Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress of transport theory in Dirac quantum materials

Wang Huan-Wen Fu Bo Shen Shun-Qing

Citation:

Recent progress of transport theory in Dirac quantum materials

Wang Huan-Wen, Fu Bo, Shen Shun-Qing
PDF
HTML
Get Citation
  • Dirac quantum materials comprise a broad category of condensed matter systems characterized by low-energy excitations described by the Dirac equation. These excitations, which can manifest as either collective states or band structure effects, have been identified in a wide range of systems, from exotic quantum fluids to crystalline materials. Over the past several decades, they have sparked extensive experimental and theoretical investigations in various materials, such as topological insulators and topological semimetals. The study of Dirac quantum materials has also opened up new possibilities for topological quantum computing, giving rise to a burgeoning field of physics and offering a novel platform for realizing rich topological phases, including various quantum Hall effects and topological superconducting phases. Furthermore, the topologically non-trivial band structures of Dirac quantum materials give rise to plentiful intriguing transport phenomena, including longitudinal negative magnetoresistance, quantum interference effects, helical magnetic effects, and others. Currently, numerous transport phenomena in Dirac quantum materials remain poorly understood from a theoretical standpoint, such as linear magnetoresistance in weak fields, anomalous Hall effects in nonmagnetic materials, and three-dimensional quantum Hall effects. Studying these transport properties will not only deepen our understanding of Dirac quantum materials, but also provide important insights for their potential applications in spintronics and quantum computing. In this paper, quantum transport theory and quantum anomaly effects related to the Dirac equation are summarized, with emphasis on massive Dirac fermions and quantum anomalous semimetals. Additionally, the realization of parity anomaly and half-quantized quantum Hall effects in semi-magnetic topological insulators are also put forward. Finally, the key scientific issues of interest in the field of quantum transport theory are reviewed and discussed.
      Corresponding author: Wang Huan-Wen, wanghw@uestc.edu.cn ; Fu Bo, fubo@gbu.edu.cn ; Shen Shun-Qing, sshen@hku.hk
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0308603), the Research Grants Council of the Hong Kong Government, University Grants Committee, China (Grant Nos. C7012-21G, 17301220), the Scientific Research Starting Foundation of University of Electronic Science and Technology of China (Grant No. Y030232059002011), and the International Postdoctoral Exchange Fellowship Program, China (Grant No. YJ20220059)
    [1]

    Shen S Q 2017 Topological Insulators (Vol. 187) (2nd Ed.) (Singapore: Springer) pp17–32

    [2]

    Wehling T O, Black S, Annica M, Balatsky A V 2014 Adv. Phys. 63 1Google Scholar

    [3]

    Volovik G E 2003 The Universe in a Helium Droplet (Oxford: Clarendon Press) pp454–456

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [5]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [6]

    Sarma S D, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407Google Scholar

    [7]

    Moore J E 2010 Nature 464 194Google Scholar

    [8]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [9]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [10]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar

    [11]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [12]

    Wang G, Chernikov A, Glazov, M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [13]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [14]

    Ando Y, Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361Google Scholar

    [15]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [16]

    Lv B Q, Qian T, Ding H 2021 Rev. Mod. Phys. 93 025002Google Scholar

    [17]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [18]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [19]

    Kane C L, Me le, E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [20]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [21]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [22]

    Hosur P, Qi X L 2013 CR Phys. 14 857Google Scholar

    [23]

    Jia S, Xu S Y, Hasan M Z 2016 Nat. Mater. 15 1140Google Scholar

    [24]

    Lu H Z, Shen S Q 2017 Front. Phys. 12 127201Google Scholar

    [25]

    Wang S, Lin B C, Wang A Q, Yu D P, Liao Z M 2017 Adv. Phys. X 2 518Google Scholar

    [26]

    Hu J, Xu S Y, Ni N, Mao Z Q 2019 Annu. Rev. Mater. Res. 49 207Google Scholar

    [27]

    Culcer D, Keser A C, Li Y, Tkachov G 2020 2D Mater. 7 022007Google Scholar

    [28]

    Kim H J, Kim K S, Wang J F, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M, Li L 2013 Phys. Rev. Lett. 111 246603Google Scholar

    [29]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [30]

    Li H, He H T, Lu H Z, Zhang H C, Liu H C, Ma R, Fan Z Y, Shen S Q, Wang J N 2016 Nat. Commun. 7 10301Google Scholar

    [31]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [32]

    Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M 2016 Nat. Commun. 7 10735Google Scholar

    [33]

    Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z 2015 Phys. Rev. X 5 031023Google Scholar

    [34]

    Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A, Zhong R, Schneeloch J, Gu G, Valla T 2016 Nat. Phys. 12 550Google Scholar

    [35]

    Liang S, Lin J, Kushwaha S, Xing J, Ni N, Cava R J, Ong N P 2018 Phys. Rev. X 8 031002Google Scholar

    [36]

    Wang J, Li H, Chang C, He K, Lee J S, Lu H, Sun Y, Ma X, Samarth N, Shen S Q 2012 Nano Res. 5 739Google Scholar

    [37]

    He H T, Liu H C, Li B K, Guo X, Xu Z J, Xie M H, Wang J N 2013 Appl. Phys. Lett. 103 031606Google Scholar

    [38]

    Assaf B, Phuphachong T, Kampert E, Volobuev V, Mandal P, Sánchez-Barriga J, Rader O, Bauer G, Springholz G, De Vaulchier L 2017 Phys. Rev. Lett. 119 106602Google Scholar

    [39]

    Wiedmann S, Jost A, Fauqué B, Van Dijk J, Meijer M, Khouri T, Pezzini S, Grauer S, Schreyeck S, Brüne C 2016 Phys. Rev. B 94 081302Google Scholar

    [40]

    Mutch J, Chen W C, Went P, Qian T, Wilson I Z, Andreev A, Chen C C, Chu J H 2019 Sci. Adv. 5 eaav9771Google Scholar

    [41]

    Nielsen H, Ninomiya M 1983 Phys. Lett. B 130 389Google Scholar

    [42]

    Son D T, Spivak B Z 2013 Phys. Rev. B 88 104412Google Scholar

    [43]

    Burkov A A 2014 Phys. Rev. Lett. 113 247203Google Scholar

    [44]

    Goswami P, Pixley J H, Sarma S D 2015 Phys. Rev. B 92 075205Google Scholar

    [45]

    Gao Y, Yang S A, Niu Q 2017 Phys. Rev. B 95 165135Google Scholar

    [46]

    Dai X, Du Z, Lu H Z 2017 Phys. Rev. Lett. 119 166601Google Scholar

    [47]

    Andreev A V, Spivak B Z 2018 Phys. Rev. Lett. 120 026601Google Scholar

    [48]

    Wang H W, Fu B, Shen S Q 2018 Phys. Rev. B 98 081202(RGoogle Scholar

    [49]

    Fu B, Wang H W, Shen S Q 2020 Phys. Rev. B 101 125203Google Scholar

    [50]

    Wang H W, Fu B, Shen S Q 2021 Phys. Rev. B 104 L241111Google Scholar

    [51]

    Gorkov L P, Larkin A I, Khmelnitskii D E 1979 JETP Lett. 30 228

    [52]

    Hikami S, Larkin A I, Nagaoka Y 1980 Prog. Theor. Phys. 63 707Google Scholar

    [53]

    Chakravarty S, Schmid A 1986 Phys. Rep. 140 193Google Scholar

    [54]

    Wu X S, Li X B, Song Z M, Berger C, de Heer W A 2007 Phys. Rev. Lett. 98 136801Google Scholar

    [55]

    Tikhonenko F V, Kozikov A A, Savchenko A K, Gorbachev R V 2009 Phys. Rev. Lett. 103 226801Google Scholar

    [56]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601Google Scholar

    [57]

    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L 2010 Phys. Rev. Lett. 105 176602Google Scholar

    [58]

    He H T, Wang G, Zhang T, Sou I K, Wong G K, Wang J N, Lu H Z, Shen S Q, Zhang F C 2011 Phys. Rev. Lett. 106 166805Google Scholar

    [59]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438Google Scholar

    [60]

    Liu M H, Zhang J S, Chang C Z, Zhang Z C, Feng X, Li K, H e, K, Wa ng, L L, Chen X, Dai Xi, Fang Z, Xue Q K, Ma X C, Wang Y Y 2012 Phys. Rev. Lett. 108 036805Google Scholar

    [61]

    Liu H C, Lu H Z, He H T, Li B K, Liu S G, He Q L, Wang G, S ou, I K, Shen S Q, Wang J N 2014 ACS Nano 8 9616Google Scholar

    [62]

    Li H, Wang H W, Li Y, Zhang H C, Zhang S, Pan X C, Jia B, Song F Q, Wang J N 2019 Nano Lett. 19 2450Google Scholar

    [63]

    Tkac V, Vyborny K, Komanicky V, Warmuth J, Michiardi M, Ngankeu A S 2019 Phys. Rev. Lett. 123 036406Google Scholar

    [64]

