Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of aluminum dust counterflow flames

Zhang Jia-Rui Xia Zhi-Xun Fang Chuan-Bo Ma Li-Kun Feng Yun-Chao Oliver Stein Andreas Kronenburg

Citation:

Numerical simulation of aluminum dust counterflow flames

Zhang Jia-Rui, Xia Zhi-Xun, Fang Chuan-Bo, Ma Li-Kun, Feng Yun-Chao, Oliver Stein, Andreas Kronenburg
PDF
HTML
Get Citation
  • Aluminum is widely used as an additive in solid rocket propellants and pyrotechnics due to its outstanding characteristics such as high energy density and combustion temperature, environmentally benign products, and good stability. Recently, aluminum powders are found to present great potential serving as alternative fuel in a low-carbon economy. In this paper, a detailed model including the effects of interphase heat transfer, phase change, heterogeneous surface reactions, homogeneous combustion and radiation is employed to investigate aluminum dust counterflow flames.The numerical model is first validated by simulating the aluminum dust counterflow flames of McGill University. The results indicate that the particle velocity profile is in very good agreement with the experimental measurements. A detailed analysis of estimating the gas phase velocity based on the particle velocity is performed by using Stoke time τs. The results show that a correct value of τs is the key to this method, and using a single value of τs can bring a notable bias to the results, which may also affect the evaluation of flame speed from the counterflow flame. It is suggested that model validation should be carried out by directly comparing the particle velocity profiles from the simulations with those from the experiments. The flame structure of the aluminum dust counterflow flame is discussed, and the interphase heat transfer model is found to have a great influence on the flame for particle sizes smaller than 10 μm. Therefore, when simulating the aluminum dust flames with small particle sizes, the interphase heat transfer model should be selected carefully so that it can cover the transition heat transfer regime. The effect of particle diameter is examined. With the increase of the particle size, the flame speed continues to decrease, and most particles with a diameter of 15 μm cannot be fully burnt in the present configuration. The strain rate is found to be an important factor affecting the dust flame. As the strain rate increases, the residence time of the particles in the flame zone decreases, which ultimately leads the particles to be combusted incompletely. Moreover, the reaction zone of the counterflow flame, marked as AlO, is observed to be shrunk from a large double-peak structure into a small single-peak one along the burner centerline when strain increases. The reference flame speed increases with strain rate, and an unstretched reference flame speed of roughly 29 cm/s can be obtained by linear extrapolation of the predicted results. The effect of radiation is investigated by comparing two cases with and without radiative heat transfer. The results show that the heat loss caused by radiation can lead the temperature to decrease greatly in the gas phase, but the heating effect on the particles by radiation is relativelysmall.
      Corresponding author: Ma Li-Kun, malikun@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52006240), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2020 JJ4665, 2021 JJ30775), and the China Scholarship Council (Grant No. 201903170201)
    [1]

    王宁飞, 苏万兴, 李军伟, 张峤 2011 固体火箭技术 34 61Google Scholar

    Wang N F, Sun W X, Li J W, Zhang Q 2011 J. Solid Rocket Technol. 34 61Google Scholar

    [2]

    李潮隆, 夏智勋, 马立坤, 赵翔, 罗振兵, 段一凡 2021 航空学报 40 26075

    Li C L, Xia Z X, Ma L K, Zhao X, Luo Z B, Duan Y F 2021 Acta Aeronaut. Astronaut. Sin. 40 26075

    [3]

    王德全, 夏智勋, 胡建新 2010 航空学报 31 1074

    Wang D Q, Xia Z X, Hu J X 2010 Acta Aeronaut. Astronaut. Sin. 31 1074

    [4]

    刘龙, 夏智勋, 黄利亚, 马立坤, 陈斌斌 2020 物理学报 69Google Scholar

    Liu L, Xia Z X, Huang L Y, Ma L K, Chen B B 2020 Acta Phys. Sin. 69Google Scholar

    [5]

    杨晋朝, 夏智勋, 胡建新 2013 物理学报 62 074701Google Scholar

    Yang J Z, Xia Z X, Hu J X 2013 Acta Phys. Sin. 62 074701Google Scholar

    [6]

    Zhang J, Xia Z, Ma L, Huang L, Feng Y, Yang D 2021 Energy 214 118889Google Scholar

    [7]

