Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of $\boldsymbol \alpha$ particle slowing-down process under CFETR scenario

Wu Xiang-Feng Wang Feng Lin Zhan-Hong Chen Luo-Yu Yu Zhao-Ke Wu Kai-Bang Wang Zheng-Xiong

Citation:

Numerical simulation of $\boldsymbol \alpha$ particle slowing-down process under CFETR scenario

Wu Xiang-Feng, Wang Feng, Lin Zhan-Hong, Chen Luo-Yu, Yu Zhao-Ke, Wu Kai-Bang, Wang Zheng-Xiong
PDF
HTML
Get Citation
  • The high-energy α particles produced by deuterium-tritium fusion are the primary heating source for maintaining high temperatures in future tokamak plasma. Effective confinement of α particles is crucial for sustaining steady-state burning plasma. The initial energy of α particles is $ 3.5 {\text{ MeV}} $. According to theoretical calculations, it takes approximately 1 second to slow down α particles through Coulomb collisions to an energy range similar to the energy range of the background plasma. In the slowing-down process, some α particles may be lost owing to various transport processes. One significant research problem is how to utilize α particles to effectively heat fuel ions so as to sustain fusion reactions in a reactor. Assuming local Coulomb collisions and neglecting orbital effects, a classical slowing-down distribution for α particles can be derived. However, considering the substantial drift orbit width of α particles and the importance of spatial transport, numerical calculations are required to obtain more accurate α particle distribution function. In this study, the particle tracer code (PTC) is used to numerically simulate the slowing-down process of α particles under different scenarios in the Chinese Fusion Engineering Test Reactor (CFETR). By combining particle orbit tracing method with Monte Carlo collision method, a more realistic α particle distribution function can be obtained and compared with the classical slowing-down distribution. The results show significant differences between this distribution function and the classical slowing-down distribution, particularly in the moderate energy range. Further analysis indicates that these disparities are primarily caused by the strong radial transport of α particles at these energy levels. The research findings hold profound implications for the precise evaluating of ability of α particles to heat the background plasma. Understanding and characterizing the behavior of α particles in the slowing-down process and their interaction with the plasma is critical for designing and optimizing future fusion reactors. By attaining a deeper comprehension of the spatial transport and distribution of α particles, it becomes possible to enhance the efficiency of fuel ion heating and sustain fusion reactions more effectively. This study establishes a foundation for subsequent investigations and evaluation of α particles as a highly efficient heating source for fusion plasmas.
      Corresponding author: Wang Feng, fengwang@dlut.edu.cn
    • Funds: Project supported by the National Special Project for Magnetic Confinement Fusion Energy Research and Development Program of China (Grant No. 2022YFE03090000), the National Natural Science Foundation of China (Grant No. 11975068), and the Fundamental Research Funds for the Central Universities of Dalian University of Technology, China (Grant No. DUT22LK18).
    [1]

    Jhang H, Chang C S 1996 Phys. Plasmas 3 3732Google Scholar

    [2]

    赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军 2020 物理学报 69 035203Google Scholar

    Zhao H L, Xiao B, Wang G H, Wang Q, Zhang Z W, Sun Q Z, Deng J J 2020 Acta Phys. Sin. 69 035203Google Scholar

    [3]

    Wan Y X, Li J G, Liu Y, Wang X L, Chan V, Chen C A, Duan X R, Fu P, Gao X, Feng K M 2017 Nucl. Fusion 57 102009Google Scholar

    [4]

    李新霞, 李国壮, 刘洪波 2020 物理学报 69 145201Google Scholar

    Li X X, Li G Z, Liu H B 2020 Acta Phys. Sin. 69 145201Google Scholar

    [5]

    Chen J L, Jian X, Chan V S, Li Z Y, Deng Z, Li G Q, Guo W F, Shi N, Chen X 2017 Plasma Phys. Controlled Fusion 59 75005Google Scholar

    [6]

    郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETR TEAM 2021 物理学报 70 115201Google Scholar

    Hao B L, Chen W, Li G Q, Wang X J, Wang Z L, Wu B, Zang Q, Jie Y X, Lin X D, Gao X, CFETR T 2021 Acta Phys. Sin. 70 115201Google Scholar

    [7]

    McKee G R, Fonck R J, Stratton B C, Budny R V, Chang Z, Ramsey A T 1997 Nucl. Fusion 37 501Google Scholar