    Zhao B, Cheng P H, Pan H Y, Zhang S, Wang B G, Wang G H, Xiu F X, Song F Q 2016 Sci. Rep. 6 22377Google Scholar

    [65]

    Nakamura H, Huang D, Merz J, Khalaf E, Ostrovsky P, Yaresko A, Samal D, Takagi H 2020 Nat. Commun. 11 1161Google Scholar

    [66]

    Suzuura H, Ando T 2002 Phys. Rev. Lett. 89 266603Google Scholar

    [67]

    McCann E, Kechedzhi K, Falko V I, Suzuura H, Ando T, Altshuler B L 2006 Phys. Rev. Lett. 97 146805Google Scholar

    [68]

    Garate I, Glazman L 2012 Phys. Rev. B 86 035422Google Scholar

    [69]

    Lu H Z, Shi J R, Shen S Q 2011 Phys. Rev. Lett. 107 076801Google Scholar

    [70]

    Lu H Z, Shen S Q 2014 Phys. Rev. Lett. 112 146601Google Scholar

    [71]

    Gornyi I V, Kachorovskii V Y, Ostrovsky P M 2014 Phys. Rev. B 90 085401Google Scholar

    [72]

    Wang H W, Fu B, Shen S Q 2020 Phys. Rev. Lett. 124 206603Google Scholar

    [73]

    Lu H Z, Shen S Q 2015 Phys. Rev. B 92 035203Google Scholar

    [74]

    Dai X, Lu H Z, Shen S Q, Yao H 2016 Phys. Rev. B 93 161110Google Scholar

    [75]

    Fu B, Wang H W, Shen S Q 2019 Phys. Rev. Lett. 122 246601Google Scholar

    [76]

    Chen W, Lu H Z, Zilberberg O 2019 Phys. Rev. Lett. 122 196603Google Scholar

    [77]

    Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197Google Scholar

    [78]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [79]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801Google Scholar

    [80]

    Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002Google Scholar

    [81]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [82]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L 2013 Science 340 167Google Scholar

    [83]

    Xu Y, Miotkowski I, Liu C, Tian J F, Nam H, Alidoust N, Hu J N, Shih C K, Hasan M Z, Chen Y P 2014 Nat. Phys. 10 956Google Scholar

    [84]

    Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R 2019 Nature 565 331Google Scholar

    [85]

    Tang F D, Ren Y F, Wang P P, Zhong R D, Schneeloch J, Yang S Y A, Yang K, Lee P A, Gu G D, Qiao X H, Zhang L Y 2019 Nature 569 537Google Scholar

    [86]

    Galeski S, Ehmcke T, Wawrzynczak R, Lozano P M, Cho K, Sharma A, Das S 2021 Nat. Commun. 12 3197Google Scholar

    [87]

    Wang C M, Sun H P, Lu H Z, Xie X C 2017 Phys. Rev. Lett. 119 136806Google Scholar

    [88]

    Qin F, Li S, Du Z Z, Wang C M, Zhang W Q, Yu D P, Lu H Z, Xie X C 2020 Phys. Rev. Lett. 125 206601Google Scholar

    [89]

    Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Nagaosa N, Kawasaki M, Tokura Y 2015 Nat. Commun. 6 8530Google Scholar

    [90]

    Zhang S, Pi L, Wang R, Yu G, Pan X C, Wei Z, Zhang J, Xi C, Bai Z 2017 Nat. Commun. 8 977Google Scholar

    [91]

    Mogi M, Okamura Y, Kawamura M, Yoshimi R, Yoshimi K, Tsukazaki A, Takahashi K S 2022 Nat. Phys. 18 390Google Scholar

    [92]

    Liang T, Lin J J, Gibson Q, Kushwaha S, Liu M H, Wang W D, Xiong H Y, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z X, Cava R J, Ong N P 2018 Nat. Phys. 14 451Google Scholar

    [93]

    Sun Z, Cao Z, Cui J, Zhu C, Ma D, Wang H, Zhuo W, Cheng Z, Wang Z, Wan X, Chen X H 2020 Npj Quantum Mater. 5 36Google Scholar

    [94]

    Liu Y Z, Wang H C, Fu H X, et al. 2021 Phys. Rev. B 103 L201110Google Scholar

    [95]

    Mutch J, Ma X, Wang C, Malinowski P, AyresSims J, Jiang Q, Liu Z, Xiao D, Yankowitz M, Chu J H 2021 arXiv: 2101.02681 [cond-mat]

    [96]

    Gourgout A, Leroux M, Smirr J L, et al. 2022 npj Quantum Mater. 7 71Google Scholar

    [97]

    Lozano P M, Cardoso G, Aryal N, Nevola D, Gu G, Tsvelik A, Yin W, Li Q 2022 Phys. Rev. B 106 L081124Google Scholar

    [98]

    Burkov A A 2017 Phys. Rev. B 96 041110Google Scholar

    [99]

    Nandy S, Sharma G, Taraphder A, Tewari S 2017 Phys. Rev. Lett. 119 176804Google Scholar

    [100]

    Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A, Ando Y 2017 Nat. Commun. 8 1340Google Scholar

    [101]

    Li H, Wang H W, He H T, Wang J N, Shen S Q 2018 Phys. Rev. B 97 201110Google Scholar

    [102]

    Wu M, Zheng G L, Chu W W, Liu Y Q, Gao W S, Zhang H W, Lu J W, Han Y Y, Zhou J H, Ning W, Tian M L 2018 Phys. Rev. B 98 161110Google Scholar

    [103]

    Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103Google Scholar

    [104]

    Li P, Zhang C H, Zhang J W, Wen Y, Zhang X X 2018 Phys. Rev. B 98 121108(RGoogle Scholar

    [105]

    Huang D, Nakamura H, Takagi H 2021 Phys. Rev. Research 3 013268Google Scholar

    [106]

    Wu M, Tu D, Nie Y, Miao S, Gao W, Han Y, Zhu X D, Zhou J H, Ning W, Tian M L 2022 Nano Lett. 22 73Google Scholar

    [107]

    Zhong J Y, Zhuang J C, Du Y 2023 Chin. Phys. B 32 047203Google Scholar

    [108]

    Gao A Y, Liu Y F, Hu C W, Qiu J X, Tzschaschel C, Ghosh B, Ho S C 2021 Nature 595 521Google Scholar

    [109]

    Chen R, Sun H P, Gu M Q, Hua C B, Liu Q H, Lu H Z, Xie X C 2022 Natl. Sci. Rev. nwac140Google Scholar

    [110]

    Zhai D W, Chen C, Xiao C, Yao W 2023 Nat. Commun. 14 1961Google Scholar

    [111]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821Google Scholar

    [112]

    Wang X, Du Y, Dou S, Zhang C 2012 Phys. Rev. Lett. 108 266806Google Scholar

    [113]

    Zhang G, Qin H, Chen J, He X, Lu L, Li Y, Wu K 2011 Adv. Funct. Mater. 21 2351

    [114]

    Tang H, Liang D, Qiu R L J, Gao X P A 2011 ACS Nano 5 7510Google Scholar

    [115]

    He H, Li B, Liu H, Guo X, Wang Z, Xie M, Wang J 2012 Appl. Phys. Lett. 100 032105Google Scholar

    [116]

    He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J, Li S Y 2014 Phys. Rev. Lett. 113 246402Google Scholar

    [117]

    Liang T, Gibson Q, Ali M N, Liu M, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [118]

    Narayanan A, Watson M D, Blake S F, Bruyant N, Drigo L, Chen Y L, Prabhakaran D, Yan B, Felser C, Kong T, Canfield P C, Coldea A I 2015 Phys. Rev. Lett. 114 117201Google Scholar

    [119]

    Feng J, Pang Y, Wu D, Wang Z J, Weng H M, Li J, Dai X, Fang Z, Shi Y, Lu L 2015 Phys. Rev. B 92 081306(RGoogle Scholar

    [120]

    Tian Y, Ghassemi N, Jr J H R 2021 Phys. Rev. Lett. 126 236401Google Scholar

    [121]

    Fu B, Wang H W, Shen S Q 2020 Phys. Rev. Lett. 125 256601Google Scholar

    [122]

    Fu B, Zou J Y, Hu Z A, Wang H W, Shen S Q 2022 npj Quantum Mater. 7 94Google Scholar

    [123]

    Zou J Y, Fu B, Wang H W, Hu Z A, Shen S Q 2022 Phys. Rev. B 105 L201106Google Scholar

    [124]

    Zou J Y, Chen R, Fu B, Wang H W, Hu Z A, Shen S Q 2023 Phys. Rev. B 107 125153Google Scholar

    [125]

    Wang H W, Fu B, Zou J Y, Hu Z A, Shen S Q 2022 Phys. Rev. B 106 045111Google Scholar

    [126]

    Shen S Q, Bao Y J, Ma M, Xie X C, Zhang F C 2005 Phys. Rev. B 71 155316Google Scholar

    [127]

    Bjorken J D, Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill Inc.) pp45–60

    [128]

    Shen S Q, Shan W Y, Lu H Z 2011 SPIN 01 33Google Scholar

    [129]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [130]

