Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of strain-induced magnetic properties changes for metal magnetic memory technology on atomic scale

Wang Si-Yuan Liang Tian-Shou Shi Peng-Peng

Citation:

Mechanism of strain-induced magnetic properties changes for metal magnetic memory technology on atomic scale

Wang Si-Yuan, Liang Tian-Shou, Shi Peng-Peng
PDF
HTML
Get Citation
  • Magnetic non-destructive testing technology is widely used to detect stresses and defects in ferromagnetic materials based on the magneto-mechanical coupling effect. In the existing studies, calculated are the magnetic moment variations of the α-Fe system under axial tension and compression by using first-principles study, and the magneto-mechanical coupling mechanism is preliminarily discussed at an atomic level for the magnetic testing technology. In this work, taking the more complex doping systems Fe-C and Fe-Mn for examples, under different loading conditions of tension, compression and shearing, the coupling mechanisms such as the magnetic moment changes in different types of atomic doping systems are discussed in detail. The results show that the α-Fe and doping systems follow different changing laws of magnetic moments and energy under different types of strains. The detailed analyses of the density of states, the band structure, and the atomic magnetic moment show that doping elements change the morphology of band structure and the peak value of density of states by affecting the magnetic moment of Fe atoms, which leads the changing laws of magnetic moment and energy to be different from each other. In this work, discussed are the magneto-mechanical effects on the atomic level for ferromagnetic materials with different loading types, different doping elements and different element content. The results can be used as an important part of the multi-field coupling mechanism for magnetic testing technology.
      Corresponding author: Shi Peng-Peng, shipengpeng@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11802225), the Basic Research Program of Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JQ-494), and the China Postdoctoral Science Foundation (Grant No. 2019M663935XB).
    [1]

    De Sousa J M, Aguiar A L, Girão E C, Fonseca A F, Souza Filho A G, Galvão D S 2021 Chem. Phys 542 111052Google Scholar

    [2]

    李君, 刘立胜, 徐爽, 张金咏 2020 物理学报 69 043102Google Scholar

    Li J, Liu L S, Xu S, Zhang J Y 2020 Acta Phys. Sin. 69 043102Google Scholar

    [3]

    Hadji S, Bouhemadou A, Haddadi K, Cherrad D, Khenata R, Bin-Omran S, Al-Douri Y 2020 Physica B 589 412213Google Scholar

    [4]

    Kohn W, Sham L J 1965 Phys. Rev 140 A1133Google Scholar

    [5]

    Han Z K, Sarker D, Ouyang R, Mazheika A, Gao Y, Levchenko S V 2021 Nat. Commun 12 1833Google Scholar

    [6]

    祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉 2021 物理学报 70 178101Google Scholar

    Zhu P, Zhang Q, Gou H S, Wang P P, Shao P Z, Kobayashi Equo, Wu G H 2021 Acta Phys. Sin. 70 178101Google Scholar

    [7]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat. Commun 12 1Google Scholar

    [8]

    Shiojiri D, Iida T, Kadono T, Yamaguchi M, Kodama T, Yamaguchi S, Imai Y 2021 J. Appl. Phys 129 115101Google Scholar

    [9]

    Kohl M, Krevet B, Yeduru S R, Ezer Y, Sozinov A 2011 Smart Mater. Struct 20 094009Google Scholar

    [10]

    Daniel L, Rekik M, Hubert O 2014 Arch. Appl. Mech 84 1307Google Scholar

    [11]

    Shi P P, Zheng X J 2016 Nondestruct. Test. Eval 31 45Google Scholar

    [12]

    Jiles D C 1995 J. Phys. D 28 1537Google Scholar

    [13]

    Joule J P 1847 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 30 76Google Scholar

    [14]

    Corte-Leon P, Zhukova V, Blanco J M, et al. 2021 J. Alloys Compd 855 157460Google Scholar

    [15]

    Zhang J M, Nie Y Z, Wang X G, Xia Q L, Guo G H 2021 J. Magn. Magn. Mater 525 167687Google Scholar

    [16]

    Ray R B, Kaphle G C, Rai R K, Yadav D K, Paudel R, Paudyal D 2021 J. Alloys Compd 867 158906Google Scholar

    [17]

