Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures

Yan Meng Sun Ke Ning Ting-Yin Zhao Li-Na Ren Ying-Ying Huo Yan-Yan

Citation:

Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures

Yan Meng, Sun Ke, Ning Ting-Yin, Zhao Li-Na, Ren Ying-Ying, Huo Yan-Yan
PDF
HTML
Get Citation
  • As a nanoscale coherent light source, semiconductor nanolaser is a key device for future optoelectronic integrated chips. The obstacle of further miniaturization of the nanolaser is that the loss increases rapidly with the decrease of cavity volume. The bound states in the continuum (BICs) can overcome the high radiative loss. Here, we propose a nanolaser based on quasi-BIC mode supported by all-dielectric resonant waveguide grating (RWG), which can effectively reduce the threshold of nanolaser. The quasi-BIC mode of the waveguide can be excited when the traditional two-part grating becomes a four-part grating. The laser behavior of the quasi-BIC is studied by finite difference-time-domain (FDTD) numerical simulation. The results show that the threshold of the naolaser based on four part-grating RWG is 20.86% lower than that of nanolaser based on two part-grating RWG when subjected to TE-polarized light irradiation. For the TM-polarized light irradiation, the threshold is 3.3 times lower than the threshold for the nanolaser based on four part-grating RWG. We also find that the threshold of the nanolaser under TE-polarized light irradiation is about one order of magnitude lower than that under TM-polarized light irradiation. Because the electric field of the structure is well confined inside the waveguide layer under TE-polarized light, which can enhance the interaction between light and gain materials and reduce the threshold of nanolasers.
      Corresponding author: Huo Yan-Yan, yanyanhuo2014@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91950106, 12174228), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA024).
    [1]

    Li C, Liu Z, Chen J, Gao Y, Li M L, Zhang Q 2019 Nanophotonics 8 2091Google Scholar

    [2]

    Du W, Li C H, Sun J C, Xu H, Yu P, Ren A B, Wu J, Wang Z M 2020 Laser Photonics Rev. 14 2000271Google Scholar

    [3]

    Ma R M, Oulton R F 2019 Nat. Nanotechnol. 14 12Google Scholar

    [4]

    Saxena D, Mokkapati S, Jagadish C 2012 IEEE Photon. J. 4 582Google Scholar

    [5]

    Moitra P, Slovick B A, Li W, Kraychencko II, Briggs D P, Krishnamurthy S, Valentine J 2015 ACS Photonics 2 692Google Scholar

    [6]

    Bi K, Wang Q M, Xu J C, Chen L H, Lan C W, Lei M 2021 Adv. Opt. Mater. 9 2001474Google Scholar

    [7]

    Qiu J L, Liu X Y, Liang Z Z, Zhu J F 2021 Opt. Lett. 46 849Google Scholar

    [8]

    Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23Google Scholar

    [9]

    Ma Z J, Hanham S M, Albella P, Ng B H, Lu H T, Gong Y D, Maier S A, Hong M H 2016 ACS Photonics 3 1010Google Scholar

    [10]

    Tian J Y, Li Q, Belov P A, Sinha R K, Qian W P, Qiu M 2020 ACS Photonics 7 1436Google Scholar

    [11]

    Neuman J V, Wigner E 1929 Phys. Z 30 467Google Scholar

    [12]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231Google Scholar

    [13]

    Bogdanov A A, Koshelev K L, Kapitanova P V, Rybin M V, Gladyshev S A, Sadrieva Z F, Samusev K B, Kicshar Y S, Limonov M F 2019 Adv. Photonics 1 016001Google Scholar

    [14]

    Joseph S, Pandey S, Sarkar S, Joseph J 2021 Nanophotonics 10 4175Google Scholar

    [15]

    Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H, Chen S Q, Tian J G 2018 Opt. Lett. 43 1842Google Scholar

    [16]

    Huo Y Y, Zhang X, Yan M, Sun K, Jiang S Z, Ning T Y, Zhao L N 2022 Opt. Express 30 19030Google Scholar

    [17]

    Foley J M, Young S M, Phillips J D 2014 Phys. Rev. B 89 165111Google Scholar

    [18]

    Zhang M D, Zhang X D 2015 Sci. Rep. 5 8266Google Scholar

    [19]

    杜芊, 陈溢杭 2021 物理学报 70 154206Google Scholar

    Du Q, Chen Y H 2021 Acta Phys. Sin. 70 154206Google Scholar

    [20]