    Klitzing K v, Chakraborty T, Kim P, Madhavan V, Dai X, McIver J, Tokura Y, Savary L, Smirnova D, Rey A M, Felser C, Gooth J, Qi X L 2020 Nat. Rev. Phys. 2 397Google Scholar

    [131]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [132]

    Yang B J, Nagaosa N 2014 Nat. Commun. 5 4898Google Scholar

    [133]

    Wilson K G 1975 New Phenomena in Subnuclear Physics (New York: Plenum) pp69–142

    [134]

    Rothe H J 2005 Lattice Gauge Theories: An Introduction (3rd Ed.) (Singapore: World Scientific) pp56–57

    [135]

    Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J 2017 Nat. Commun. 8 15512Google Scholar

    [136]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [137]

    Xia Y Q, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398Google Scholar

    [138]

    Zee A 2010 Quantum Field Theory in a Nutshell (Vol. 7) (Princeton: Princeton University Press) pp99–100

    [139]

    Liu M H, Chang C Z, Zhang Z C, Zhang Y, Ruan W, He K, Wang L L, Chen X, Jia J F, Zhang S C, Xue Q K, Ma X C, Wang Y Y 2011 Phys. Rev. B 83 165440Google Scholar

    [140]

    Takagaki Y, Jenichen B, Jahn U, Ramsteiner M, Friedl K J 2012 Phys. Rev. B 85 115314Google Scholar

    [141]

    Jing Y M, Huang S Y, Zhang K, Wu J X, Guo Y F, Peng H L, Liu Z F, Xu H Q 2016 Nanoscale 8 1879Google Scholar

    [142]

    Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288Google Scholar

    [143]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287Google Scholar

    [144]

    Liu Q, Liu C X, Xu C K, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603Google Scholar

    [145]

    Chen Y L, C hu, J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H 2010 Science 329 659Google Scholar

    [146]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [147]

    Okada S, Sambongi T, Ido M 1980 J. Phys. Soc. Jpn. 49 839Google Scholar

    [148]

    Izumi M, Uchinokura K, Matsuura E 1981 Solid State Commun. 37 641Google Scholar

    [149]

    DiSalvo F, Fleming R, Waszczak J 1981 Phys. Rev. B 24 2935Google Scholar

    [150]

    Okada S, Sambongi T, Ido M, Tazuke Y, Aoki R, Fujita O 1982 J. Phys. Soc. Jpn. 51 460Google Scholar

    [151]

    Bullett D 1982 Solid State Commun. 42 691Google Scholar

    [152]

    Fjellvag H, Kjekshus A 1986 Solid State Commun. 60 91Google Scholar

    [153]

    Chen Z G, Chen R, Zhong R, Schneeloch J, Zhang C, Huang Y, Qu F, Yu R, Li Q, Gu G, Wang N 2017 Proc. Natl. Acad. Sci. U.S.A. 114 816Google Scholar

    [154]

    Manzoni G, Gragnaniello L, AutASs G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V 2016 Phys. Rev. Lett. 117 237601Google Scholar

    [155]

    Zhang J L, Wang C M, Guo C Y, Zhu X D, Zhang Y, Yang J Y, Wang Y Q, Qu Z, Pi L, Lu H Z, Tian M L 2019 Phys. Rev. Lett. 123 196602Google Scholar

    [156]

    Jiang Y, Wang J, Zhao T, Dun Z L, Huang Q, Wu X S, Mourigal M, Zhou H D, Pan W, Ozerov M, Smirnov D, Jiang Z 2020 Phys. Rev. Lett. 125 046403Google Scholar

    [157]

    Wang P, Ren Y, Tang F, Wang P, Hou T, Zeng H, Zhang L, Qiao Z H 2020 Phys. Rev. B 101 161201Google Scholar

    [158]

    Zhao L X, Huang X C, Long Y J, Chen D, Liang H, Yang Z H, Xue M Q, Ren Z A, Weng H M, Fang Z, Dai X, Chen G F 2017 Chin. Phys. Lett. 34 037102Google Scholar

    [159]

    Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055Google Scholar

    [160]

    Xu B, Zhao L, Marsik P, Sheveleva E, Lyzwa F, Dai Y, Chen G, Qiu X, Bernhard C 2018 Phys. Rev. Lett. 121 187401Google Scholar

    [161]

    Wang C J 2021 Phys. Rev. Lett. 126 126601Google Scholar

    [162]

    Wang Y G, Legg H F, Bömerich T, Park J, Biesenkamp S, Taskin A A, Braden M, Rosch A, Ando Y 2022 Phys. Rev. Lett. 128 176602Google Scholar

    [163]

    Zhang Y, Wang C, Liu G, Liang A, Zhao L, Huang J, Gao Q, Shen B 2017 Sci. Bull. 62 950Google Scholar

    [164]

    Adler S L 1969 Phys. Rev. 177 2426Google Scholar

    [165]

    Bell J S, Jackiw R 1969 Nuovo Cimento A 60 47Google Scholar

    [166]

    Fujikawa K 1979 Phys. Rev. Lett. 42 1195Google Scholar

    [167]

    Peskin M E, Schroeder D V 1995 An Introduction to Quantum Field Theory (Cambridge: Perseus Books Publishing LLC) pp651–667

    [168]

    Weinberg S 1995 The Quantum Theory of Fields (Vol. 2) (Cambridge: Cambridge University Press) pp473–485

    [169]

    Dirac P A M 1958 The Principles of Quantum Mechanics (New York: Oxford University Press Inc.) pp253–267

    [170]

    Jackiw R, Johnson K 1969 Phys. Rev. 182 1459Google Scholar

    [171]

    Kharzeev D E, Kikuchi Y, Meyer R, Tanizaki Y 2018 Phys. Rev. B 98 014305Google Scholar

    [172]

    Yamamoto N, Yang D L 2021 Phys. Rev. D 103 125003Google Scholar

    [173]

    Vilenkin A 1980 Phys. Rev. D 22 3080Google Scholar

    [174]

    Fukushima K, Fukushima D E, Warringa H J 2008 Phys. Rev. D 78 074033Google Scholar

    [175]

    Huang Z M, Zhou J H, Shen S Q 2017 Phys. Rev. B 96 085201Google Scholar

    [176]

    Lu H Z, Zhang S B, Shen S Q 2015 Phys. Rev. B 92 045203Google Scholar

    [177]

    Zhang S B, Lu H Z, Shen S Q 2016 New J. Phys. 18 053039Google Scholar

    [178]

    Klier J, Gornyi I V, Mirlin A D 2017 Phys. Rev. B 96 214209Google Scholar

    [179]

    Niemi A J, Semenoff G W 1983 Phys. Rev. Lett. 51 2077Google Scholar

    [180]

    Redlich A N 1984 Phys. Rev. Lett. 52 18Google Scholar

    [181]

    Jackiw R 1984 Phys. Rev. D 29 2375Google Scholar

    [182]

    Boyanovsky D, Blankenbecler R, Yahalom R 1986 Nucl. Phys. B 270 483Google Scholar

    [183]

    Schakel A M J 1991 Phys. Rev. D 43 1428Google Scholar

    [184]

    Chu R L, Shi J R, Shen S Q 2011 Phys. Rev. B 84 085312Google Scholar

    [185]

    Lapa M F 2019 Phys. Rev. B 99 235144Google Scholar

    [186]

    Lu R, Sun H, Kumar S, Wang Y, Gu M, Zeng M, Hao Y J, Li J 2021 Phys. Rev. X 11 011039Google Scholar

    [187]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805Google Scholar

    [188]

    Sitte M, Rosch A, Altman E, Fritz L 2012 Phys. Rev. Lett. 108 126807Google Scholar

    [189]

    Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107Google Scholar

    [190]

    Gu M, Li J, Sun H, Zhao Y, Liu C, Liu J, Lu H, Liu Q 2021 Nat. Commun. 12 3524Google Scholar

    [191]

    Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516Google Scholar

    [192]

    Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669Google Scholar

    [193]

    Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801Google Scholar

    [194]

    Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar

    [195]

    Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mat. 19 522Google Scholar

    [196]

    Wilczek F 1987 Phys. Rev. Lett. 58 1799Google Scholar

    [197]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424Google Scholar

    [198]

    Spaldin N A, Fiebig M 2005 Science 309 391Google Scholar

    [199]

    Fiebig M 2005 J. Phys. D 38 R123Google Scholar

    [200]

    Maciejko J, Qi X L, Drew H D, Zhang S C 2010 Phys. Rev. Lett. 105 166803Google Scholar

    [201]

    Tse W K, MacDonald A H 2011 Phys. Rev. B 84 205327Google Scholar

    [202]

    Li R, Wang J, Qi X L, Zhang S C 2010 Nat. Phys. 6 284Google Scholar

    [203]

    Sekine A, Nomura K 2014 J Phys. Soc. Jpn. 83 104709Google Scholar

    [204]

    Sekine A, Nomura K 2021 J. Appl. Phys. 129 141101Google Scholar

    [205]

    Shoron O F, Kealhofer D A, Goyal M, Schumann T, Burkov A A, Stemmer S 2021 Appl. Phys. Lett. 119 171907Google Scholar