    Shi P P, Su S Q, Chen Z M 2020 J. Nondestruct. Eval 39 1Google Scholar

    [18]

    Dubov A A 2012 Chem. Petrol. Eng 47 837Google Scholar

    [19]

    Tanasienko A G, Suntsov S I, Dubov A A 2002 Chem. Petrol. Eng 38 624Google Scholar

    [20]

    Kuleev V G, Dubov A A, Lopatin V V 2002 Russ. J. Nondestruct. Test 38 343Google Scholar

    [21]

    Dubov A A 2015 Metallurgist 59 164Google Scholar

    [22]

    时朋朋, 郝帅 2020 物理学报 70 034101Google Scholar

    Shi P P, Hao S 2020 Acta Phys. Sin. 70 034101Google Scholar

    [23]

    时朋朋 2021 力学学报 70 3341Google Scholar

    Shi P P 2021 Chin. J. Theor. Appl. Mech. 70 3341Google Scholar

    [24]

    Yang L J, Liu B, Chen L J 2013 NDT & E Int. 55 15Google Scholar

    [25]

    杨理践, 刘斌, 高松巍, 陈立佳 2013 物理学报 62 086201Google Scholar

    Yang L J, Liu B, Gao S W, Chen L J 2013 Acta Phys. Sin. 62 086201Google Scholar

    [26]

    Essaoud S S, Jbara A S 2021 J. Magn. Magn. Mater 531 167984Google Scholar

    [27]

    Maskar E, Lamrani A F, Belaiche M, Es-Smairi A, Khuili M, Al-Qaisi S, Rai D P 2021 Surf. Interfaces 24 101051Google Scholar

    [28]

    Payne M C, Teter M P, Allan D C 1992 Rev. Mod. Phys 64 1045Google Scholar

    [29]

    Milman V, Winkler B, White J A 2000 Int. J. Quantum Chem 77 895

    [30]

    Stewart J C, Matthew D S, Chris J P, Phil J H, Matt I J, Keith R, Mike C P 2005 Z. Kristallogr 220 567Google Scholar

    [31]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys 110 5029Google Scholar

    [32]

    Marzari N, Vanderbilt D, Payne M C 1997 Phys. Rev. Lett 79 1337Google Scholar

    [33]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci 49 299Google Scholar

    [34]

    Rahman G, Kim I G 2008 J. Magn 13 124Google Scholar

    [35]

    Kittel C 2021 Introduction to Solid State Physics (8th Ed.)

    [36]

    Fang C M, Van Huis M A, Sluiter M H F, Zandbergen H W 2010 Acta Mater 58 2968Google Scholar

  • 图 1  拉伸、压缩和剪切作用引起的α-Fe磁矩(M)和能量增量(ΔE)的变化图 (a) α-Fe的2 × 2 × 2超胞在拉伸、压缩和剪切应变作用下的计算模型; (b) 磁矩变化; (c) 能量增量

    Figure 1.  Variation of α-Fe magnetic moment (M) and energy increment (ΔE) induced by tension, compression and shear strain: (a) Model of α-Fe 2 × 2 × 2 supercell under tensile, compressive and shear strain; (b) Change of magnetic moment; (c) Increment of energy.

    图 A1  收敛性测试 (a) 截断能收敛测试; (b) k点取值收敛测试; (c) α-Fe晶胞的能量收敛过程; (d) Fe-C(1)晶胞的能量收敛过程

    Figure A1.  Convergence test: (a) Cut-off energy test; (b) k-point value test; (c) Energy convergence process of α-Fe; (d) Energy convergence process of Fe-C(1).

    图 2  掺杂元素对α-Fe体系磁特性的影响 (a) 2 × 2 × 2超晶胞及掺杂1个或2个原子的掺杂体系模型; (b) 不同类型应变作用下的能量增量 ΔE; (c) 不同类型应变作用下磁矩M的变化

    Figure 2.  Effect of doping elements on magnetic properties of the α-Fe system: (a) 2 × 2 × 2 supercell structure and supercell structure doped with one or two atoms; (b) Energy increments (ΔE)under different types of strain; (c) Change of magnetic moment under different types of strain.

