo Y, Zheng Y N, Xiong C Y, Chai Y Q, Yuan R 2017 ACS Appl. Mater. Interfaces 9 39812Google Scholar

    [77]

    Hong C, Kim D M, Baek A, Chung H, Jung W, Kim D E 2015 Chem. Commun. 51 5641Google Scholar

    [78]

    Chen J, Zuehlke A, Deng B, Peng H, Hou X, Zhang H 2017 Anal. Chem. 89 12888Google Scholar

    [79]

    Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W 2015 Angew. Chem. 127 4883Google Scholar

    [80]

    Wang H, Wang H, Wu Q, Liang M, Liu X, Wang F 2019 Chem. Sci. 10 9597Google Scholar

    [81]

    Khakshoor O, Kool E T 2011 Chem. Commun. 47 7018Google Scholar

    [82]

    Pinheiro V B, Holliger P 2012 Curr. Opin. Chem. Biol. 16 245Google Scholar

    [83]

    Nielsen P E, Haaima G 1997 Chem. Soc. Rev. 26 73Google Scholar

    [84]

    Corradini R, Sforza S, Tedeschi T, Totsingan F, Manicardi A, Marchelli R 2011 Curr. Top. Med. Chem. 11 1535Google Scholar

    [85]

    Whittell G R, Manners I 2007 Adv. Mater. 19 3439Google Scholar

    [86]

    James H R 2012 Chem. Commun. 48 12165Google Scholar

    [87]

    Clever G H, Shionoya M 2010 Coord. Chem. Rev. 254 2391Google Scholar

    [88]

    Johannsen S, Megger N, Böhme D, Sige R K, Mn F, Manicard Nat. Chem. 2 229

    [89]

    Zhu T, Wu Q, Chen P, Ding Y 2009 J. Organomet. Chem. 694 21Google Scholar

    [90]

    Li D, Song S, Fan C 2010 Accounts Chem. Res. 43 631Google Scholar

    [91]

    Abdullah R, Xie S, Wang R, Jin C, Du Y, Fu T, Li J, Zhang L, Tan W 2018 Anal. Chem. 91 2074Google Scholar

    [92]

    Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing F L, Tan W 2014 J. Am. Chem. Soc. 136 2731Google Scholar

    [93]

    Jin C, Liu X, Bai H, Wang R, Tan J, Peng X, Tan W 2017 ACS Nano 11 12087Google Scholar

    [94]

    Jin C, He J, Zou J, Xuan W, Fu T, Wang R, Tan W 2019 Nat. Commun. 10 2704Google Scholar

    [95]

    Xie S, Qiu L, Cui L, Liu H, Sun Y, Liang H, Ding D, He L, Liu H, Zhang J, Chen, Z. Zhang X, Tan W 2017 Chem 3 1021Google Scholar

    [96]

    Tan J, Li H, Hu X, Abdullah R, Xie S, Zhang L, Zhao M, Luo Q, Li Y, Sun Z, Yuan Q, Tan W 2019 Chem 5 1775Google Scholar

    [97]

    Zhang L, Abdullah R, H X, Bai H, Fan H, He L, Liang H, Zou J, Liu Y, Zhang, X. Tan W 2019 J. Am. Chem. Soc. 141 4282Google Scholar

    [98]

    Kallenbach N R, Ma R I, Seeman N C 1983 Nature 305 829Google Scholar

    [99]

    Seeman N C 2003 Nature 421 427Google Scholar

    [100]

    Aldaye F A, Palmer A L, Sleiman H F 2008 Science 321 1795Google Scholar

    [101]

    Seeman N C 2010 Annu. Rev. Biochem. 79 6Google Scholar

    [102]

    Wang Z G, Ding B 2014 Accounts Chem. Res. 47 1654Google Scholar

    [103]

    Veneziano R, Moyer T J, Stone M B, Wamhoff E C, Read B J, Mukherjee S, Shepherd T R, Das J, Schief W R, Irvine D J, Bathe M 2020 Nat. Nanotechnol. 15 716Google Scholar

    [104]

    He X, Dong L, Wang W, Lin N, Mi Y 2013 Chem. Commun. 49 2906Google Scholar

    [105]

    Liu Y, Chen Q, Liu J, Yang X, Guo Q, Li L, Liu W, Wang K 2017 Anal. Chem. 89 3590Google Scholar

    [106]

    Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H 2009 Nano Lett. 9 2445Google Scholar