    [206]

    Abrikosov A A 1998 Phys. Rev. B 58 2788Google Scholar

    [207]

    Parish M M, Littlewood P B 2003 Nature 426 162Google Scholar

    [208]

    Parish M M, Littlewood P B 2005 Phys. Rev. B 72 094417Google Scholar

    [209]

    Cao H, Tian J, Miotkowski I, Shen T, Hu J, Qiao S, Chen Y P 2012 Phys. Rev. Lett. 108 216803Google Scholar

    [210]

    Wang C M, Lei X L 2012 Phys. Rev. B 86 035442Google Scholar

    [211]

    Avron J E, Seiler R, Simon B 1983 Phys. Rev. Lett. 51 51Google Scholar

    [212]

    Halperin B I 1987 Jpn. J. Appl. Phys. 26 1913Google Scholar

    [213]

    Zhao P L, Lu H Z, Xie X C 2021 Phys. Rev. Lett. 127 046602Google Scholar

    [214]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [215]

    Chen R, Shen S Q 2023 arXiv: 2304.04229 [cond-mat]

    [216]

    Zhou H M, Li H L, Xu D H, Chen C Z, Sun Q F, Xie X C 2022 Phys. Rev. Lett. 129 096601Google Scholar

    [217]

    Gong M, Liu H W, Jiang H, Chen C Z, Xie X C 2023 Natl. Sci. Rev 10 nwad025Google Scholar

    [218]

    Goos F, Hanchen H 1947 Ann. Phys. 436 333Google Scholar

  • 图 1  有质量狄拉克费米子的内禀磁阻 (a)有质量狄拉克费米子的横向磁阻和纵向磁阻, 其中纵向磁阻为负, 横向磁阻为正; (b)无量纲系数随能带展宽的变化关系, $c_\alpha$在弱散射下趋于一个常数. 转载自文献[48]

    Figure 1.  Intrinsic Magnetoresistivity in massive Dirac fermion: (a) Transversal and longitudinal magnetoresistivity, where the longitudinal one is negative and transversal one is positive; (b) dimensionless parameter $c_\alpha$ as functions of band broadening, here $c_\alpha$ tends to a constant in weak scattering. Reproduced with permission from Ref. [48]

    图 2  Mn掺杂的拓扑绝缘体薄膜中磁导在不同磁场强度下的温度依赖行为, 其中(a) $x_{\mathrm{Mn}} = 0{\text{%}}$和(b) $x_{\mathrm{Mn}} = 8{\text{%}}$. 图中的空心方块是从文献[63]中获得的实验数据, 实线是(25)式在不同磁场下的拟合结果. 转载自文献[72]

    Figure 2.  Magnetoconductivity as a function of temperature at different magnetic field strength for two Mn-doped topological insulator thin films of (a) $x_{{\rm{Mn}}} = 0{\text{%}}$ and (b) $x_{{\rm{Mn}}} = 8{\text{%}}$. The open squares are the experimental data extract from Ref. [63]. The solid red lines are the fitting results at different magnetic filed B by using the formula in Eq. (25). Reproduced with permission from Ref. [72]

    图 3  库珀子能隙和权重因子关于能量的函数关系, 其中(a) 拓扑绝缘体$(mb>0)$, (b) 平庸绝缘体$(mb<0)$, (c)半金属($mb=0$). $F_\mathrm{tot}=\displaystyle\sum\nolimits_i F_i$是总的权重因子. 转载自文献[75]

    Figure 3.  Dimensionless Cooperon gap $\ell_e^2/\ell_i^2$ and weighting factor $F_i$ as a function of the Fermi energy $\mu$ for (a) topological insulator ($mb>0$), (b) trivial insulator ($mb<0$), and (c) Dirac semimetal ($mb=0$). $F_\mathrm{tot}$ is the total weighting factors defined as $F_\mathrm{tot}=\displaystyle\sum\nolimits_i F_i$. Reproduced with permission from Ref. [75]

    图 4  (a) (27)式对实验中Cd2As3样品[64]相对纵向磁阻的理论拟合; (b) 拟合得到的相干长度关于温度的函数, 可以被$\ell_{\phi}\propto T^{-0.75}$很好地拟合; (c)不同磁场强度下的相对磁阻关于温度的函数. 转载自文献[75]

    Figure 4.  Theoretical fitting to the relative longitudinal magnetoresistance in a $\mathrm{Cd}_{2}\mathrm{As}_{3}$ sample[64]; (b) fitted phase coherence length $\ell_\phi$ as a function of temperatures (open squares), which can be well-fitted by $\ell_{\phi}\propto T^{-0.75}$; (c) measured relative magnetoresistance as a function of temperatures at $B=1, 2, 3\;\mathrm{T}$. Reproduced with permission from Ref. [75]

    图 5  ZrTe5和HfTe5电阻反常效应 (a)关于ZrTe5温度依赖的能谱在实验 (根据文献中ARPES测量得到) 和理论 (实线) 上的比较, 随着温度升高, 化学势由导带变化至价带; (b)—(d) 分别为不同载流子浓度下计算得到的电阻反常行为、霍尔系数和塞贝克系数. 转载自文献[121]

    Figure 5.  Resistivity anomaly in ZrTe5 and HfTe5: (a) Comparison of experimental (according to the ARPES measurements in literature) and theoretical (solid lines) temperature-dependent energy spectrum. The chemical potential varies from valence band to conduction band with the increasing of temperature. (b)–(d) The resistivity anomaly, Hall coefficients, and Seebeck coefficient for several different carrier concentrations. Reproduced with permission from Ref. [121]

    图 6  不同温度下的(a)横向电阻, (b)霍尔电阻, (c)塞贝克系数和(d)能斯特系数的磁场依赖. 转载自文献[121]

    Figure 6.  Magnetic field dependence of (a) the transverse magnetoresistance $\rho_xx$, (b) the Hall resistivity $\rho_{xy}$, (c) the Seebeck coefficient and (d) the Nernst coefficient for different temperatures. Reproduced with permission from Ref. [121]

    图 7  连续性方程(32)和(34)中系数$C_{\rm{h}}{\rm{}}$$C_5$的比较. 转载自文献[50]

    Figure 7.  Comparison of the coefficients $C_{{{{\rm{h}}}}/5}$ in the equations for the divergence of the helical current and axial vector currents in Eqs. (32) and (34). Reproduced with permission from Ref. [50]

    图 8  宇称反常半金属示意图 (a) Haldane模型: 无质量和有质量的狄拉克锥在动量空间分开; (b)三维半磁性拓扑绝缘体: 无质量和有质量的狄拉克锥在实空间分开; (c)宇称反常半金属中低能电子态的分布以及幂律衰减的边界流. 转载自文献[123]

    Figure 8.  Illustration of parity anomaly semimetals: (a) Haldane model where massive and massless Dirac cone separated in momentum space; (b) semi-magnetic 3D topological insulator in which a massive and a massless Dirac cone separated in position space; (c) distribution of a set of low energy states and the power law decay edge current in the parity anomalous semimetal for open boundary condition. Reproduced with permission from Ref. [123]

    图 9  (a)关于磁化强度和体拓扑磁电效应关系的示意图, 外加电场产生了表面电流和磁化强度; (b)沿着x方向的局域电流密度关于位置z的函数; (c)轴子角$\theta$关于位置z的函数关系. 这里电场沿着y方向. 转载自文献[125]

    Figure 9.  (a) Schematic diagram of the relation between magnetization and bulk topological magnetoelectric effect. A surface current is produced by an electric field due to the magnetization. (b) Local current density along the x–direction as a function of slab position z. (c) Spatial dependent $\theta$ along the z direction. The electric field is applied along the y-direction. Reproduced with permission from Ref. [125]

    图 10  ${\cal{F}}(x)$关于x的函数关系, 其中蓝色虚线表示$ \mathcal{F}(x)= 1 $的位置. 插图是$x\leqslant3$的函数曲线, 绿色虚线是$x\to0$下的线性拟合${\cal{F}}(x)={x}/{2}$

    Figure 10.  Function relation between ${\cal{F}}(x)$ and x, the dashed blue line indicates the position of $ \mathcal{F}(x)=1 $. Insert is the function curve for $x\leqslant3$, the dashed green line is the linear fitting with ${\cal{F}}(x)={x}/{2}$ for $x\to0$

    表 1  狄拉克哈密顿量中利用狄拉克伽马矩阵表示的16个物理量及无序根据时间反演(${\cal{T}}$)、宇称(${\cal{I}}$)以及手性对称性(${\cal{C}}$)的分类. 转载自文献[49]

    Table 1.  Various types of physical quantities and disorder represented by fermionic bilinears ($i = 1, $$ 2, 3$), their symmetries under time-reversal (${\cal{T}}$), parity (${\cal{I}}$), and continuous chiral rotation (${\cal{C}}$). Reproduced with permission from Ref. [49]

