Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band

Li Guo-Qiang Shi Hong-Yu Liu Kang Li Bo-Lin Yi Jian-Jia Zhang An-Xue Xu Zhuo

Citation:

Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band

Li Guo-Qiang, Shi Hong-Yu, Liu Kang, Li Bo-Lin, Yi Jian-Jia, Zhang An-Xue, Xu Zhuo
PDF
HTML
Get Citation
  • The generating of vortex beams in the terahertz (THz) band attracts significant attention due to their applications in high-speed communication and high-resolution imaging. In this article, a novel reflective metasurface working in the THz band is designed to generate four vortex beams with different topological charges in different directions. The unit cell is designed based on the geometric phase, and it consists of two metallic (gold) layers and one dielectric layer in between. The top layer of the unit cell includes an elliptic patch and a circular ring, and the bottom layer of the unit cell is a metallic ground. The reflection efficiency of the unit cell is very high due to the presence of metallic ground. To break through the limitations of traditional methods, the metasurface is a good choice to generate beams that carry orbital angular momentum (OAM). Using the concept of geometric phase, the reflection phase of reflective circular polarization (CP) electromagnetic waves can be controlled in an ingenious way. Owing to the property of the geometric phase, inverse phase shift can be achieved for left-handed circular polarization and right-handed circular polarization waves. By utilizing this trait of geometric phase, one can decompose a linear polarization wave into two orthogonal circular polarization waves and control their properties respectively. By rotating the top layer of the unit cell, 360-degree phase shift and the phase distribution satisfying the requirement for generating the multi-beam multi-mode vortex beam can be achieved. In order to control the direction and the topological charge of each beam, based on the geometric phase, the theory of reflectarray and the phase composition principle, the phase distribution of the reflective metasurface is calculated to provide the phase compensation to make the vortex beams point to certain directions. It is worthwhile to point out that the method presented in this paper provides a way to generate complex multi-mode vortex beams in the THz band. The simulations and measurements show that the metasurface can generate four vortex beams with topological charges l = ± 1 and ± 2 in different directions in the THz band. These results also indicate that our design has great potential applications in wireless communication and high-resolution imaging.
      Corresponding author: Shi Hong-Yu, honyo.shi1987@gmail.com
    [1]

    Karpowicz N, Zhong H, Zhang C L, Lin K L, Hwang J S, Xu J Z, Zhang X C 2005 Appl. Phys. Lett. 86 054105Google Scholar

    [2]

    Gompf B, Gebert N, Heer H, Dressel M 2007 Appl. Phys. Lett. 90 082104Google Scholar

    [3]

    Dobroiu A, Yamashita M, Ohshima Y N 2004 Appl. Opt. 43 5637Google Scholar

    [4]

    Chen Z F, Chen X Q, Tao L, et al. 2018 Nat. Commun. 9 4909Google Scholar

    [5]

    Fujishima M, Amakawa S, Takano K, Katayama K, Yoshida T 2015 IEICE Trans. Electron. E98-C 1091Google Scholar

    [6]

    Yan Y, Xie G D, Lavery M P J, et al. 2014 Nat. Commun. 5 4876Google Scholar

    [7]

    Liu K, Cheng Y Q, Gao Y, Li X, Qin Y L, Wang H Q 2017 Appl. Phys. Lett. 110 164102Google Scholar

    [8]

    Liu K, Li X, Gao Y, Wang H Q, Cheng Y Q 2017 J. Appl. Phys. 122 124903Google Scholar

    [9]

    Zhang Z F, Zheng S L, Chen Y L, Jin X F, Chi H, Zhang X M 2016 Sci. Rep. 6 25418Google Scholar

    [10]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [11]

    Bai X D, Liang X L, Li J P, Wang K, Geng J P, Jin R H 2016 Sci. Rep 6 27815Google Scholar

    [12]

    Shi H Y, Wang L Y, Chen X M, Zhang A X, Xu Z 2019 J. Appl. Phys. 126 063108Google Scholar