    [107]

    Sadowski J P, Calvert C R, Zhang D Y, Pierce N A, Yin P 2014 ACS Nano 8 3251Google Scholar

    [108]

    Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X 2017 Angew. Chem. 129 12702Google Scholar

    [109]

    Shiu S C C, Fraser L A, Ding Y, Tanner J A 2018 Molecules 23 1695Google Scholar

    [110]

    Um S H, Lee J B, Park N, Kwon, S Y, Umbach C C, Luo D 2006 Nat. Mater. 5 797Google Scholar

    [111]

    Shahbazi M A, Baulethk N, Kwon, S Y, Umbach C C Adv. Therap. 1 1800042

    [112]

    He Y, Tian Y, Chen Y, Deng Z, Ribbe A E, Mao C 2005 Angew. Chem. Int. Ed. 44 6694Google Scholar

    [113]

    He Y, Chen Y, Liu H, Ribbe A E, Mao C 2005 J. Am. Chem. Soc. 127 12202Google Scholar

    [114]

    Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M, Shih W M 2009 Nucleic Acids Res. 37 5001Google Scholar

    [115]

    Bila H, Kurisinkal E E, Bastings M M 2019 Biomater. Sci. 7 532Google Scholar

    [116]

    Rothemund P W K 2006 Nature 440 297Google Scholar

    [117]

    Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M 2016 Science 352 1534Google Scholar

    [118]

    Schreiber R, Do J, Roller E M, Zhang T, Sch, ler, V J, Nickels P C, Feldmann J, Liedl T 2014 Nat. Nanotechnol. 9 74Google Scholar

    [119]

    Zhan P, Wen T, Wang Z G, He Y, Shi J, Wang T. Liu X, Lu G, Ding B 2018 Angew. Chem. Int. Ed. 57 2846Google Scholar

    [120]

    Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R N, Bokor J 2010 J. Am. Chem. Soc. 132 3248Google Scholar

    [121]

    Tian Y, Wang T, Liu W, Xin H L, Li H, Ke Y, M. Shih W, Gang O 2015 Nat. Nanotechnol. 10 637Google Scholar

    [122]

    Jia S, Wang J, Xie M, Sun J, Liu H, Zhang Y, Chao J, Li J, Wang L, Lin J, Gothelf K V, Fan C 2019 Nat. Commun. 10 5597Google Scholar

    [123]

    Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C 2018 Nature 559 593Google Scholar

    [124]

    Schreiber R, Luong N, Fan, Z, Kuzyk A, Nickels P C, Zhang T, Smith D M, Yurke B, Kuang W, Govorov A O, Liedl T 2013 Nat. Commun. 4 1Google Scholar

    [125]

    Urban M J, Dutta P K, Wang P, Duan, X, Shen X, Ding B, Ke Y, Liu N 2016 J. Am. Chem. Soc. 138 5495Google Scholar

    [126]

    Wang P, Meyer T A, Pan V, Dutta P K, Ke Y 2017 Chem 2 359Google Scholar

    [127]

    Loretan M, Domljanovic I, Lakatos M, Re Y 2017 Ding B, Ke Y Materials 13 2185Google Scholar

    [128]

    Fu J, Liu M, Liu Y, Woodbury N W, Yan H 2012 J. Am. Chem. Soc. 134 5516Google Scholar

    [129]

    Liu N, Dai M, Saka S K, Yin P 2019 Nat. Chem. 11 1001Google Scholar

    [130]

    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775Google Scholar

    [131]

    Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240Google Scholar

    [132]

    Geng Y, Liu J, Pound E, Gyawali S, Harb J N, Woolley A T 2011 J. Mater. Chem. 21 12126Google Scholar

    [133]

    Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482Google Scholar

    [134]

    Pilo-Pais M, Goldberg S, Samano E, LaBean T H, Finkelstein G 2011 Nano Lett. 11 3489Google Scholar

    [135]

    Helmi S, Ziegler C, Kauert D J, Seidel R 2014 Nano Lett. 14 6693Google Scholar

    [136]

    Sun W, Boulais E, Hakobyan Y, Wang W L, Guan A, Bathe M, Yin P 2014 Science 346 6210Google Scholar