    Yang J H, Huang Z T, Maksimov D N, Pankin P S, Timofeev I V, Hong K B, Li H, Chen J W, Hsu C Y, Liu Y Y, Lu T C, Lin T R, Yang C S, Chen K P 2021 Laser Photonics Rev. 15 2100118Google Scholar

    [21]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kante B 2017 Nature 541 196Google Scholar

    [22]

    Hwang M S, Lee H C, Kim K H, Jeong K Y, Kwon S H, Koshelev K, Kivshar Y, Park H G 2021 Nat. Commun. 12 4135Google Scholar

    [23]

    Azzam S I, Chaudhuri K, Lagutchev A, Jacob Z, Kim Y L, Shalaev V M, Boltasseva A, Kildishev A V 2021 Laser Photonics Rev. 15 2000411Google Scholar

    [24]

    Bi W L, Zhang X, Yan M, Zhao L N, Ning T Y, Huo Y Y 2021 Opt. Express 29 12634Google Scholar

    [25]

    Zhang H R, Wang T, Tian J Y, Sun J C, Li S X, De Leon I, Zaccaria R P, Peng L, Gao F, Lin X, Chen H S, Wang G F 2022 Nanophotonics 11 297Google Scholar

    [26]

    Ning T Y, Li X, Zhao Y, Yin L Y, Huo Y Y, Zhao L N, Yue Q Y 2020 Opt. Express 28 34024Google Scholar

    [27]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [28]

    Liu W X, Li Y H, Jiang H T, Lai Z Q, Chen H 2013 Opt. Lett. 38 163Google Scholar

    [29]

    Quaranta G, Basset G, Martin O J F, Gallinet B 2018 Laser Photonics Rev. 12 1800017Google Scholar

    [30]

    Adachi S 1989 J. Appl. Phys. 66 6030Google Scholar

    [31]

    Yariv A, Yeh P 1984 Optical Waves in Crystals ( New York: Wiley)

    [32]

    Sun K L, Jiang H, Bykov D A, Van V, Levy U, Cai Y J, Han Z H 2022 Photonics Res. 10 1575Google Scholar

    [33]

    Chang S H, Taflove A 2004 Opt. Express 12 3827Google Scholar

    [34]

    Zhao Y W, Dong Z Y, Miao S S, Deng A H, Yang J, Wang B 2006 J. Appl. Phys. 100 123519Google Scholar

  • 图 1  硅衬底上四部分光栅的RWG结构单元及入射光示意图

    Figure 1.  Schematic diagram of the four part-grating RWG structure and incidence light on a silica substrate.

    图 2  波导层中TE0(a)和TM0(b)导模的色散关系曲线(黑色实线), 以及在不同入射角下的kx = kx, i (i = –1, –2)色散曲线, 1° (红色虚线), 5° (绿色虚线), 10° (蓝色虚线), 15° (青色虚线).

    Figure 2.  Dispersion relations of the TE0 guide mode (a) and TM0 guide mode (b) in the waveguide layer (black solid line), and kx = kx, i (i = –1, –2) under different angle of incidence, 1° (red dashed lines), 5° (green dashed lines), 10° (blue dashed lines), 15° (cyan dashed lines), respectively.

    图 3  (a)(b) θ = 5°时, 不同几何参数δ下的RWG结构在TE(a)和TM(b)偏振光照射下λA的反射谱; (c)在TE和TM偏振光照射下RWG结构的Q因子与δ的函数关系; (d) δ = 0.2时RWG结构分别在TE和TM偏振光照射下的共振波长与入射角的关系

    Figure 3.  (a)(b) Reflection spectra near λA of the RWG structure for different geometric parameters δ at θ = 5° under TE- (a) and TM-polarized (b) light irradiation; (c) Dependence of Q-factor of the RWG structure on δ under TE- and TM-polarized light irradiation; (d) δ = 0.2, the relation of resonance wavelength with the angle of incidence at the RWG structure under TE- and TM-polarized light irradiation.

    图 4  (a)TE偏振光照射时, RWG结构在不同几何参数δ下反射峰处对应的电场(E/E0)分布; (b)(c) TM偏振光照射时, RWG结构在不同几何参数δ下反射峰处对应的磁场(H/H0) (b)和电场(E/E0) (c)分布

    Figure 4.  (a) The electric field (E/E0) distribution corresponding to the reflectance peaks of the RWG structure with different $\textit{δ}$ under TE-polarized light irradiation; (b)(c) The magnetic field (H/H0) (b) and the electric field (E/E0) (c) distributions corresponding to the reflectance peaks of the RWG structure with different $\textit{δ}$ when under TM-polarized light irradiation.