    [8]

    Kolesnichenko Y I 1980 Nucl. Fusion 20 727Google Scholar

    [9]

    Gorelenkov N N, Budny R V, Duong H H, Fisher R K, Medley S S, Petrov M P, Redi M H 1997 Nucl. Fusion 37 1053Google Scholar

    [10]

    石黎铭, 吴雪科, 万迪, 李会东, 樊群超, 王中天, 冯灏, 王占辉, 马杰 2019 物理学报 68 105201Google Scholar

    Shi L M, Wu X K, Wan D, Li H D, Fan Q C, Wang Z T, Feng H, Wang Z H, Ma J 2019 Acta Phys. Sin. 68 105201Google Scholar

    [11]

    He B, Wang Z G, Wang J G 2018 Phys. Plasmas 25 12704Google Scholar

    [12]

    Jhang H 2021 Phys. Plasmas 28 94501Google Scholar

    [13]

    Liberman M A, Velikovich A L 1984 J. Plasma Phys. 31 369Google Scholar

    [14]

    Hsu C T, Catto P J, Sigmar D J 1990 Phys. Fluids B 2 280Google Scholar

    [15]

    陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅 2019 物理学报 68 215201Google Scholar

    Chen Z, Zhao Z J, Lü Z L, Li J H, Pan D M 2019 Acta Phys. Sin. 68 215201Google Scholar

    [16]

    Moseev D, Salewski M 2019 Phys. Plasmas 26 20901Google Scholar

    [17]

    Jhang H 1998 Phys. Plasmas 5 4498Google Scholar

    [18]

    Dai Y Z, Cao J J, Xiang D, Yang J H 2023 Phys. Plasmas 30 42501Google Scholar

    [19]

    Wilkie G J, Abel I G, Highcock E G, Dorland W 2015 J. Plasma Phys. 81 905810306Google Scholar

    [20]

    Angioni C, Peeters A G 2008 Phys. Plasmas 15 52307Google Scholar

    [21]

    Wilkie G J, Abel I G, Landreman M, Dorland W 2016 Phys. Plasmas 23 60703Google Scholar

    [22]

    Hauff T, Pueschel M J, Dannert T, Jenko F 2009 Phys. Rev. Lett. 102 75004Google Scholar

    [23]

    Sigmar D, Gormley R, Kamelander G 1993 Nucl. Fusion 33 677Google Scholar

    [24]

    Pueschel M J, Jenko F, Schneller M, Hauff T, Günter S, Tardini G 2012 Nucl. Fusion 52 103018Google Scholar

    [25]

    Wang F, Zhao R, Wang Z X, Zhang Y, Lin Z H, Liu S J 2021 Chin. Phys. Lett. 38 55201Google Scholar

    [26]

    Gaffey Jr J D 1976 J. Plasma Phys. 16 171

    [27]

    Wilkie G J 2018 J. Plasma Phys. 84 745840601Google Scholar

    [28]

    Team J 1999 Nucl. Fusion 39 1619Google Scholar

  • 图 1  电子温度分别为27.78, 14.4和6.7 keV, 对应电子密度分别为1.14×1020, 9.34×1019和7.47×1019 m–3参数下得到的经典能量慢化分布$ {f_1}, {\text{ }}{f_2}, {\text{ }}{f_3} $

    Figure 1.  Classical energy slowing-down distributions f1, f2 and f3 obtained for the electron temperatures of 27.78, 14.4 and 6.7 keV, and their corresponding electron densities of 1.14×1020, 9.34×1019 and 7.47×1019 m–3.

    图 2  CFETR中的背景等离子体参数 (a) 稳态运行模式下的密度、温度和安全因子剖面; (b) 混杂运行模式下的密度、温度和安全因子剖面

    Figure 2.  Background plasma profiles in CFETR: (a) Density, temperature, and safety factor profiles in steady-state scenario; (b) density, temperature and safety factor profiles in hybrid scenario.

    图 3  CFETR稳态运行模式(实线)和混杂运行模式(虚线)下的各个物理量随时间的变化 (a) α粒子数量; (b) α粒子损失率; (c) α粒子对背景等离子体的加热功率; (d) α粒子平均能量

    Figure 3.  Time evolution of various physical quantities in CFETR steady-state scenario (solid lines) and hybrid scenario (dashed lines): (a) Number of α particles; (b) loss rate of α particles; (c) heating power of α particles to the background plasma; (d) average energy of α particles.