  • [1] Liu Tian-Yao, Liu Can, Liu Kai-Hui. Atomic-scale manufacture of metre-sized two-dimensional single crystals by interfacial modulation. Acta Physica Sinica, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [2] GAO Hong-Jun. Preface to the special topic—Toward making functional devices at an atomic scale: Fundamentals and frontiers. Acta Physica Sinica, 2021, 70(2): 020101. doi: 10.7498/aps.70.020101
    [3] Ji Jian-Wei, Kazuya Yamamura, Deng Hui. Plasma-assisted polishing for atomic surface fabrication of single crystal SiC. Acta Physica Sinica, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [4] Dai Li-Zhi, Hu Xiao-Xue, Liu Peng, Tian Ye. DNA origami mediated precise fabrication of nanostructures in multi scales. Acta Physica Sinica, 2021, 70(6): 068201. doi: 10.7498/aps.70.20201689
    [5] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [6] Zhong Xiao-Yan, Li Zhuo. Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Acta Physica Sinica, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [7] Zhan Hai-Yang, Xing Fei, Zhang Li. Analysis of optical measurement precision limit for close-to-atomic scale manufacturing. Acta Physica Sinica, 2021, 70(6): 060703. doi: 10.7498/aps.70.20201924
    [8] Guo Qin-Min, Qin Zhi-Hui. Development and application of vapor deposition technology in atomic manufacturing. Acta Physica Sinica, 2021, 70(2): 028101. doi: 10.7498/aps.70.20201436
    [9] Yang Bei, Li Qian, Liu Hua-Jie, Fan Chun-Hai. Recent progress of frame nucleic acids studies towards atomic fabrications. Acta Physica Sinica, 2021, 70(2): 026201. doi: 10.7498/aps.70.20201437
    [10] Wang Lu-Kuo, Duan Fang-Li. Self-repairing process of defect graphene under metal atom catalysis. Acta Physica Sinica, 2019, 68(19): 193101. doi: 10.7498/aps.68.20190995
    [11] Zhang Yi-Chuan, Yang Kuan, Li Huan, Zhu Xiao-Dong. Application of inductively coupled microplasma jet on rapid manufacturing. Acta Physica Sinica, 2016, 65(14): 145201. doi: 10.7498/aps.65.145201
    [12] Lu Jin-Lei, Wang Xiao-Chen, Rong Xiao-Hui, Liu Li-Yu. 3D micro/nano fabrication and its application in cancer biophysics. Acta Physica Sinica, 2015, 64(5): 058705. doi: 10.7498/aps.64.058705
    [13] Yang Yi-Wei, Zhang Hong-Bo, Li Bin. Improved convolution kernel based DFM model for nano-scale circuits. Acta Physica Sinica, 2015, 64(5): 058501. doi: 10.7498/aps.64.058501
    [14] Wang Jin-Meng, Kong De-Peng, Wang Li-Li. Preliminary research on large-size optical polymer image transmitting fiber faceplate. Acta Physica Sinica, 2012, 61(5): 054216. doi: 10.7498/aps.61.054216
    [15] Lin Qiu-Bao, Li Ai-Yu, Wen Yu-Hua, Zhu Zi-Zhong. Magnetism of aluminum atomic chains. Acta Physica Sinica, 2009, 58(11): 7983-7987. doi: 10.7498/aps.58.7983
    [16] Liu Xiu-Xi, Wang Gong-Tang. Fabrication of high voltage thyristor based on silicon organic compounds and metal oxides type isolation protective material. Acta Physica Sinica, 2008, 57(1): 576-580. doi: 10.7498/aps.57.576
    [17] Wang Gong-Tang, Liu Xiu-Xi. Research of the Ga and Al double-impurity doping technique for making fast switching thyristor. Acta Physica Sinica, 2007, 56(8): 4823-4828. doi: 10.7498/aps.56.4823
    [18] GAO JIE, ZHANG YU-ZHEN, CHEN YONG-KUI, LING ZENG-BO. FABRICATION OF JOSEPHSON TUNNEL JUNCTIONS AND STUDIES ON ITS FOUR-TERMINAL RESISTANCE. Acta Physica Sinica, 1978, 27(2): 219-223. doi: 10.7498/aps.27.219
    [19] . Acta Physica Sinica, 1960, 16(3): 168-174. doi: 10.7498/aps.16.168
    [20] . Acta Physica Sinica, 1936, 2(1): 15-21. doi: 10.7498/aps.2.15
Metrics
  • Abstract views:  9941
  • PDF Downloads:  231
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2020
  • Accepted Date:  02 October 2020
  • Available Online:  09 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回