    Bergthorson J M 2018 Prog. Energy Combust. Sci. 68 169Google Scholar

    [8]

    Goroshin S, Mamen J, Higgins A, Bazyn T, Glumac N, Krier H 2007 Proc. Combust. Inst. 31 2011Google Scholar

    [9]

    Lomba R, Laboureur P, Dumand C, Chauveau C, Halter F 2019 Proc. Combust. Inst. 37 3143Google Scholar

    [10]

    Xu W, Jiang Y 2018 Energies 11 3147Google Scholar

    [11]

    邓哲 2016 博士学位论文 (西安: 西北工业大学)

    Deng Z 2016 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [12]

    Risha G, Huang Y, Yetter R, Yang, V 2005 Proceedings of the 43 rd AIAA Aerospace Sciences Meeting and Exhibit Reno, USA, January 10–13, 2005

    [13]

    Goroshin S, Fomenko I, Lee J H S 1996 Symp. (Int.) Combust. 26 1961Google Scholar

    [14]

    Julien P, Whiteley S, Soo M, Goroshin S, Frost D, Bergthorson J 2017 Proc. Combust. Inst. 36 2291Google Scholar

    [15]

    Julien P, Vickery J, Goroshin S, Frost D, Bergthorson J 2015 Combust. Flame 162 4241Google Scholar

    [16]

    Egolfopoulos F N, Hansen N, Ju Y, Kohse-Höinghaus K, Law C, Qi F 2014 Prog. Energy Combust. Sci. 43 36Google Scholar

    [17]

    Huang Y, Risha G A, Yang V, Yetter R 2009 Combust. Flame 156 5Google Scholar

    [18]

    Escot Bocanegra P, Davidenko D, Sarou-Kanian V, Chauveau C, Gökalp I 2010 Exp. Therm. Fluid Sci. 34 299Google Scholar

    [19]

    Han D, Sung H 2019 Combust. Flame 206 112Google Scholar

    [20]

    Zou X, Wang N, Wang J, Feng Y, Shi B 2021 Aerosp. Sci. Technol. 112 106604Google Scholar

    [21]

    Zou X, Wang N, Liao L, Chu Q, Shi B 2020 Fuel 266 116952Google Scholar

    [22]

    Khalili H, Madani S, Mohammadi M, Poorfar, A, Bidabadi M, Pendleton P, 2019 Combust. Explos. Shock Waves 55 65Google Scholar

    [23]

    Najjar F, Ferry J, Haselbacher A, Balachandar S 2006 J. Spacecraft Rockets 43 1258Google Scholar

    [24]

    刘平安, 常浩, 李树声, 王文超 2018 固体火箭技术 41 156

    Liu P A, Chang H, Li S S, Wang W H 2018 J. Solid Rocket Technol. 41 156

    [25]

    Li C, Xia Z, Ma L, Chen B 2019 Energies 12 1235Google Scholar

    [26]

    Li C, Xia Z, Ma L, Chen B 2019 Acta Astronaut. 162 145Google Scholar

    [27]

    Yuen M, Chen L W 1976 Combust. Sci. Technol. 14 147Google Scholar

    [28]

    Ranz W, Marshall W 1952 Chem. Eng. Prog. 48 141

    [29]

    Mohan S, Trunov M, Dreizin E 2008 J. Heat Transfer 130 104505Google Scholar

    [30]

    Crowe C, Schwarzkopf J, Sommerfeld M, Tsuji Y 2011 Multiphase flows with droplets and particles (2nd Ed.) (Boca Raton: CRC Press) p106

    [31]

    Chase Mhttps://janaf.nist.gov/ [2020-9-6]

    [32]

    Gurevich M, Ozerova G, Stepanov A 1970 Combust. Explos. Shock Waves 6 291Google Scholar

    [33]

    Glorian J, Gallier S, Catoire L 2016 Combust. Flame 168 378Google Scholar

    [34]

    Harrison J, Brewster M 2009 J. Thermophys. Heat Transfer 23 630Google Scholar

    [35]

    Modest M 2013 Radiative Heat Transfer (3rd Ed.) (Amsterdam: Academic Press) p26

    [36]

    Lynch P, Krier H, Glumac N 2010 J. Thermophys. Heat Transfer 24 301Google Scholar

    [37]

    Munzar J, Akih-Kumgeh B, Denman B, Zia A, Bergthorson J 2013 Fuel 113 586Google Scholar

  • 图 1  铝颗粒粉尘对冲火焰的计算域和边界条件

    Figure 1.  Computational domain and boundary conditions for the counterflow flame with aluminum particles.