    图 5  δ = 0.1时RWG结构分别在TE(a)和TM(b)偏振光照射下所支持的BIC/准BIC模式的能带结构. 黑色圆圈处为准BIC模式, 插图为该处的电场(TE)和磁场(TM)分布

    Figure 5.  δ = 0.1, the band structure of the BIC/quasi-BIC mode supported by the RWG structure under TE-(a) and TM-polarized (b) light irradiation.The black circle corresponds to the quasi-BIC mode. The insets show the electric field (TE) and magnetic field (TM) distribution of the quasi-BIC modes.

    图 6  半导体增益介质InP的能级图

    Figure 6.  The energy level diagram of the semiconductor gain medium InP.

    图 7  TE (a)(b)和TM (c)(d)偏振光照射时, 基于四部分光栅的RWG结构的纳米激光器的激射行为; (a)和(c) 归一化发射光谱随泵浦光功率密度的变化; (b)和(d) 归一化的最大发射强度和共振峰线宽随泵浦功率密度的变化. 插图为阈值处的电场和磁场分布

    Figure 7.  Lasing actions of the four part-grating RWG structure under TE (a)(b) and TM-polarized (c)(d) light irradiation; (a)(c) Evolution of the normalized emission spectra as a function of pump optical power density; (b)(d)Evolution of the normalized maximum emission intensity and emission spectra line-width as a function of pump fluence. The insets show the electric field and magnetic field distributions at threshold.

    图 8  TE(a)和TM(b)偏振光照射下, 不同几何参数δ的RWG结构的归一化最大发射强度随泵浦光功率密度的变化

    Figure 8.  The normalized maximum emission intensity of RWG structure with different geometric parameters δ under TE-(a) and TM-polarized (b) light irradiation as a function of the input pump fluence.

  • [1]

    Li C, Liu Z, Chen J, Gao Y, Li M L, Zhang Q 2019 Nanophotonics 8 2091Google Scholar

    [2]

    Du W, Li C H, Sun J C, Xu H, Yu P, Ren A B, Wu J, Wang Z M 2020 Laser Photonics Rev. 14 2000271Google Scholar

    [3]

    Ma R M, Oulton R F 2019 Nat. Nanotechnol. 14 12Google Scholar

    [4]

    Saxena D, Mokkapati S, Jagadish C 2012 IEEE Photon. J. 4 582Google Scholar

    [5]

    Moitra P, Slovick B A, Li W, Kraychencko II, Briggs D P, Krishnamurthy S, Valentine J 2015 ACS Photonics 2 692Google Scholar

    [6]

    Bi K, Wang Q M, Xu J C, Chen L H, Lan C W, Lei M 2021 Adv. Opt. Mater. 9 2001474Google Scholar

    [7]

    Qiu J L, Liu X Y, Liang Z Z, Zhu J F 2021 Opt. Lett. 46 849Google Scholar

    [8]

    Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23Google Scholar

    [9]

    Ma Z J, Hanham S M, Albella P, Ng B H, Lu H T, Gong Y D, Maier S A, Hong M H 2016 ACS Photonics 3 1010Google Scholar

    [10]

    Tian J Y, Li Q, Belov P A, Sinha R K, Qian W P, Qiu M 2020 ACS Photonics 7 1436Google Scholar

    [11]

    Neuman J V, Wigner E 1929 Phys. Z 30 467Google Scholar

    [12]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231Google Scholar

    [13]

    Bogdanov A A, Koshelev K L, Kapitanova P V, Rybin M V, Gladyshev S A, Sadrieva Z F, Samusev K B, Kicshar Y S, Limonov M F 2019 Adv. Photonics 1 016001Google Scholar

    [14]

    Joseph S, Pandey S, Sarkar S, Joseph J 2021 Nanophotonics 10 4175Google Scholar

    [15]

    Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H, Chen S Q, Tian J G 2018 Opt. Lett. 43 1842Google Scholar

    [16]

    Huo Y Y, Zhang X, Yan M, Sun K, Jiang S Z, Ning T Y, Zhao L N 2022 Opt. Express 30 19030Google Scholar

    [17]