    图 4  $ \psi $空间的加热功率密度

    Figure 4.  Heating power density in the $ \psi $ space.

    图 5  稳态时α粒子的密度分布 (a) CFETR稳态运行模式; (b) CFETR混杂运行模式

    Figure 5.  The α particle density in steady-state: (a) CFETR steady-state scenario; (b) CFETR Hybrid scenario.

    图 6  α粒子分布函数 (a) 能量空间; (b) 归一化极向磁通空间

    Figure 6.  The α particle distribution function: (a) Energy space; (b) normalized poloidal magnetic flux space.

    图 7  PTC程序得到的能量慢化分布与理论能量慢化分布的对比 (a) 稳态运行模式下$ {\psi _{\text{a}}} = 0.1—0.2 $$ {\psi _{\text{b}}} = 0.5\text{—}0.6 $; (b) 混杂运行模式下$ {\psi _{\text{c}}} = 0—0.1 $$ {\psi _{\text{d}}} = 0.4—0.5 $

    Figure 7.  Comparison between the energy slowing-down distribution obtained by PTC code and the classical energy slowing-down distribution: (a) In steady-state scenario at $ {\psi _{\text{a}}} = 0.1$–0.2 and $ {\psi _{\text{b}}} = 0.5$–0.6 ; (b) in hybrid scenario at $ {\psi _{\text{c}}} = 0 $–0.1 and $ {\psi _{\text{d}}} = $$ 0.4$–0.5.

    图 8  稳态运行模式下的慢化分布函数对比 (a) $ {\psi _{\text{a}}} = 0.1—0.2 $$ {\psi _{\rm{b}}} = 0.5—0.6 $下经典慢化分布与修正慢化分布; (b) $ {\psi _{\text{a}}} = $$ 0.1—0.2 $下修正慢化分布、经典慢化分布与PTC模拟的慢化分布

    Figure 8.  Comparison of slowing-down distribution functions in steady-state scenario: (a) Modified slowing-down distribution and classical slowing-down distribution at $ {\psi _{\text{a}}} = 0.1-0.2 $ and $ {\psi _{\text{b}}} = 0.5-0.6 $; (b) modified slowing-down distribution, classical slowing-down distribution, and PTC slowing-down distribution at $ {\psi _{\text{a}}} = 0.1-0.2 $.

  • [1]

    Jhang H, Chang C S 1996 Phys. Plasmas 3 3732Google Scholar

    [2]

    赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军 2020 物理学报 69 035203Google Scholar

    Zhao H L, Xiao B, Wang G H, Wang Q, Zhang Z W, Sun Q Z, Deng J J 2020 Acta Phys. Sin. 69 035203Google Scholar

    [3]

    Wan Y X, Li J G, Liu Y, Wang X L, Chan V, Chen C A, Duan X R, Fu P, Gao X, Feng K M 2017 Nucl. Fusion 57 102009Google Scholar

    [4]

    李新霞, 李国壮, 刘洪波 2020 物理学报 69 145201Google Scholar

    Li X X, Li G Z, Liu H B 2020 Acta Phys. Sin. 69 145201Google Scholar

    [5]

    Chen J L, Jian X, Chan V S, Li Z Y, Deng Z, Li G Q, Guo W F, Shi N, Chen X 2017 Plasma Phys. Controlled Fusion 59 75005Google Scholar

    [6]

    郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETR TEAM 2021 物理学报 70 115201Google Scholar

    Hao B L, Chen W, Li G Q, Wang X J, Wang Z L, Wu B, Zang Q, Jie Y X, Lin X D, Gao X, CFETR T 2021 Acta Phys. Sin. 70 115201Google Scholar

    [7]

    McKee G R, Fonck R J, Stratton B C, Budny R V, Chang Z, Ramsey A T 1997 Nucl. Fusion 37 501Google Scholar

    [8]

    Kolesnichenko Y I 1980 Nucl. Fusion 20 727Google Scholar

    [9]

    Gorelenkov N N, Budny R V, Duong H H, Fisher R K, Medley S S, Petrov M P, Redi M H 1997 Nucl. Fusion 37 1053Google Scholar

    [10]