    Bilinear
    ($\hat{\cal{S} }_{\mathtt{A} }\propto\bar{\varPsi}{\boldsymbol{\gamma}}^{\mathtt{A} }\varPsi$)
    Physical quantity${\cal{T}}$${\cal{I}}$${\cal{C}}$Disorder
    $\bar{\varPsi}{\boldsymbol{\gamma}}^{0}\varPsi$Total charge $(J^{0})$$\checkmark$$\checkmark$$\checkmark$$\varDelta$
    $\bar{\varPsi}{\boldsymbol{\gamma}}^{0}{\boldsymbol{\gamma}}^{5}\varPsi$Axial charge $(J^{a0})$$\checkmark$$\times$$\checkmark$$\varDelta_{{\rm{a}}}$
    $\bar{\varPsi}\varPsi$Scalar mass $({n}_{\beta})$$\checkmark$$\checkmark$$\times$$\varDelta_{{\rm{m}}}$
    $\bar{\varPsi}{\rm{i}}{\boldsymbol{\gamma}}^{5}\varPsi$Pseudo-scalar density $({n}_{{\rm{P}}})$$\times$$\times$$\times$$\varDelta_{{\rm{P}}}$
    $\bar{\varPsi}{\boldsymbol{\gamma}}^{i}\varPsi$Current $(J^{i})$$\times$$\times$$\checkmark$$\varDelta_{{\rm{c}}}$
    $\bar{\varPsi}\gamma^{i}\gamma^{5}\varPsi$Axial current $(J^{ai})$$\times$$\checkmark$$\checkmark$$\varDelta_{{\rm{ac}}}$
    $\bar{\varPsi}{\rm{i}}{\boldsymbol{\gamma}}^{0}{\boldsymbol{\gamma}}^{i}\varPsi$Electric
    polarization $({p}_{i})$
    $\checkmark$$\times$$\times$$\varDelta_{{\rm{p}}}$
    $\bar{\varPsi }{\boldsymbol{\gamma}}^{5}{\boldsymbol{\gamma} }^{0}{\boldsymbol{\gamma} }^{i}\varPsi$Magnetization $({m}_{i})$$\times$$\checkmark$$\times$$\varDelta_{{\rm{M}}}$
    DownLoad: CSV

    表 2  4个库珀子通道$i = s, t_{0, \pm}$的库珀子能隙(以$ \ell_{e}^{-2} $为单位)和权重因子, 其中$\eta = mv^2/\mu$是狄拉克费米子的自旋极化. 转载自文献[72]

    Table 2.  Components of four Cooperon channels $i = s, t_{0, \pm}$ in the basis of spin-triplet and singlet $|s, s_{z}\rangle$, the Cooperon gap $\ell_{i}^{-2}$ in unit of the mean free path $\ell_{{\rm{e}}}^{-2}$ and the weighting factors $w_{i}$, where $\eta = mv^2/\mu$ is the orbital polarization of Dirac fermion. Reproduced with permission from Ref. [72]

    iCooperon in $|s, s_z\rangle$$w_i$$\ell_{\rm{e}}^2/\ell_i^2$
    s$|0, 0\rangle$$-\dfrac{(1-\eta^{2})^{2}}{2(1+3\eta^{2})^{2}}$$\dfrac{(1-\eta^{2})\eta^{2}}{(1+\eta^{2})^{2}}$
    $t_{+}$$|1, 1\rangle$$\dfrac{4\eta^{2}(1+\eta^{2})}{(1+3\eta^{2})^{2}}$$\dfrac{4(1-\eta)^{2}\eta^{2}}{(1+3\eta^{2})(1+\eta)^{2}}$
    $t_{0}$$|1, 0\rangle$0$\infty$
    $t_{-}$$|1, -1\rangle$$\dfrac{4\eta^{2}(1+\eta^{2})}{(1+3\eta^{2})^{2}}$$\dfrac{4(1+\eta)^{2}\eta^{2}}{(1+3\eta^{2})(1-\eta)^{2}}$
    DownLoad: CSV
  • [1]

    Shen S Q 2017 Topological Insulators (Vol. 187) (2nd Ed.) (Singapore: Springer) pp17–32

    [2]

    Wehling T O, Black S, Annica M, Balatsky A V 2014 Adv. Phys. 63 1Google Scholar

    [3]

    Volovik G E 2003 The Universe in a Helium Droplet (Oxford: Clarendon Press) pp454–456

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [5]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [6]

    Sarma S D, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407Google Scholar

    [7]

    Moore J E 2010 Nature 464 194Google Scholar

    [8]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [9]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [10]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar

    [11]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [12]

    Wang G, Chernikov A, Glazov, M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [13]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [14]

    Ando Y, Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361Google Scholar

    [15]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [16]

    Lv B Q, Qian T, Ding H 2021 Rev. Mod. Phys. 93 025002Google Scholar

    [17]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [18]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [19]

    Kane C L, Me le, E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [20]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [21]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [22]

    Hosur P, Qi X L 2013 CR Phys. 14 857Google Scholar

    [23]

    Jia S, Xu S Y, Hasan M Z 2016 Nat. Mater. 15 1140Google Scholar

    [24]

    Lu H Z, Shen S Q 2017 Front. Phys. 12 127201Google Scholar

    [25]

    Wang S, Lin B C, Wang A Q, Yu D P, Liao Z M 2017 Adv. Phys. X 2 518Google Scholar

    [26]

    Hu J, Xu S Y, Ni N, Mao Z Q 2019 Annu. Rev. Mater. Res. 49 207Google Scholar

    [27]

    Culcer D, Keser A C, Li Y, Tkachov G 2020 2D Mater. 7 022007Google Scholar

    [28]

    Kim H J, Kim K S, Wang J F, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M, Li L 2013 Phys. Rev. Lett. 111 246603Google Scholar

    [29]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [30]

    Li H, He H T, Lu H Z, Zhang H C, Liu H C, Ma R, Fan Z Y, Shen S Q, Wang J N 2016 Nat. Commun. 7 10301Google Scholar

    [31]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [32]

    Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M 2016 Nat. Commun. 7 10735Google Scholar

    [33]

    Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z 2015 Phys. Rev. X 5 031023Google Scholar

    [34]

    Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A, Zhong R, Schneeloch J, Gu G, Valla T 2016 Nat. Phys. 12 550Google Scholar

    [35]

    Liang S, Lin J, Kushwaha S, Xing J, Ni N, Cava R J, Ong N P 2018 Phys. Rev. X 8 031002Google Scholar

    [36]

    Wang J, Li H, Chang C, He K, Lee J S, Lu H, Sun Y, Ma X, Samarth N, Shen S Q 2012 Nano Res. 5 739Google Scholar

    [37]

    He H T, Liu H C, Li B K, Guo X, Xu Z J, Xie M H, Wang J N 2013 Appl. Phys. Lett. 103 031606Google Scholar

    [38]

    Assaf B, Phuphachong T, Kampert E, Volobuev V, Mandal P, Sánchez-Barriga J, Rader O, Bauer G, Springholz G, De Vaulchier L 2017 Phys. Rev. Lett. 119 106602Google Scholar

    [39]

    Wiedmann S, Jost A, Fauqué B, Van Dijk J, Meijer M, Khouri T, Pezzini S, Grauer S, Schreyeck S, Brüne C 2016 Phys. Rev. B 94 081302Google Scholar

    [40]

    Mutch J, Chen W C, Went P, Qian T, Wilson I Z, Andreev A, Chen C C, Chu J H 2019 Sci. Adv. 5 eaav9771Google Scholar

    [41]

    Nielsen H, Ninomiya M 1983 Phys. Lett. B 130 389Google Scholar

    [42]

    Son D T, Spivak B Z 2013 Phys. Rev. B 88 104412Google Scholar

    [43]

    Burkov A A 2014 Phys. Rev. Lett. 113 247203Google Scholar

    [44]

    Goswami P, Pixley J H, Sarma S D 2015 Phys. Rev. B 92 075205Google Scholar

    [45]

    Gao Y, Yang S A, Niu Q 2017 Phys. Rev. B 95 165135Google Scholar

    [46]

    Dai X, Du Z, Lu H Z 2017 Phys. Rev. Lett. 119 166601Google Scholar

    [47]

    Andreev A V, Spivak B Z 2018 Phys. Rev. Lett. 120 026601Google Scholar

    [48]

    Wang H W, Fu B, Shen S Q 2018 Phys. Rev. B 98 081202(RGoogle Scholar

    [49]

    Fu B, Wang H W, Shen S Q 2020 Phys. Rev. B 101 125203Google Scholar

    [50]

    Wang H W, Fu B, Shen S Q 2021 Phys. Rev. B 104 L241111Google Scholar

    [51]

    Gorkov L P, Larkin A I, Khmelnitskii D E 1979 JETP Lett. 30 228

    [52]

    Hikami S, Larkin A I, Nagaoka Y 1980 Prog. Theor. Phys. 63 707Google Scholar

    [53]

    Chakravarty S, Schmid A 1986 Phys. Rep. 140 193Google Scholar

    [54]

    Wu X S, Li X B, Song Z M, Berger C, de Heer W A 2007 Phys. Rev. Lett. 98 136801Google Scholar