    [13]

    Yu S, Li L, Shi G, Zhu C, Zhou X, Shi Y 2016 Appl. Phys. Lett. 108 121903Google Scholar

    [14]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [15]

    Liu S, Zhang L, Yang Q L, et al. 2016 Adv. Opt. Mater. 4 1965Google Scholar

    [16]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [17]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [18]

    Zhao H, Quan B G, Wang X K, Gu C Z, Li J J, Zhang Y 2018 ACS Phot. 5 1726Google Scholar

    [19]

    Jiang Z H, Lei K, Wei H, Werner, D. H 2018 Phys. Rev. Appl. 9 064009Google Scholar

    [20]

    Shi H Y, Li J X, Zhang A X, Jiang Y S, Wang J F, Xu Zhuo, Xia Song 2015 IEEE Ant. Wir. Prop. Lett. 14 104Google Scholar

    [21]

    李佳辉, 张雅婷, 李吉宁, 等 2020 物理学报 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, et al. 2020 Acta Phys. Sin. 69 228101Google Scholar

    [22]

    Deng R Y, Xu S H, Yang F, Li M K 2017 IEEE Ant. Wir. Prop. Lett. 16 884Google Scholar

    [23]

    Liu H X, Xue H, Liu Y J, Li L 2020 Appl. Sci. 10 7219Google Scholar

    [24]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [25]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Sci. 334 333Google Scholar

    [26]

    Nayeri P, Yang F, Elsherbeni A Z 2018 Reflectarray Antennas: Theory, Designs, and Applications (Hoboken: John Wiley & Sons) pp9−13

    [27]

    Shi H Y, Wang L Y, Peng G T, Chen X M, Li J X, Zhu S T, Zhang A X, Xu Z 2019 IEEE Ant. Wir. Prop. Lett. 18 59Google Scholar

  • 图 1  (a) 超表面局部相位分布; (b) 超表面局部仿真模型

    Figure 1.  (a) Partial phase distribution of metasurface; (b) the partial simulation model of metasurface.

    图 2  单元结构图 (a) 上层结构逆时针旋转α; (b) 上层结构尺寸; (c) 透视图

    Figure 2.  Schematics of unit cell: (a) Top layer rotated α degrees counterclockwise; (b) dimensions of top layer; (c) overall view.

    图 3  旋转角度α变化时同极化反射波的反射幅度及相位

    Figure 3.  Reflection amplitude and phase of co-polarized reflected wave versus α.

    图 4  超表面远场分布的仿真结果

    Figure 4.  Distribution of simulated far-field vortex beams.

    图 5  涡旋波束远场幅度(左图)和相位(右图)的仿真结果 (a), (b) l = –1; (c), (d) l = –2; (e), (f) l = 1; (g), (h) l = 2

    Figure 5.  Simulated amplitude (left panel) and phase (right panel) of far-field vortex beams: (a), (b) l = –1; (c), (d) l = –2; (e), (f) l = 1; (g), (h) l = 2.

    图 6  仿真结果的OAM谱分析 (a) l = 1; (b) l = 2; (c) l = –1; (d) l = –2

    Figure 6.  OAM spectrum weight for the simulated results: (a) l = 1; (b) l = 2; (c) l = –1; (d) l = –2.

    图 7  (a)加工的超表面; (b)测试环境; (c) 测试中的超表面

    Figure 7.  (a) Photograph of the fabricated metasurface; (b) photograph of the measurement environment; (c) metasurface under test.

    图 8  涡旋波束近场幅度(上图)和相位(下图)的测试结果 (a), (b) l = –1; (c), (d) l = –2; (e), (f) l = 1; (g), (h) l = 2

    Figure 8.  Measured amplitude (up panel) and phase (down panel) of near-field vortex beams: (a), (b) l = –1; (c), (d) l = –2; (e), (f) l = 1; (g), (h) l = 2.