    图 3  拉伸、压缩和剪切应变作用下α-Fe的能带结构图 (a) 初始状态; (b) 5%拉应变; (c)5 %压应变; (d) 5%剪应变

    Figure 3.  Band structure diagram of α-Fe under tensile, compression and shear strain: (a) Initial state; (b) 5% tensile strain; (c) 5% compressive strain; (d) 5% shear strain.

    图 A3  无应变作用下α-Fe及其Fe-C和Fe-Mn掺杂体系的能带结构 (a) α-Fe; (b) Fe-C(1); (c) Fe-C(2); (d) Fe-Mn

    Figure A3.  Band structure of α-Fe and its C- and Mn-doped systems without strain: (a) α-Fe; (b) Fe-C(1); (c) Fe-C(2); (d) Fe-Mn.

    图 4  电子态密度图 (a) 不同体系自旋态密度; (b) 不同类型应变对掺杂体系DOS峰值的影响; (c) 不同类型应变加载对掺杂体系双峰间距的影响

    Figure 4.  The density of states diagram: (a) Spin DOS of different systems; (b) Effects of different types of strain on DOS peaks of doping systems; (c) Effects of different types of strain loading on the spacing of double peaks in doping systems.

    图 A5  掺杂体系在不同应变类型作用下(拉伸、压缩和剪切)的自旋态密度图 (a) Fe-C(1)体系DOS; (b) Fe-C(2)体系DOS; (c) Fe-Mn体系DOS

    Figure A5.  The spin density distribution of states of doping systems under different types of strain (tensile, compression and shear strain): (a) DOS changes of Fe-C(1) doping system; (b) DOS changes of Fe-C(1) doping system; (c) DOS changes of Fe-Mn doping system.

    图 5  C和Mn掺杂体系原子磁矩随三种不同应变加载方式(拉伸、压缩和剪切)的变化

    Figure 5.  Variation of atomic magnetic moment with the three different types of strain loading (Tensile, compression and shear strain) for C- and Mn-doped systems.

    图 A2  SnO2能带结构图

    Figure A2.  SnO2 band structure diagram.

    图 A4  不同轨道电子分波态密度 (a) Fe-C(1)分波态密度; (b) Fe-C(2)分波态密度; (c) Fe-Mn分波态密度

    Figure A4.  Different orbitals of PDOS: (a) PDOS of Fe-C(1); (b) PDOS of Fe-C(2); (c) PDOS of Fe-Mn.

    表 A3  不同应变作用下α-Fe体系的磁矩和能量变化

    Table A3.  The magnetic moments and energies of a-Fe under different types of strain.

    Tensile strain Compressive strain Shear strain
    StrainMagnetic moment/
    (${\mu _{\text{B}}}{\cdot\text{ato}}{{\text{m}}^{ - 1}}$)
    Energy/
    eV
    Magnetic moment/
    (${\mu _{\text{B}}}{\cdot\text{ato}}{{\text{m}}^{ - 1}}$)
    Energy/
    eV
    Magnetic moment/
    (${\mu _{\text{B}}}{\cdot\text{ato}}{{\text{m}}^{ - 1}}$)
    Energy/
    eV
    1%2.1133–862.91762.1121–862.91782.1150–862.9175
    2%2.1168–862.91572.1114–862.91632.1265–862.9152
    3%2.1294–862.91252.1116–862.91572.1498–862.9112
    4%2.1303–862.91052.1121–862.91262.1878–862.9063
    5%2.1549–862.90812.1135–862.90972.2195–862.9006
    DownLoad: CSV

    表 A1  平衡态α-Fe及掺杂体系的自旋极化能

    Table A1.  Spin polarization energy of equilibrium α-Fe (BCC) and doping systems.

    Energy stateFe(bcc)Fe-C(1)Fe-C(2)Fe-Mn
    spin-polarized–862.9295–818.6694–774.3459–987.8903
    non-spin-polarized–862.4899–818.5050–774.3104–987.8903
    ΔE–0.4396–0.1644–0.0355–1×10–5
    DownLoad: CSV

    表 A2  平衡态α-Fe的晶格常数、原子体积和磁矩

    Table A2.  The lattice constant, atomic volume, and magnetic moment of equilibrium α-Fe(BCC).