    [55]

    Tikhonenko F V, Kozikov A A, Savchenko A K, Gorbachev R V 2009 Phys. Rev. Lett. 103 226801Google Scholar

    [56]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601Google Scholar

    [57]

    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L 2010 Phys. Rev. Lett. 105 176602Google Scholar

    [58]

    He H T, Wang G, Zhang T, Sou I K, Wong G K, Wang J N, Lu H Z, Shen S Q, Zhang F C 2011 Phys. Rev. Lett. 106 166805Google Scholar

    [59]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438Google Scholar

    [60]

    Liu M H, Zhang J S, Chang C Z, Zhang Z C, Feng X, Li K, H e, K, Wa ng, L L, Chen X, Dai Xi, Fang Z, Xue Q K, Ma X C, Wang Y Y 2012 Phys. Rev. Lett. 108 036805Google Scholar

    [61]

    Liu H C, Lu H Z, He H T, Li B K, Liu S G, He Q L, Wang G, S ou, I K, Shen S Q, Wang J N 2014 ACS Nano 8 9616Google Scholar

    [62]

    Li H, Wang H W, Li Y, Zhang H C, Zhang S, Pan X C, Jia B, Song F Q, Wang J N 2019 Nano Lett. 19 2450Google Scholar

    [63]

    Tkac V, Vyborny K, Komanicky V, Warmuth J, Michiardi M, Ngankeu A S 2019 Phys. Rev. Lett. 123 036406Google Scholar

    [64]

    Zhao B, Cheng P H, Pan H Y, Zhang S, Wang B G, Wang G H, Xiu F X, Song F Q 2016 Sci. Rep. 6 22377Google Scholar

    [65]

    Nakamura H, Huang D, Merz J, Khalaf E, Ostrovsky P, Yaresko A, Samal D, Takagi H 2020 Nat. Commun. 11 1161Google Scholar

    [66]

    Suzuura H, Ando T 2002 Phys. Rev. Lett. 89 266603Google Scholar

    [67]

    McCann E, Kechedzhi K, Falko V I, Suzuura H, Ando T, Altshuler B L 2006 Phys. Rev. Lett. 97 146805Google Scholar

    [68]

    Garate I, Glazman L 2012 Phys. Rev. B 86 035422Google Scholar

    [69]

    Lu H Z, Shi J R, Shen S Q 2011 Phys. Rev. Lett. 107 076801Google Scholar

    [70]

    Lu H Z, Shen S Q 2014 Phys. Rev. Lett. 112 146601Google Scholar

    [71]

    Gornyi I V, Kachorovskii V Y, Ostrovsky P M 2014 Phys. Rev. B 90 085401Google Scholar

    [72]

    Wang H W, Fu B, Shen S Q 2020 Phys. Rev. Lett. 124 206603Google Scholar

    [73]

    Lu H Z, Shen S Q 2015 Phys. Rev. B 92 035203Google Scholar

    [74]

    Dai X, Lu H Z, Shen S Q, Yao H 2016 Phys. Rev. B 93 161110Google Scholar

    [75]

    Fu B, Wang H W, Shen S Q 2019 Phys. Rev. Lett. 122 246601Google Scholar

    [76]

    Chen W, Lu H Z, Zilberberg O 2019 Phys. Rev. Lett. 122 196603Google Scholar

    [77]

    Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197Google Scholar

    [78]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [79]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801Google Scholar

    [80]

    Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002Google Scholar

    [81]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [82]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L 2013 Science 340 167Google Scholar

    [83]

    Xu Y, Miotkowski I, Liu C, Tian J F, Nam H, Alidoust N, Hu J N, Shih C K, Hasan M Z, Chen Y P 2014 Nat. Phys. 10 956Google Scholar

    [84]

    Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R 2019 Nature 565 331Google Scholar

    [85]

    Tang F D, Ren Y F, Wang P P, Zhong R D, Schneeloch J, Yang S Y A, Yang K, Lee P A, Gu G D, Qiao X H, Zhang L Y 2019 Nature 569 537Google Scholar

    [86]

    Galeski S, Ehmcke T, Wawrzynczak R, Lozano P M, Cho K, Sharma A, Das S 2021 Nat. Commun. 12 3197Google Scholar

    [87]

    Wang C M, Sun H P, Lu H Z, Xie X C 2017 Phys. Rev. Lett. 119 136806Google Scholar

    [88]

    Qin F, Li S, Du Z Z, Wang C M, Zhang W Q, Yu D P, Lu H Z, Xie X C 2020 Phys. Rev. Lett. 125 206601Google Scholar

    [89]

    Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Nagaosa N, Kawasaki M, Tokura Y 2015 Nat. Commun. 6 8530Google Scholar

    [90]

    Zhang S, Pi L, Wang R, Yu G, Pan X C, Wei Z, Zhang J, Xi C, Bai Z 2017 Nat. Commun. 8 977Google Scholar

    [91]

    Mogi M, Okamura Y, Kawamura M, Yoshimi R, Yoshimi K, Tsukazaki A, Takahashi K S 2022 Nat. Phys. 18 390Google Scholar

    [92]

    Liang T, Lin J J, Gibson Q, Kushwaha S, Liu M H, Wang W D, Xiong H Y, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z X, Cava R J, Ong N P 2018 Nat. Phys. 14 451Google Scholar

    [93]

    Sun Z, Cao Z, Cui J, Zhu C, Ma D, Wang H, Zhuo W, Cheng Z, Wang Z, Wan X, Chen X H 2020 Npj Quantum Mater. 5 36Google Scholar

    [94]

    Liu Y Z, Wang H C, Fu H X, et al. 2021 Phys. Rev. B 103 L201110Google Scholar

    [95]

    Mutch J, Ma X, Wang C, Malinowski P, AyresSims J, Jiang Q, Liu Z, Xiao D, Yankowitz M, Chu J H 2021 arXiv: 2101.02681 [cond-mat]

    [96]

    Gourgout A, Leroux M, Smirr J L, et al. 2022 npj Quantum Mater. 7 71Google Scholar

    [97]

    Lozano P M, Cardoso G, Aryal N, Nevola D, Gu G, Tsvelik A, Yin W, Li Q 2022 Phys. Rev. B 106 L081124Google Scholar

    [98]

    Burkov A A 2017 Phys. Rev. B 96 041110Google Scholar

    [99]

    Nandy S, Sharma G, Taraphder A, Tewari S 2017 Phys. Rev. Lett. 119 176804Google Scholar

    [100]

    Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A, Ando Y 2017 Nat. Commun. 8 1340Google Scholar

    [101]

    Li H, Wang H W, He H T, Wang J N, Shen S Q 2018 Phys. Rev. B 97 201110Google Scholar

    [102]

    Wu M, Zheng G L, Chu W W, Liu Y Q, Gao W S, Zhang H W, Lu J W, Han Y Y, Zhou J H, Ning W, Tian M L 2018 Phys. Rev. B 98 161110Google Scholar

    [103]

    Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103Google Scholar

    [104]

    Li P, Zhang C H, Zhang J W, Wen Y, Zhang X X 2018 Phys. Rev. B 98 121108(RGoogle Scholar

    [105]

    Huang D, Nakamura H, Takagi H 2021 Phys. Rev. Research 3 013268Google Scholar

    [106]

    Wu M, Tu D, Nie Y, Miao S, Gao W, Han Y, Zhu X D, Zhou J H, Ning W, Tian M L 2022 Nano Lett. 22 73Google Scholar

    [107]

    Zhong J Y, Zhuang J C, Du Y 2023 Chin. Phys. B 32 047203Google Scholar

    [108]

    Gao A Y, Liu Y F, Hu C W, Qiu J X, Tzschaschel C, Ghosh B, Ho S C 2021 Nature 595 521Google Scholar

    [109]

    Chen R, Sun H P, Gu M Q, Hua C B, Liu Q H, Lu H Z, Xie X C 2022 Natl. Sci. Rev. nwac140Google Scholar

    [110]

    Zhai D W, Chen C, Xiao C, Yao W 2023 Nat. Commun. 14 1961Google Scholar

    [111]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821Google Scholar

    [112]

    Wang X, Du Y, Dou S, Zhang C 2012 Phys. Rev. Lett. 108 266806Google Scholar

    [113]

    Zhang G, Qin H, Chen J, He X, Lu L, Li Y, Wu K 2011 Adv. Funct. Mater. 21 2351

    [114]

    Tang H, Liang D, Qiu R L J, Gao X P A 2011 ACS Nano 5 7510Google Scholar

    [115]

    He H, Li B, Liu H, Guo X, Wang Z, Xie M, Wang J 2012 Appl. Phys. Lett. 100 032105Google Scholar

    [116]

    He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J, Li S Y 2014 Phys. Rev. Lett. 113 246402Google Scholar

    [117]

    Liang T, Gibson Q, Ali M N, Liu M, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [118]

    Narayanan A, Watson M D, Blake S F, Bruyant N, Drigo L, Chen Y L, Prabhakaran D, Yan B, Felser C, Kong T, Canfield P C, Coldea A I 2015 Phys. Rev. Lett. 114 117201Google Scholar