    图 2  不同网格分辨率/时间步长下的铝颗粒粉尘对冲火焰轴向参数分布

    Figure 2.  Average axial profiles across the aluminum counterflow flame under different mesh resolutions and time steps.

    图 3  目标火焰中离散相与气相速度场的计算值与实验测量值的对比

    Figure 3.  Comparison of the velocity profiles of both particles and gas phase of the target aluminum opposed jet flame calculated in the present study and experimental data.

    图 4  冷态对冲射流的气相与离散相速度分布 (a) dp = 5.6 μm; (b) dp = 15 μm

    Figure 4.  Velocity profiles of gas phase and particles in non-reacting counterflow: (a) dp = 5.6 μm; (b) dp = 15 μm.

    图 5  不同粉尘浓度下火焰传播速度的预测值与实验值[14]的对比

    Figure 5.  Comparison of the flame speed calculated in the present study and the experiments in Ref. [14].

    图 6  对冲火焰的时均气相温度(左)和AlO分布(右)和铝颗粒粉尘分布. 颗粒浓度: 500 g/m3, 颗粒直径: 5.6 μm

    Figure 6.  Time-averaged gas temperature (left) and AlO mass fraction fields (right) and instantaneous particle clouds. Dust concentration: 500 g/m3, particle diameter: 5.6 μm.

    图 7  铝颗粒粉尘对冲火焰轴向参数分布

    Figure 7.  Average axial profiles across the aluminum counterflow flame.

    图 8  不同相间传热模型对铝颗粒粉尘对冲火焰轴向参数分布的影响

    Figure 8.  Average axial profiles across the aluminum counterflow flame using different interphase heat transfer models.

    图 9  对冲火焰的时均气相温度(左)和AlO分布(右)和铝颗粒粉尘分布. 颗粒浓度: 500 g/m3, 颗粒直径: 15 μm

    Figure 9.  Time-averaged gas temperature (left) and AlO mass fraction fields (right) and instantaneous particle clouds. Dust concentration: 500 g/m3, particle diameter: 15 μm.

    图 10  铝颗粒粉尘火焰的火焰传播速度随粒径的变化

    Figure 10.  Variations of flame speed of aluminum suspensions with particle size.

    图 11  不同平均拉伸率(SR)下对冲火焰的时均气相温度(左)和AlO分布(右)和铝颗粒粉尘分布. 颗粒浓度: 500 g/m3, 颗粒直径: 5.6 μm

    Figure 11.  Time-averaged gas temperature and AlO mass fraction fields and instantaneous particle clouds of the counterflow flame under different average strain rates (SR). Dust concentration: 500 g/m3, particle diameter: 15 μm.

    图 12  不同相拉伸率对铝颗粒粉尘对冲火焰轴向参数分布的影响

    Figure 12.  Average axial profiles across the aluminum counterflow flame with a dust concentration of 500 g/m3 under different strain rates (SR). SR1 and SR3 stand for the strain rates of 60 and 500 s-1, respectively.

    图 13  铝颗粒粉尘火焰的火焰传播速度随拉伸率的变化. 颗粒浓度: 500 g/m3, 颗粒直径: 5.6 μm

    Figure 13.  Variation of flame speed of aluminum suspensions with strain rates. Dust concentration: 500 g/m3, particle diameter: 15 μm.

    图 14  辐射传热对铝颗粒粉尘对冲火焰轴向参数分布的影响. 颗粒浓度: 500 g/m3, 颗粒直径: 5.6 μm

    Figure 14.  Average axial profiles across the aluminum counterflow flame with and without radiation. Dust concentration: 500 g/m3, particle diameter: 5.6 μm.

    图 15  有/无辐射情况下铝颗粒粉尘中的气离散相温度分布

    Figure 15.  Scatter plot of particle temperatures with and without radiation.

    表 1  铝-空气详细化学反应机理

    Table 1.  Al/O2 gas-phase mechanism.