    Structural properties
    of α-Fe (BCC)
    Lattice constant/
    Å
    Atomic volume/Å3Magnetic moment/
    (${\mu _{\text{B} } }{\cdot\text{ato} }{ {\text{m} }^{ - 1} }$)
    Present results 2.83311.362.17
    Reference results[25]2.81311.132.17
    [34]2.8311.332.17
    Experimental results[35]2.8711.782.22
    [36]2.86611.772.12
    DownLoad: CSV

    表 A4  三种不同应变加载方式下掺杂体系能量的变化(eV)

    Table A4.  Variation of the energy in doping systems under three different types of strain loading (eV).

    StrainTensile strainCompressive strainShear strain
    Fe-C(1)Fe-C(2)Fe-MnFe-C(1)Fe-C(2)Fe-Mn Fe-C(1)Fe-C(2)Fe-Mn
    1%–818.5083–774.3584–987.8857 –818.5039–774.3536–987.9533 –818.5257–774.3450–987.9536
    2%–818.5077–774.3543–987.8845–818.4965–774.3507–987.9679–818.5245–774.3420–987.9504
    3%–818.5016–774.3457–987.8827–818.4882–774.3469–987.9711–818.5186–774.3372–987.9446
    4%–818.5009–774.3446–987.8799–818.4794–774.3454–987.9652–818.5097–774.3307–987.9367
    5%–818.4967–774.3398–987.8762–818.4723–774.3425–987.9569–818.5026–774.3223–987.9267
    DownLoad: CSV

    表 A5  不同应变作用下掺杂体系的磁矩变化

    Table A5.  Variation of the total magnetic moment of doping systems under different strain states ($ {\mu }_{\mathrm{B}}) $.

    StrainTensile strain Compressive strain Shear strain
    Fe-C(1)Fe-C(2)Fe-Mn Fe-C(1)Fe-C(2)Fe-Mn Fe-C(1)Fe-C(2)Fe-Mn
    1%2.04331.98002.1084 2.00311.97531.9925 2.02991.97621.9959
    2%2.08871.98432.11421.96451.96932.10042.02421.97681.9974
    3%2.08871.98562.12261.91751.96942.11521.95661.97982.0006
    4%2.09271.98802.12551.87911.96422.12481.95641.98472.0037
    5%2.09521.98942.13431.85731.94362.13271.94441.99052.0118
    DownLoad: CSV
  • [1]

    De Sousa J M, Aguiar A L, Girão E C, Fonseca A F, Souza Filho A G, Galvão D S 2021 Chem. Phys 542 111052Google Scholar

    [2]

    李君, 刘立胜, 徐爽, 张金咏 2020 物理学报 69 043102Google Scholar

    Li J, Liu L S, Xu S, Zhang J Y 2020 Acta Phys. Sin. 69 043102Google Scholar

    [3]

    Hadji S, Bouhemadou A, Haddadi K, Cherrad D, Khenata R, Bin-Omran S, Al-Douri Y 2020 Physica B 589 412213Google Scholar

    [4]

    Kohn W, Sham L J 1965 Phys. Rev 140 A1133Google Scholar

    [5]

    Han Z K, Sarker D, Ouyang R, Mazheika A, Gao Y, Levchenko S V 2021 Nat. Commun 12 1833Google Scholar

    [6]

    祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉 2021 物理学报 70 178101Google Scholar

    Zhu P, Zhang Q, Gou H S, Wang P P, Shao P Z, Kobayashi Equo, Wu G H 2021 Acta Phys. Sin. 70 178101Google Scholar

    [7]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat. Commun 12 1Google Scholar

    [8]

    Shiojiri D, Iida T, Kadono T, Yamaguchi M, Kodama T, Yamaguchi S, Imai Y 2021 J. Appl. Phys 129 115101Google Scholar

    [9]

    Kohl M, Krevet B, Yeduru S R, Ezer Y, Sozinov A 2011 Smart Mater. Struct 20 094009Google Scholar

    [10]

    Daniel L, Rekik M, Hubert O 2014 Arch. Appl. Mech 84 1307Google Scholar

    [11]

    Shi P P, Zheng X J 2016 Nondestruct. Test. Eval 31 45Google Scholar

    [12]

    Jiles D C 1995 J. Phys. D 28 1537Google Scholar

    [13]