    [119]

    Feng J, Pang Y, Wu D, Wang Z J, Weng H M, Li J, Dai X, Fang Z, Shi Y, Lu L 2015 Phys. Rev. B 92 081306(RGoogle Scholar

    [120]

    Tian Y, Ghassemi N, Jr J H R 2021 Phys. Rev. Lett. 126 236401Google Scholar

    [121]

    Fu B, Wang H W, Shen S Q 2020 Phys. Rev. Lett. 125 256601Google Scholar

    [122]

    Fu B, Zou J Y, Hu Z A, Wang H W, Shen S Q 2022 npj Quantum Mater. 7 94Google Scholar

    [123]

    Zou J Y, Fu B, Wang H W, Hu Z A, Shen S Q 2022 Phys. Rev. B 105 L201106Google Scholar

    [124]

    Zou J Y, Chen R, Fu B, Wang H W, Hu Z A, Shen S Q 2023 Phys. Rev. B 107 125153Google Scholar

    [125]

    Wang H W, Fu B, Zou J Y, Hu Z A, Shen S Q 2022 Phys. Rev. B 106 045111Google Scholar

    [126]

    Shen S Q, Bao Y J, Ma M, Xie X C, Zhang F C 2005 Phys. Rev. B 71 155316Google Scholar

    [127]

    Bjorken J D, Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill Inc.) pp45–60

    [128]

    Shen S Q, Shan W Y, Lu H Z 2011 SPIN 01 33Google Scholar

    [129]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [130]

    Klitzing K v, Chakraborty T, Kim P, Madhavan V, Dai X, McIver J, Tokura Y, Savary L, Smirnova D, Rey A M, Felser C, Gooth J, Qi X L 2020 Nat. Rev. Phys. 2 397Google Scholar

    [131]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [132]

    Yang B J, Nagaosa N 2014 Nat. Commun. 5 4898Google Scholar

    [133]

    Wilson K G 1975 New Phenomena in Subnuclear Physics (New York: Plenum) pp69–142

    [134]

    Rothe H J 2005 Lattice Gauge Theories: An Introduction (3rd Ed.) (Singapore: World Scientific) pp56–57

    [135]

    Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J 2017 Nat. Commun. 8 15512Google Scholar

    [136]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [137]

    Xia Y Q, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398Google Scholar

    [138]

    Zee A 2010 Quantum Field Theory in a Nutshell (Vol. 7) (Princeton: Princeton University Press) pp99–100

    [139]

    Liu M H, Chang C Z, Zhang Z C, Zhang Y, Ruan W, He K, Wang L L, Chen X, Jia J F, Zhang S C, Xue Q K, Ma X C, Wang Y Y 2011 Phys. Rev. B 83 165440Google Scholar

    [140]

    Takagaki Y, Jenichen B, Jahn U, Ramsteiner M, Friedl K J 2012 Phys. Rev. B 85 115314Google Scholar

    [141]

    Jing Y M, Huang S Y, Zhang K, Wu J X, Guo Y F, Peng H L, Liu Z F, Xu H Q 2016 Nanoscale 8 1879Google Scholar

    [142]

    Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288Google Scholar

    [143]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287Google Scholar

    [144]

    Liu Q, Liu C X, Xu C K, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603Google Scholar

    [145]

    Chen Y L, C hu, J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H 2010 Science 329 659Google Scholar

    [146]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [147]

    Okada S, Sambongi T, Ido M 1980 J. Phys. Soc. Jpn. 49 839Google Scholar

    [148]

    Izumi M, Uchinokura K, Matsuura E 1981 Solid State Commun. 37 641Google Scholar

    [149]

    DiSalvo F, Fleming R, Waszczak J 1981 Phys. Rev. B 24 2935Google Scholar

    [150]

    Okada S, Sambongi T, Ido M, Tazuke Y, Aoki R, Fujita O 1982 J. Phys. Soc. Jpn. 51 460Google Scholar

    [151]

    Bullett D 1982 Solid State Commun. 42 691Google Scholar

    [152]

    Fjellvag H, Kjekshus A 1986 Solid State Commun. 60 91Google Scholar

    [153]

    Chen Z G, Chen R, Zhong R, Schneeloch J, Zhang C, Huang Y, Qu F, Yu R, Li Q, Gu G, Wang N 2017 Proc. Natl. Acad. Sci. U.S.A. 114 816Google Scholar

    [154]

    Manzoni G, Gragnaniello L, AutASs G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V 2016 Phys. Rev. Lett. 117 237601Google Scholar

    [155]

    Zhang J L, Wang C M, Guo C Y, Zhu X D, Zhang Y, Yang J Y, Wang Y Q, Qu Z, Pi L, Lu H Z, Tian M L 2019 Phys. Rev. Lett. 123 196602Google Scholar

    [156]

    Jiang Y, Wang J, Zhao T, Dun Z L, Huang Q, Wu X S, Mourigal M, Zhou H D, Pan W, Ozerov M, Smirnov D, Jiang Z 2020 Phys. Rev. Lett. 125 046403Google Scholar

    [157]

    Wang P, Ren Y, Tang F, Wang P, Hou T, Zeng H, Zhang L, Qiao Z H 2020 Phys. Rev. B 101 161201Google Scholar

    [158]

    Zhao L X, Huang X C, Long Y J, Chen D, Liang H, Yang Z H, Xue M Q, Ren Z A, Weng H M, Fang Z, Dai X, Chen G F 2017 Chin. Phys. Lett. 34 037102Google Scholar

    [159]

    Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055Google Scholar

    [160]

    Xu B, Zhao L, Marsik P, Sheveleva E, Lyzwa F, Dai Y, Chen G, Qiu X, Bernhard C 2018 Phys. Rev. Lett. 121 187401Google Scholar

    [161]

    Wang C J 2021 Phys. Rev. Lett. 126 126601Google Scholar

    [162]

    Wang Y G, Legg H F, Bömerich T, Park J, Biesenkamp S, Taskin A A, Braden M, Rosch A, Ando Y 2022 Phys. Rev. Lett. 128 176602Google Scholar

    [163]

    Zhang Y, Wang C, Liu G, Liang A, Zhao L, Huang J, Gao Q, Shen B 2017 Sci. Bull. 62 950Google Scholar

    [164]

    Adler S L 1969 Phys. Rev. 177 2426Google Scholar

    [165]

    Bell J S, Jackiw R 1969 Nuovo Cimento A 60 47Google Scholar

    [166]

    Fujikawa K 1979 Phys. Rev. Lett. 42 1195Google Scholar

    [167]

    Peskin M E, Schroeder D V 1995 An Introduction to Quantum Field Theory (Cambridge: Perseus Books Publishing LLC) pp651–667

    [168]

    Weinberg S 1995 The Quantum Theory of Fields (Vol. 2) (Cambridge: Cambridge University Press) pp473–485

    [169]

    Dirac P A M 1958 The Principles of Quantum Mechanics (New York: Oxford University Press Inc.) pp253–267

    [170]

    Jackiw R, Johnson K 1969 Phys. Rev. 182 1459Google Scholar

    [171]

    Kharzeev D E, Kikuchi Y, Meyer R, Tanizaki Y 2018 Phys. Rev. B 98 014305Google Scholar

    [172]

    Yamamoto N, Yang D L 2021 Phys. Rev. D 103 125003Google Scholar

    [173]

    Vilenkin A 1980 Phys. Rev. D 22 3080Google Scholar

    [174]

    Fukushima K, Fukushima D E, Warringa H J 2008 Phys. Rev. D 78 074033Google Scholar

    [175]

    Huang Z M, Zhou J H, Shen S Q 2017 Phys. Rev. B 96 085201Google Scholar

    [176]

    Lu H Z, Zhang S B, Shen S Q 2015 Phys. Rev. B 92 045203Google Scholar

    [177]

    Zhang S B, Lu H Z, Shen S Q 2016 New J. Phys. 18 053039Google Scholar

    [178]

    Klier J, Gornyi I V, Mirlin A D 2017 Phys. Rev. B 96 214209Google Scholar

    [179]

    Niemi A J, Semenoff G W 1983 Phys. Rev. Lett. 51 2077Google Scholar

    [180]

    Redlich A N 1984 Phys. Rev. Lett. 52 18Google Scholar

    [181]

    Jackiw R 1984 Phys. Rev. D 29 2375Google Scholar

    [182]

    Boyanovsky D, Blankenbecler R, Yahalom R 1986 Nucl. Phys. B 270 483Google Scholar

    [183]

    Schakel A M J 1991 Phys. Rev. D 43 1428Google Scholar

    [184]

    Chu R L, Shi J R, Shen S Q 2011 Phys. Rev. B 84 085312Google Scholar

    [185]

    Lapa M F 2019 Phys. Rev. B 99 235144Google Scholar

    [186]

    Lu R, Sun H, Kumar S, Wang Y, Gu M, Zeng M, Hao Y J, Li J 2021 Phys. Rev. X 11 011039Google Scholar

    [187]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805Google Scholar

    [188]