    编号基元反应A/(cm3·mol–1·s–1)nE/(cal·mol–1)
    1Al + O2 = AlO + O9.72 × 10130159.95
    2Al + O + M = AlO + M3.0 × 1017–1.00
    3AlO + O2 = OAlO + O4.62 × 1014019885.9
    4Al2O3 = AlOAlO + O3.0 × 1015097649.99
    5Al2O3 = OAlO + AlO3.0 × 10150126999.89
    6AlOAlO = AlO + AlO1.0 × 10150117900
    7AlOAlO = Al + OAlO1.0 × 10150148900
    8AlOAlO = AlOAl + O1.0 × 10150104249.94
    9OAlO = AlO + O1.0 × 1015088549.86
    10AlOAl = AlO + Al1.0 × 10150133199.94
    11Al2O3 = Al2O3(l)1.0 × 101400
    DownLoad: CSV

    表 2  网格分辨率及时间步长敏感性分析算例

    Table 2.  Case setups for mesh resolution and time step sensitivity investigations.

    No.网格分辨率/μm时间步长/s计算域维数
    Case 11251 × 10–63
    Case 21251 × 10–62
    Case 31671 × 10–62
    Case 41001 × 10–62
    Case 51251.2 × 10–62
    Case 61255 × 10–72
    DownLoad: CSV
  • [1]

    王宁飞, 苏万兴, 李军伟, 张峤 2011 固体火箭技术 34 61Google Scholar

    Wang N F, Sun W X, Li J W, Zhang Q 2011 J. Solid Rocket Technol. 34 61Google Scholar

    [2]

    李潮隆, 夏智勋, 马立坤, 赵翔, 罗振兵, 段一凡 2021 航空学报 40 26075

    Li C L, Xia Z X, Ma L K, Zhao X, Luo Z B, Duan Y F 2021 Acta Aeronaut. Astronaut. Sin. 40 26075

    [3]

    王德全, 夏智勋, 胡建新 2010 航空学报 31 1074

    Wang D Q, Xia Z X, Hu J X 2010 Acta Aeronaut. Astronaut. Sin. 31 1074

    [4]

    刘龙, 夏智勋, 黄利亚, 马立坤, 陈斌斌 2020 物理学报 69Google Scholar

    Liu L, Xia Z X, Huang L Y, Ma L K, Chen B B 2020 Acta Phys. Sin. 69Google Scholar

    [5]

    杨晋朝, 夏智勋, 胡建新 2013 物理学报 62 074701Google Scholar

    Yang J Z, Xia Z X, Hu J X 2013 Acta Phys. Sin. 62 074701Google Scholar

    [6]

    Zhang J, Xia Z, Ma L, Huang L, Feng Y, Yang D 2021 Energy 214 118889Google Scholar

    [7]

    Bergthorson J M 2018 Prog. Energy Combust. Sci. 68 169Google Scholar

    [8]

    Goroshin S, Mamen J, Higgins A, Bazyn T, Glumac N, Krier H 2007 Proc. Combust. Inst. 31 2011Google Scholar

    [9]

    Lomba R, Laboureur P, Dumand C, Chauveau C, Halter F 2019 Proc. Combust. Inst. 37 3143Google Scholar

    [10]

    Xu W, Jiang Y 2018 Energies 11 3147Google Scholar

    [11]

    邓哲 2016 博士学位论文 (西安: 西北工业大学)

    Deng Z 2016 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [12]

    Risha G, Huang Y, Yetter R, Yang, V 2005 Proceedings of the 43 rd AIAA Aerospace Sciences Meeting and Exhibit Reno, USA, January 10–13, 2005

    [13]

    Goroshin S, Fomenko I, Lee J H S 1996 Symp. (Int.) Combust. 26 1961Google Scholar

    [14]

    Julien P, Whiteley S, Soo M, Goroshin S, Frost D, Bergthorson J 2017 Proc. Combust. Inst. 36 2291Google Scholar

    [15]

    Julien P, Vickery J, Goroshin S, Frost D, Bergthorson J 2015 Combust. Flame 162 4241Google Scholar

    [16]

    Egolfopoulos F N, Hansen N, Ju Y, Kohse-Höinghaus K, Law C, Qi F 2014 Prog. Energy Combust. Sci. 43 36Google Scholar

    [17]

    Huang Y, Risha G A, Yang V, Yetter R 2009 Combust. Flame 156 5Google Scholar

    [18]