    Foley J M, Young S M, Phillips J D 2014 Phys. Rev. B 89 165111Google Scholar

    [18]

    Zhang M D, Zhang X D 2015 Sci. Rep. 5 8266Google Scholar

    [19]

    杜芊, 陈溢杭 2021 物理学报 70 154206Google Scholar

    Du Q, Chen Y H 2021 Acta Phys. Sin. 70 154206Google Scholar

    [20]

    Yang J H, Huang Z T, Maksimov D N, Pankin P S, Timofeev I V, Hong K B, Li H, Chen J W, Hsu C Y, Liu Y Y, Lu T C, Lin T R, Yang C S, Chen K P 2021 Laser Photonics Rev. 15 2100118Google Scholar

    [21]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kante B 2017 Nature 541 196Google Scholar

    [22]

    Hwang M S, Lee H C, Kim K H, Jeong K Y, Kwon S H, Koshelev K, Kivshar Y, Park H G 2021 Nat. Commun. 12 4135Google Scholar

    [23]

    Azzam S I, Chaudhuri K, Lagutchev A, Jacob Z, Kim Y L, Shalaev V M, Boltasseva A, Kildishev A V 2021 Laser Photonics Rev. 15 2000411Google Scholar

    [24]

    Bi W L, Zhang X, Yan M, Zhao L N, Ning T Y, Huo Y Y 2021 Opt. Express 29 12634Google Scholar

    [25]

    Zhang H R, Wang T, Tian J Y, Sun J C, Li S X, De Leon I, Zaccaria R P, Peng L, Gao F, Lin X, Chen H S, Wang G F 2022 Nanophotonics 11 297Google Scholar

    [26]

    Ning T Y, Li X, Zhao Y, Yin L Y, Huo Y Y, Zhao L N, Yue Q Y 2020 Opt. Express 28 34024Google Scholar

    [27]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [28]

    Liu W X, Li Y H, Jiang H T, Lai Z Q, Chen H 2013 Opt. Lett. 38 163Google Scholar

    [29]

    Quaranta G, Basset G, Martin O J F, Gallinet B 2018 Laser Photonics Rev. 12 1800017Google Scholar

    [30]

    Adachi S 1989 J. Appl. Phys. 66 6030Google Scholar

    [31]

    Yariv A, Yeh P 1984 Optical Waves in Crystals ( New York: Wiley)

    [32]

    Sun K L, Jiang H, Bykov D A, Van V, Levy U, Cai Y J, Han Z H 2022 Photonics Res. 10 1575Google Scholar

    [33]

    Chang S H, Taflove A 2004 Opt. Express 12 3827Google Scholar

    [34]

    Zhao Y W, Dong Z Y, Miao S S, Deng A H, Yang J, Wang B 2006 J. Appl. Phys. 100 123519Google Scholar