    Sitte M, Rosch A, Altman E, Fritz L 2012 Phys. Rev. Lett. 108 126807Google Scholar

    [189]

    Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107Google Scholar

    [190]

    Gu M, Li J, Sun H, Zhao Y, Liu C, Liu J, Lu H, Liu Q 2021 Nat. Commun. 12 3524Google Scholar

    [191]

    Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516Google Scholar

    [192]

    Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669Google Scholar

    [193]

    Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801Google Scholar

    [194]

    Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar

    [195]

    Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mat. 19 522Google Scholar

    [196]

    Wilczek F 1987 Phys. Rev. Lett. 58 1799Google Scholar

    [197]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424Google Scholar

    [198]

    Spaldin N A, Fiebig M 2005 Science 309 391Google Scholar

    [199]

    Fiebig M 2005 J. Phys. D 38 R123Google Scholar

    [200]

    Maciejko J, Qi X L, Drew H D, Zhang S C 2010 Phys. Rev. Lett. 105 166803Google Scholar

    [201]

    Tse W K, MacDonald A H 2011 Phys. Rev. B 84 205327Google Scholar

    [202]

    Li R, Wang J, Qi X L, Zhang S C 2010 Nat. Phys. 6 284Google Scholar

    [203]

    Sekine A, Nomura K 2014 J Phys. Soc. Jpn. 83 104709Google Scholar

    [204]

    Sekine A, Nomura K 2021 J. Appl. Phys. 129 141101Google Scholar

    [205]

    Shoron O F, Kealhofer D A, Goyal M, Schumann T, Burkov A A, Stemmer S 2021 Appl. Phys. Lett. 119 171907Google Scholar

    [206]

    Abrikosov A A 1998 Phys. Rev. B 58 2788Google Scholar

    [207]

    Parish M M, Littlewood P B 2003 Nature 426 162Google Scholar

    [208]

    Parish M M, Littlewood P B 2005 Phys. Rev. B 72 094417Google Scholar

    [209]

    Cao H, Tian J, Miotkowski I, Shen T, Hu J, Qiao S, Chen Y P 2012 Phys. Rev. Lett. 108 216803Google Scholar

    [210]

    Wang C M, Lei X L 2012 Phys. Rev. B 86 035442Google Scholar

    [211]

    Avron J E, Seiler R, Simon B 1983 Phys. Rev. Lett. 51 51Google Scholar

    [212]

    Halperin B I 1987 Jpn. J. Appl. Phys. 26 1913Google Scholar

    [213]

    Zhao P L, Lu H Z, Xie X C 2021 Phys. Rev. Lett. 127 046602Google Scholar

    [214]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [215]

    Chen R, Shen S Q 2023 arXiv: 2304.04229 [cond-mat]

    [216]

    Zhou H M, Li H L, Xu D H, Chen C Z, Sun Q F, Xie X C 2022 Phys. Rev. Lett. 129 096601Google Scholar

    [217]

    Gong M, Liu H W, Jiang H, Chen C Z, Xie X C 2023 Natl. Sci. Rev 10 nwad025Google Scholar

    [218]

    Goos F, Hanchen H 1947 Ann. Phys. 436 333Google Scholar

  • [1] Sun Bin, Zhao Li-Chen, Liu Jie. Dirac magnetic monopoles potential in the nonlinear double-soliton interference. Acta Physica Sinica, 2023, 72(10): 100501. doi: 10.7498/aps.72.20222416
    [2] Zhang Ming-Mei, Guo Ya-Tao, Fu Xu-Ri, Li Meng-Lei, Ren Bao-Cang, Zheng Jun, Yuan Rui-Yang. Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS2 nanoribbons with ferromagnetic electrode. Acta Physica Sinica, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [3] Hu Ju-Gang, Jia Zhen-Yu, Li Shao-Chun. Electron transport property of epitaixial bilayer graphene on SiC substrate. Acta Physica Sinica, 2022, 71(12): 127204. doi: 10.7498/aps.71.20220062
    [4] Jiao Jing, Luo Huan-Bo, Li Lu. Isolated Dirac string induced by interaction between positive and negative monopoles. Acta Physica Sinica, 2021, 70(7): 071401. doi: 10.7498/aps.70.20201744
    [5] Zhang Wei-Xi, Li Yong, Tian Chang-Hai, She Yan-Chao. Room-temperature quantum anomalous Hall effect in monolayer BaPb with large magnetocrystalline anisotropy energies. Acta Physica Sinica, 2021, 70(15): 157502. doi: 10.7498/aps.70.20210014
    [6] Zhu Yan-Qing, Zhang Dan-Wei, Zhu Shi-Liang. Simulating Dirac, Weyl and Maxwell equations with cold atoms in optical lattices. Acta Physica Sinica, 2019, 68(4): 046701. doi: 10.7498/aps.68.20181929
    [7] Liu Jie, Wang Lu, Sun Ling, Wang Wen-Qi, Wu Hai-Yan, Jiang Yang, Ma Zi-Guang, Wang Wen-Xin, Jia Hai-Qiang, Chen Hong. Anomalous light-to-electricity conversion of low dimensional semiconductor in p-n junction and interband transition quantum well infrared detector. Acta Physica Sinica, 2018, 67(12): 128101. doi: 10.7498/aps.67.20180588
    [8] Liu Song, Luo Chun-Rong, Zhai Shi-Long, Chen Huai-Jun, Zhao Xiao-Peng. Inverse Doppler effect of acoustic metamaterial with negative mass density. Acta Physica Sinica, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [9] Wang Xiao, Chen Li-Chao, Liu Yan-Hong, Shi Yun-Long, Sun Yong. Effect of longitudinal mode on the transmission properties near the Dirac-like point of the photonic crystals. Acta Physica Sinica, 2015, 64(17): 174206. doi: 10.7498/aps.64.174206
    [10] Cao Hui-Xian, Mei Jun. Semi-Dirac points in two-dimensional phononic crystals. Acta Physica Sinica, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [11] Huang Xue-Qin, Chan Che-Ting. Dirac-like cones at k=0. Acta Physica Sinica, 2015, 64(18): 184208. doi: 10.7498/aps.64.184208
    [12] Kang Yong-Qiang, Gao Peng, Liu Hong-Mei, Zhang Chun-Min, Shi Yun-Long. Resonant modes in photonic double quantum well structures with single-negative materials. Acta Physica Sinica, 2015, 64(6): 064207. doi: 10.7498/aps.64.064207
    [13] Shi Wang-Lin, Liu Xing-Ye, Liu Zhen-Xing. Dirac radiation of Vaidya-Bonner-de Sitter black hole. Acta Physica Sinica, 2004, 53(7): 2396-2400. doi: 10.7498/aps.53.2396
    [14] Xu Xiao-hua, Jiang Hao, Fu Rong-tang, Sun Xin. . Acta Physica Sinica, 2000, 49(3): 426-429. doi: 10.7498/aps.49.426
    [15] CAO JIANG-LING, PENG FANG-ZHI. DIRAC PARTICLE RADIATION FROM EINSTEIN-MAXWELL-DILATON BLACK PLANE. Acta Physica Sinica, 1998, 47(2): 177-182. doi: 10.7498/aps.47.177
    [16] DONG ZHENG-CHAO. QUANTUM ANALYTICAL THEORY FOR GIANT MAGNETORESISTANCE IN A MAGNETIC SANDWICH STRUCTURE. Acta Physica Sinica, 1997, 46(9): 1801-1807. doi: 10.7498/aps.46.1801
    [17] YI LIN, YAO KAI-LUN. QUANTUM TRANSPORT EQUATION FOR SPIN GLASS SYSTEMS. Acta Physica Sinica, 1994, 43(6): 1024-1028. doi: 10.7498/aps.43.1024
    [18] TAN WEI-HAN, LI YU-FANG, ZHANG WEI-PING. THE FORMAL SOLUTIONS FOR FOKKER-PLANCK EQUATION WITH ZERO OR NEGATIVE DIFFUSION COEFFICIENTS AND THEIR APPLICATIONS TO QUANTUM OPTICS. Acta Physica Sinica, 1988, 37(3): 396-407. doi: 10.7498/aps.37.396
    [19] WU HANG-SHENG, GU YI-MING. A POSSIBLE EXPLANATION FOR THE NEGATIVE MAGNETO-RESISTANCE EFFECT IN THE RAPIDLY COOLED Al-Si ALLOYS. Acta Physica Sinica, 1982, 31(8): 1126-1129. doi: 10.7498/aps.31.1126
    [20] GUAN WEI-YAN, CHEN XI-SEN, WANG ZU-LUN, YI SUN-SHENG. NEGATIVE MAGNETORESISTIVITY OF RAPIDLY QUENCHED SUPERCONDUCTING ALLOY AI-11.3 at% Si. Acta Physica Sinica, 1981, 30(9): 1284-1286. doi: 10.7498/aps.30.1284
Metrics
  • Abstract views:  3008
  • PDF Downloads:  289
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2023
  • Accepted Date:  05 June 2023
  • Available Online:  18 July 2023
  • Published Online:  05 September 2023

/

返回文章
返回