    Joule J P 1847 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 30 76Google Scholar

    [14]

    Corte-Leon P, Zhukova V, Blanco J M, et al. 2021 J. Alloys Compd 855 157460Google Scholar

    [15]

    Zhang J M, Nie Y Z, Wang X G, Xia Q L, Guo G H 2021 J. Magn. Magn. Mater 525 167687Google Scholar

    [16]

    Ray R B, Kaphle G C, Rai R K, Yadav D K, Paudel R, Paudyal D 2021 J. Alloys Compd 867 158906Google Scholar

    [17]

    Shi P P, Su S Q, Chen Z M 2020 J. Nondestruct. Eval 39 1Google Scholar

    [18]

    Dubov A A 2012 Chem. Petrol. Eng 47 837Google Scholar

    [19]

    Tanasienko A G, Suntsov S I, Dubov A A 2002 Chem. Petrol. Eng 38 624Google Scholar

    [20]

    Kuleev V G, Dubov A A, Lopatin V V 2002 Russ. J. Nondestruct. Test 38 343Google Scholar

    [21]

    Dubov A A 2015 Metallurgist 59 164Google Scholar

    [22]

    时朋朋, 郝帅 2020 物理学报 70 034101Google Scholar

    Shi P P, Hao S 2020 Acta Phys. Sin. 70 034101Google Scholar

    [23]

    时朋朋 2021 力学学报 70 3341Google Scholar

    Shi P P 2021 Chin. J. Theor. Appl. Mech. 70 3341Google Scholar

    [24]

    Yang L J, Liu B, Chen L J 2013 NDT & E Int. 55 15Google Scholar

    [25]

    杨理践, 刘斌, 高松巍, 陈立佳 2013 物理学报 62 086201Google Scholar

    Yang L J, Liu B, Gao S W, Chen L J 2013 Acta Phys. Sin. 62 086201Google Scholar

    [26]

    Essaoud S S, Jbara A S 2021 J. Magn. Magn. Mater 531 167984Google Scholar

    [27]

    Maskar E, Lamrani A F, Belaiche M, Es-Smairi A, Khuili M, Al-Qaisi S, Rai D P 2021 Surf. Interfaces 24 101051Google Scholar

    [28]

    Payne M C, Teter M P, Allan D C 1992 Rev. Mod. Phys 64 1045Google Scholar

    [29]

    Milman V, Winkler B, White J A 2000 Int. J. Quantum Chem 77 895

    [30]

    Stewart J C, Matthew D S, Chris J P, Phil J H, Matt I J, Keith R, Mike C P 2005 Z. Kristallogr 220 567Google Scholar

    [31]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys 110 5029Google Scholar

    [32]

    Marzari N, Vanderbilt D, Payne M C 1997 Phys. Rev. Lett 79 1337Google Scholar

    [33]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci 49 299Google Scholar

    [34]

    Rahman G, Kim I G 2008 J. Magn 13 124Google Scholar

    [35]

    Kittel C 2021 Introduction to Solid State Physics (8th Ed.)

    [36]

    Fang C M, Van Huis M A, Sluiter M H F, Zandbergen H W 2010 Acta Mater 58 2968Google Scholar