    Escot Bocanegra P, Davidenko D, Sarou-Kanian V, Chauveau C, Gökalp I 2010 Exp. Therm. Fluid Sci. 34 299Google Scholar

    [19]

    Han D, Sung H 2019 Combust. Flame 206 112Google Scholar

    [20]

    Zou X, Wang N, Wang J, Feng Y, Shi B 2021 Aerosp. Sci. Technol. 112 106604Google Scholar

    [21]

    Zou X, Wang N, Liao L, Chu Q, Shi B 2020 Fuel 266 116952Google Scholar

    [22]

    Khalili H, Madani S, Mohammadi M, Poorfar, A, Bidabadi M, Pendleton P, 2019 Combust. Explos. Shock Waves 55 65Google Scholar

    [23]

    Najjar F, Ferry J, Haselbacher A, Balachandar S 2006 J. Spacecraft Rockets 43 1258Google Scholar

    [24]

    刘平安, 常浩, 李树声, 王文超 2018 固体火箭技术 41 156

    Liu P A, Chang H, Li S S, Wang W H 2018 J. Solid Rocket Technol. 41 156

    [25]

    Li C, Xia Z, Ma L, Chen B 2019 Energies 12 1235Google Scholar

    [26]

    Li C, Xia Z, Ma L, Chen B 2019 Acta Astronaut. 162 145Google Scholar

    [27]

    Yuen M, Chen L W 1976 Combust. Sci. Technol. 14 147Google Scholar

    [28]

    Ranz W, Marshall W 1952 Chem. Eng. Prog. 48 141

    [29]

    Mohan S, Trunov M, Dreizin E 2008 J. Heat Transfer 130 104505Google Scholar

    [30]

    Crowe C, Schwarzkopf J, Sommerfeld M, Tsuji Y 2011 Multiphase flows with droplets and particles (2nd Ed.) (Boca Raton: CRC Press) p106

    [31]

    Chase Mhttps://janaf.nist.gov/ [2020-9-6]

    [32]

    Gurevich M, Ozerova G, Stepanov A 1970 Combust. Explos. Shock Waves 6 291Google Scholar

    [33]

    Glorian J, Gallier S, Catoire L 2016 Combust. Flame 168 378Google Scholar

    [34]

    Harrison J, Brewster M 2009 J. Thermophys. Heat Transfer 23 630Google Scholar

    [35]

    Modest M 2013 Radiative Heat Transfer (3rd Ed.) (Amsterdam: Academic Press) p26

    [36]

    Lynch P, Krier H, Glumac N 2010 J. Thermophys. Heat Transfer 24 301Google Scholar

    [37]

    Munzar J, Akih-Kumgeh B, Denman B, Zia A, Bergthorson J 2013 Fuel 113 586Google Scholar