  • [1] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] Meng Xiang-Yu, Li Tao, Yu Bin-Bin, Tai Yong-Hang. Exploring the tuning mechanisms of multipolar quasi-BICs in a tetramer metasurface. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240272
    [3] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [4] Du Qian, Chen Yi-Hang. Enhancing third-harmonic generation by quasi bound states in continuum in silicon nanoparticle arrays. Acta Physica Sinica, 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [5] Jiang Pei, Zhou Pei, Li Nian-Qiang, Mu Peng-Hua, Li Xiao-Feng. Time delay concealment and unpredictability enhancement of nanolasers under external cavity regulation. Acta Physica Sinica, 2021, 70(11): 114201. doi: 10.7498/aps.70.20210049
    [6] Liang Qi-Feng, Wang Zhi, Kawakami Takuto, Hu Xiao. Exploration of Majorana bound states in topological superconductors. Acta Physica Sinica, 2020, 69(11): 117102. doi: 10.7498/aps.69.20190959
    [7] Ling Wei-Jun, Xia Tao, Dong Zhong, Zuo Yin-Yan, Li Ke, Liu Qing, Lu Fei-Ping, Zhao Xiao-Long, Wang Yong-Gang. Passively Q-switched mode-locked low threshold Tm, Ho: LLF laser with an single walled carbon nanotubes saturable absorber. Acta Physica Sinica, 2018, 67(1): 014201. doi: 10.7498/aps.67.20171748
    [8] Liu Chu, Guan Bao-Lu, Mi Guo-Xin, Liao Yi-Ru, Liu Zhen-Yang, Li Jian-Jun, Xu Chen. A low threshold single transverse mode 852 nm semiconductor laser diode. Acta Physica Sinica, 2017, 66(8): 084205. doi: 10.7498/aps.66.084205
    [9] Yang Zhi-Gang, Wu Ting-Ting, Liu Jin-Ming. Remote state preparation via photonic Faraday rotation in low-Q cavities. Acta Physica Sinica, 2016, 65(2): 020302. doi: 10.7498/aps.65.020302
    [10] Liu Li-Juan, Huang Wen-Bin, Diao Zhi-Hui, Zhang Gui-Yang, Peng Zeng-Hui, Liu Yong-Gang, Xuan Li. Low threshold distributed feedback laser based on scaffolding morphologic and holographic polymer dispersed liquid crystal gratings. Acta Physica Sinica, 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [11] Xu Yun, Li Yun-Peng, Jin Lu, Ma Xiang-Yang, Yang De-Ren. Low-threshold electrically pumped ultraviolet random lasing from ZnO film prepared by pulsed laser deposition. Acta Physica Sinica, 2013, 62(8): 084207. doi: 10.7498/aps.62.084207
    [12] Wan Wen-Jian, Yin Rong, Tan Zhi-Yong, Wang Feng, Han Ying-Jun, Cao Jun-Cheng. Study of 2.9 THz quantum cascade laser based on bound-to-continuum transition. Acta Physica Sinica, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [13] Feng Chen, Feng Guo-Ying, Chen Nian-Jiang, Zhou Shou-Huan. Ultrahigh-Q small-V photonic crystal nanobeam cavities based on parabolic-shaped width and taper holes. Acta Physica Sinica, 2012, 61(13): 134209. doi: 10.7498/aps.61.134209
    [14] Chai Lu, Yan Shi, Xue Ying-Hong, Liu Qing-Wen, Wang Qing-Yue, Su Liang-Bi, Xu Xiao-Dong, Zhao Guang-Jun, Xu Jun. Luminescence properties of Yb3+/Na+ codoped CaF2 crystal and laser operation with low threshold. Acta Physica Sinica, 2007, 56(6): 3553-3558. doi: 10.7498/aps.56.3553
    [15] Bo Yong, Geng Ai-Cong, Bi Yong, Sun Zhi-Pei, Yang Xiao-Dong, Li Rui-Ning, Cui Da-Fu, Xu Zu-Yan. High average power Q-switched quasi-continue-wave Nd:YAG laser. Acta Physica Sinica, 2006, 55(3): 1171-1175. doi: 10.7498/aps.55.1171
    [16] Xue Ying-Hong, Wang Qing-Yue, Chai Lu, Liu Qing-Wen, Zhao Guang-Jun, Su Liang-Bi, Xu Xiao-Dong, Xu Jun. A novel LD pumped Yb:GSO laser operating at 1090 nm with low threshold. Acta Physica Sinica, 2006, 55(1): 456-459. doi: 10.7498/aps.55.456
    [17] Ling Wei-Jun, Wei Zhi-Yi, Sun Jing-Hua, Wang Zhao-Hua, Tian Jin-Rong, Jia Yu-Lei, Wang Peng, Han Hai-Nian. Experimental study of femtosecond Ti:sapphire laser with low-threshold pump. Acta Physica Sinica, 2005, 54(9): 4182-4185. doi: 10.7498/aps.54.4182
    [18] Ling Wei-Jun, Zheng Jia-An, Jia Yu-Lei, Wei Zhi-Yi. Theoretical study of the Ti:sapphire laser with low pump threshold. Acta Physica Sinica, 2005, 54(4): 1619-1623. doi: 10.7498/aps.54.1619
    [19] Shi Qing-Fan, Zheng Jun-Juan, Wang Qi. Effect of microwave cavity Q-value on the threshold of instability and autooscilations. Acta Physica Sinica, 2004, 53(10): 3535-3539. doi: 10.7498/aps.53.3535
    [20] ZHOU XIAO-XIN, LI BAI-WEN. CONTRIBUTION OF THE BOUND STATES AND CONTINUUM STATES OF AN ATOM IN INTENSE LASER FIELDS TO HIGH HARMONIC GENERATION . Acta Physica Sinica, 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
Metrics
  • Abstract views:  3273
  • PDF Downloads:  150
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2022
  • Accepted Date:  14 November 2022
  • Available Online:  02 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回