  • [1] Ren Yan-Ying, Li Ya-Ning, Liu Hong-Sheng, Xu Nan, Guo Kun, Xu Zhao-Hui, Chen Xin, Gao Jun-Feng. Regulation of magnetic moment and magnetic anisotropy of magnetite by doping transition metal elements. Acta Physica Sinica, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [3] Luo Xu, Wang Li-Hong, Lü Liang, Cao Shu-Feng, Dong Xue-Cheng, Zhao Jian-Guo. Forward model of metal magnetic memory testing based on equivalent surface magnetic charge theory. Acta Physica Sinica, 2022, 71(15): 154101. doi: 10.7498/aps.71.20220176
    [4] Shi Peng-Peng, Hao Shuai. Analytical solution of magneto-mechanical magnetic dipole model for metal magnetic memory method. Acta Physica Sinica, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [5] Chen Chuan-Wen, Xiang Yang. Magnetization distribution in exchange spring bilayers with mutually orthogonal anisotropies. Acta Physica Sinica, 2016, 65(12): 127502. doi: 10.7498/aps.65.127502
    [6] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Study on magnetic moment of cation-vacancy. Acta Physica Sinica, 2015, 64(17): 176101. doi: 10.7498/aps.64.176101
    [7] Dong Xue, Zhang Guo-Ying, Xia Wang-Suo, Huang Yi-Jia, Hu Feng. Study on the magnetic and magnetocaloric effects of Dy3Al5O12. Acta Physica Sinica, 2015, 64(17): 177502. doi: 10.7498/aps.64.177502
    [8] Huang Yi-Jia, Zhang Guo-Ying, Hu Feng, Xia Wang-Suo, Liu Hai-Shun. Investigation on the magnetic and magnetocaloric properties of PrNi2. Acta Physica Sinica, 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [9] Yang Li-Jian, Liu Bin, Gao Song-Wei, Chen Li-Jia. First-principles caculation and experimental study of metal magnetic memory effects. Acta Physica Sinica, 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [10] Lü Hou-Xiang, Shi De-Zheng, Xie Zheng-Wei. Relations between traversal time in ferromagnetic/semiconductor(insulator)/ferromagnetic heterojunction and the relative magnetic moment angle in two ferromagnetic layers. Acta Physica Sinica, 2013, 62(20): 208502. doi: 10.7498/aps.62.208502
    [11] Li De-Jun, Mi Xian-Wu, Deng Ke. Energy levels and magnetic moments of the quantum solitary wave in a one-dimensional ferromagnetic chain. Acta Physica Sinica, 2010, 59(10): 7344-7349. doi: 10.7498/aps.59.7344
    [12] Qi Kai-Tian, Yang Chuan-Lu, Li Bing, Zhang Yan, Sheng Yong. Density functional theory study on TinLa(n=1—7) clusters. Acta Physica Sinica, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [13] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [14] Huang Zheng, Chen Bo, Ma Huan-Feng, Zhang Xiu-Lan, Gao Guo-Qiang, Qiang Wei-Rong, Sun Guang-Ai. The effect of the substituted transitional atom M on the magnetism of the intermetallic compounds YFe11M. Acta Physica Sinica, 2008, 57(3): 1867-1871. doi: 10.7498/aps.57.1867
    [15] Yang Zhi, Yan Yu-Li, Zhao Wen-Jie, Lei Xue-Ling, Ge Gui-Xian, Luo You-Hua. Structures and magnetism of FeBN (N≤6) clusters. Acta Physica Sinica, 2007, 56(5): 2590-2595. doi: 10.7498/aps.56.2590
    [16] Wang Qing-Lin, Ge Gui-Xian, Zhao Wen-Jie, Lei Xue-Ling, Yan Yu-Li, Yang Zhi, Luo You-Hua. Density functional theory study on the structure and properties of CoBen(n=1—12) clusters. Acta Physica Sinica, 2007, 56(6): 3219-3226. doi: 10.7498/aps.56.3219
    [17] Zhao Wen-Jie, Yang Zhi, Yan Yu-Li, Lei Xue-Ling, Ge Gui-Xian, Wang Qing-Lin, Luo You-Hua. Ground-state structures and magnetisms of GenFe(n=1—8) clusters: The density functional investigations. Acta Physica Sinica, 2007, 56(5): 2596-2602. doi: 10.7498/aps.56.2596
    [18] Zhao Wen-Jie, Wang Qing-Lin, Ren Feng-Zhu, Luo You-Hua. First principles study of the ground-state structures and magnetism of Zrn Fe(n=2—13)clusters. Acta Physica Sinica, 2007, 56(10): 5746-5753. doi: 10.7498/aps.56.5746
    [19] Chen Li, Li Hua, Dong Jian-Min, Pan Feng-Chun, Mei Liang-Mo. Study on the spin-polarized electronicstructures and atomic magnetic moments ofcluster La8-xBaxCuO6. Acta Physica Sinica, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [20] Hu Wei-Ying, Zeng Zhi, Zheng Qing-Qi, Huang Mei-Chun. . Acta Physica Sinica, 1995, 44(2): 273-279. doi: 10.7498/aps.44.273
Metrics
  • Abstract views:  3089
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2022
  • Accepted Date:  23 May 2022
  • Available Online:  28 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回