  • [1] Wang Mei-Qiao, Xu Ze-Kun, Wu Fu-Yuan, Zhang Jie. Formation of fast-ignition hotspots and propagartion of burning waves in pre-compressed isochoric plasmas. Acta Physica Sinica, 2024, 73(5): 055204. doi: 10.7498/aps.73.20231474
    [2] Liang Ke-Da, Liu Teng-Fei, Chang Zhe, Zhang Meng, Li Zhi-Xin, Huang Song-Song, Wang Jing. Inversion models of internal solitary wave propagation speed in ocean based on least squares method and support vector machine. Acta Physica Sinica, 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [3] Yang Xin-Yu, Peng Zhi-Min, Ding Yan-Jun, Du Yan-Jun. Synchronic measurements of temperatures and concentrations of OH, NH, and NO in flames based on broadband ultraviolet absorption spectroscopy. Acta Physica Sinica, 2022, 71(17): 173301. doi: 10.7498/aps.71.20220208
    [4] Shan Liang, Zhao Teng-Fei, Huang Hui-Yun, Hong Bo, Kong Ming. Flame 3D temperature field reconstruction based on Damped LSQR-LMBC. Acta Physica Sinica, 2022, 71(4): 040701. doi: 10.7498/aps.71.20211421
    [5] Flame 3D temperature field reconstruction based on damped LSQR-LMBC. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211421
    [6] Cai Ji-Xing, Guo Ming, Qu Xu, Li He, Jin Guang-Yong. Gas dynamics and combustion wave expanding velocity of laser induced plasma. Acta Physica Sinica, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [7] Chen Fu-Zhen, Qiang Hong-Fu, Miao Gang, Gao Wei-Ran. Numerical simulation of fuel dispersal into cloud and its combustion and explosion with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [8] Liu Yu-Feng, Zhang Lian-Shui, He Wan-Lin, Huang Yu, Du Yan-Jun, Lan Li-Juan, Ding Yan-Jun, Peng Zhi-Min. Spectroscopic study on the laser-induced breakdown flame plasma. Acta Physica Sinica, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [9] Li Xin-Yu, Dai Zheng-Hua, Xu Yue-Ting, Li Chao, Wang Fu-Chen. Mode and hysteresis of laminar methane/oxygen inverse diffusion flame. Acta Physica Sinica, 2015, 64(2): 024704. doi: 10.7498/aps.64.024704
    [10] Chen Ran, Liu A-Di, Shao Lin-Ming, Hu Guang-Hai, Jin Xiao-Li. Analysis on the azimuthal velocity fluctuation of drift-wave turbulence and zonal flow via dynamic programming based time-delay estimation technique in a linear magnetized plasma device. Acta Physica Sinica, 2014, 63(18): 185201. doi: 10.7498/aps.63.185201
    [11] Yang Jin-Zhao, Xia Zhi-Xun, Hu Jian-Xin. Numerical studies of ignition and combustion of pulverized magnesium particle cloud. Acta Physica Sinica, 2013, 62(7): 074701. doi: 10.7498/aps.62.074701
    [12] Yuan Qiang, Hu Dong-Xia, Zhang Xin, Zhao Jun-Pu, Hu Si-De, Huang Wen-Hui, Wei Xiao-Feng. Performance of shock ignition with varying ignitor. Acta Physica Sinica, 2011, 60(4): 045207. doi: 10.7498/aps.60.045207
    [13] Liu Dong, Yan Jian-Hua, Wang Fei, Huang Qun-Xing, Chi Yong, Cen Ke-Fa. Simultaneous experimental reconstruction of three-dimensional flame soot temperature and volume fraction distributions. Acta Physica Sinica, 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [14] Peng Zhi-Min, Ding Yan-Jun, Zhai Xiao-Dong. Measurements of rotational and vibrational temperatures based on flame emission spectroscopy. Acta Physica Sinica, 2011, 60(10): 104702. doi: 10.7498/aps.60.104702
    [15] Yang Yi-Tao, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Zhang Li-Qing. Synthesis of metallic nanoparticles in spinel via defects induced by the inert-gas-ion implantation. Acta Physica Sinica, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [16] Huang Qun-Xing, Liu Dong, Wang Fei, Yan Jian-Hua, Chi Yong, Cen Ke-Fa. Soot volume fraction and temperature reconstruction model research for asymmetric diffusive C-H flame. Acta Physica Sinica, 2008, 57(12): 7928-7936. doi: 10.7498/aps.57.7928
    [17] Huang Qun-Xing, Liu Dong, Wang Fei, Yan Jian-Hua, Chi Yong, Cen Ke-Fa. Study on three-dimensional flame temperature distribution reconstruction based on truncated singular value decomposition. Acta Physica Sinica, 2007, 56(11): 6742-6748. doi: 10.7498/aps.56.6742
    [18] Experimental study of wear resistance of nickel based WC composite coating prepared by flame spraying and remelting. Acta Physica Sinica, 2007, 56(12): 7320-7329. doi: 10.7498/aps.56.7320
    [19] Li Hui, Xie Er-Qing, Zhang Hong-Liang, Pan Xiao-Jun, Zhang Yong-Zhe. Optical properties of ZnO and MgxZn1-xO nanoparticles prepared by flame spray synthesis. Acta Physica Sinica, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [20] HUANG BEN-LI, PEI AI-LI, WANG CHUN-DEH. EFFECTS OF ALCOHOLS ON ATOMIC-ABSORPTION AND EMISSION FLAME PHOTOMETRIC DETERMINATION OF SODIUM. Acta Physica Sinica, 1966, 22(7): 733-742. doi: 10.7498/aps.22.733
Metrics
  • Abstract views:  3445
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2021
  • Accepted Date:  03 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回