    石黎铭, 吴雪科, 万迪, 李会东, 樊群超, 王中天, 冯灏, 王占辉, 马杰 2019 物理学报 68 105201Google Scholar

    Shi L M, Wu X K, Wan D, Li H D, Fan Q C, Wang Z T, Feng H, Wang Z H, Ma J 2019 Acta Phys. Sin. 68 105201Google Scholar

    [11]

    He B, Wang Z G, Wang J G 2018 Phys. Plasmas 25 12704Google Scholar

    [12]

    Jhang H 2021 Phys. Plasmas 28 94501Google Scholar

    [13]

    Liberman M A, Velikovich A L 1984 J. Plasma Phys. 31 369Google Scholar

    [14]

    Hsu C T, Catto P J, Sigmar D J 1990 Phys. Fluids B 2 280Google Scholar

    [15]

    陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅 2019 物理学报 68 215201Google Scholar

    Chen Z, Zhao Z J, Lü Z L, Li J H, Pan D M 2019 Acta Phys. Sin. 68 215201Google Scholar

    [16]

    Moseev D, Salewski M 2019 Phys. Plasmas 26 20901Google Scholar

    [17]

    Jhang H 1998 Phys. Plasmas 5 4498Google Scholar

    [18]

    Dai Y Z, Cao J J, Xiang D, Yang J H 2023 Phys. Plasmas 30 42501Google Scholar

    [19]

    Wilkie G J, Abel I G, Highcock E G, Dorland W 2015 J. Plasma Phys. 81 905810306Google Scholar

    [20]

    Angioni C, Peeters A G 2008 Phys. Plasmas 15 52307Google Scholar

    [21]

    Wilkie G J, Abel I G, Landreman M, Dorland W 2016 Phys. Plasmas 23 60703Google Scholar

    [22]

    Hauff T, Pueschel M J, Dannert T, Jenko F 2009 Phys. Rev. Lett. 102 75004Google Scholar

    [23]

    Sigmar D, Gormley R, Kamelander G 1993 Nucl. Fusion 33 677Google Scholar

    [24]

    Pueschel M J, Jenko F, Schneller M, Hauff T, Günter S, Tardini G 2012 Nucl. Fusion 52 103018Google Scholar

    [25]

    Wang F, Zhao R, Wang Z X, Zhang Y, Lin Z H, Liu S J 2021 Chin. Phys. Lett. 38 55201Google Scholar

    [26]

    Gaffey Jr J D 1976 J. Plasma Phys. 16 171

    [27]

    Wilkie G J 2018 J. Plasma Phys. 84 745840601Google Scholar

    [28]

    Team J 1999 Nucl. Fusion 39 1619Google Scholar

  • [1] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [2] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [4] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [5] Hao Bao-Long, Chen Wei, Li Guo-Qiang, Wang Xiao-Jing, Wang Zhao-Liang, Wu Bin, Zang Qing, Jie Yin-Xian, Lin Xiao-Dong, Gao Xiang, CFETR TEAM. Numerical simulation of synergistic effect of neoclassical tearing mode and toroidal field ripple on alpha particle loss in China Fusion Engineering Testing Reactor. Acta Physica Sinica, 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [6] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [7] Wu Xue-Ke, Sun Xiao-Qin, Liu Yin-Xue, Li Hui-Dong, Zhou Yu-Lin, Wang Zhan-Hui, Feng Hao. Effects of width and density of supersonic molecule beam on penetration depth of tokamak. Acta Physica Sinica, 2017, 66(19): 195201. doi: 10.7498/aps.66.195201
    [8] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [9] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [10] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [11] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [12] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [13] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [14] Slowing-down effect of alpha particle in thermonuclear burn of D-T plasma. Acta Physica Sinica, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [15] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [16] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [17] WANG WEN-HAO, YU CHANG-XUAN, XU YU-HONG, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. MEASUREMENT OF EDGE PLASMA PARAMETERS AND THEIR ELECTROSTATIC FLUCTUATIONS ON THE HT-7 SUPERCONDUCTING TOKAMAK. Acta Physica Sinica, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [18] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [19] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [20] SHI BING-REN. ANALYTIC STUDY OF LOWER HYBRID WAVE PROPAGATION IN TOKAMAK LHCD EXPERIMENTS. Acta Physica Sinica, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
Metrics
  • Abstract views:  1387
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2023
  • Accepted Date:  08 June 2023
  • Available Online:  26 June 2023
  • Published Online:  05 November 2023

/

返回文章
返回