    图 9  近场测试结果的频谱分析 (a) l = 1; (b) l = 2; (c) l = –1; (d) l = –2

    Figure 9.  OAM spectrum weight for the measured near-field results: (a) l = 1; (b) l = 2; (c) l = –1; (d) l = –2.

  • [1]

    Karpowicz N, Zhong H, Zhang C L, Lin K L, Hwang J S, Xu J Z, Zhang X C 2005 Appl. Phys. Lett. 86 054105Google Scholar

    [2]

    Gompf B, Gebert N, Heer H, Dressel M 2007 Appl. Phys. Lett. 90 082104Google Scholar

    [3]

    Dobroiu A, Yamashita M, Ohshima Y N 2004 Appl. Opt. 43 5637Google Scholar

    [4]

    Chen Z F, Chen X Q, Tao L, et al. 2018 Nat. Commun. 9 4909Google Scholar

    [5]

    Fujishima M, Amakawa S, Takano K, Katayama K, Yoshida T 2015 IEICE Trans. Electron. E98-C 1091Google Scholar

    [6]

    Yan Y, Xie G D, Lavery M P J, et al. 2014 Nat. Commun. 5 4876Google Scholar

    [7]

    Liu K, Cheng Y Q, Gao Y, Li X, Qin Y L, Wang H Q 2017 Appl. Phys. Lett. 110 164102Google Scholar

    [8]

    Liu K, Li X, Gao Y, Wang H Q, Cheng Y Q 2017 J. Appl. Phys. 122 124903Google Scholar

    [9]

    Zhang Z F, Zheng S L, Chen Y L, Jin X F, Chi H, Zhang X M 2016 Sci. Rep. 6 25418Google Scholar

    [10]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [11]

    Bai X D, Liang X L, Li J P, Wang K, Geng J P, Jin R H 2016 Sci. Rep 6 27815Google Scholar

    [12]

    Shi H Y, Wang L Y, Chen X M, Zhang A X, Xu Z 2019 J. Appl. Phys. 126 063108Google Scholar

    [13]

    Yu S, Li L, Shi G, Zhu C, Zhou X, Shi Y 2016 Appl. Phys. Lett. 108 121903Google Scholar

    [14]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [15]

    Liu S, Zhang L, Yang Q L, et al. 2016 Adv. Opt. Mater. 4 1965Google Scholar

    [16]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [17]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [18]

    Zhao H, Quan B G, Wang X K, Gu C Z, Li J J, Zhang Y 2018 ACS Phot. 5 1726Google Scholar

    [19]

    Jiang Z H, Lei K, Wei H, Werner, D. H 2018 Phys. Rev. Appl. 9 064009Google Scholar

    [20]

    Shi H Y, Li J X, Zhang A X, Jiang Y S, Wang J F, Xu Zhuo, Xia Song 2015 IEEE Ant. Wir. Prop. Lett. 14 104Google Scholar

    [21]

    李佳辉, 张雅婷, 李吉宁, 等 2020 物理学报 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, et al. 2020 Acta Phys. Sin. 69 228101Google Scholar

    [22]

    Deng R Y, Xu S H, Yang F, Li M K 2017 IEEE Ant. Wir. Prop. Lett. 16 884Google Scholar

    [23]

    Liu H X, Xue H, Liu Y J, Li L 2020 Appl. Sci. 10 7219Google Scholar

    [24]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [25]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Sci. 334 333Google Scholar

    [26]

    Nayeri P, Yang F, Elsherbeni A Z 2018 Reflectarray Antennas: Theory, Designs, and Applications (Hoboken: John Wiley & Sons) pp9−13

    [27]

    Shi H Y, Wang L Y, Peng G T, Chen X M, Li J X, Zhu S T, Zhang A X, Xu Z 2019 IEEE Ant. Wir. Prop. Lett. 18 59Google Scholar

Metrics
  • Abstract views:  5136
  • PDF Downloads:  299
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2021
  • Accepted Date:  22 June 2021
  • Available Online:  15 August 2021
  • Published Online:  20 September 2021

/

返回文章
返回