Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-temperature electrical transport properties of La doped BaSnO3 films

Yang Jian Gao Kuang-Hong Li Zhi-Qing

Citation:

Low-temperature electrical transport properties of La doped BaSnO3 films

Yang Jian, Gao Kuang-Hong, Li Zhi-Qing
PDF
HTML
Get Citation
  • A series of Ba0.94La0.06SnO3 thin films are deposited on MgO(001) single crystal substrates by RF magnetron sputtering method, and their structure and electrical transport properties are systematically investigated. All films reveal degenerate semiconductor (metal) characteristics in electrical transport properties. In the high-temperature region ($T > {T_{\min }}$, where ${T_{\min }}$ is the temperature at which the resistivity reaches a minimum value), the resistivity of each film increases with temperature, and exhibits a linear relationship with the square of the temperature. In the low-temperature region ($T < {T_{\min }}$), the resistivity increases with decreasing temperature and varies linearly with $ \ln T $. This temperature dependent behavior of resistivity cannot be explained by the general electron-electron interaction or weak localization effects in homogeneous disordered conductors and nor by Kondo effect. After quantitative analysis, it is found that the $ \ln T $ behavior of resistivity at low temperatures can be explained by the electron-electron Coulomb interaction effect in the presence of granularity. In addition, it is found that the Hall coefficient $ {R_{\text{H}}} $ also varies linearly with $ \ln T $ for the Ba0.94La0.06SnO3 film, which also quantitatively accords with the theoretical prediction of the electron-electron Coulomb interaction effects in the granular metals. The results of cross-section high-resolution transmission electron microscope indicate that although the films have epitaxial structures as a whole, there are many strip-shaped amorphous regions in films, which makes the films have electrical transport properties similar to those of metal granular films. Our results provide strong support for the validity of the theory concerning the effects of Coulomb interaction on the conductivity and Hall coefficient in granular metals.
      Corresponding author: Li Zhi-Qing, zhiqingli@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174282).
    [1]

    Luo X, Oh Y S, Sirenko A, Gao P, Tyson T A, Char K, Cheong S W 2012 Appl. Phys. Lett. 100 172112Google Scholar

    [2]

    Kim H J, Kim U, Kim T H, Mun H S, Jeon B G, Hong K T, Lee W J, Ju C, Kim K H, Char K 2012 Appl. Phys. Express 5 061102Google Scholar

    [3]

    Kim H J, Kim U, Kim T H, Kim J, Kim H M, Jeon B G, Lee W J, Mun H S, Hong K T, Yu J, Char K, Kim K H 2012 Phys. Rev. B 86 165205Google Scholar

    [4]

    Kim K H, Kim J, Kim T H, Lee W J, Jeon B G, Park J Y, Choi W S, Jeong D W, Lee S H, Yu J, Noh T W, Kim H J 2013 Phys. Rev. B 88 125204Google Scholar

    [5]

    Mizoguchi H, Eng H W, Woodward P M 2004 Inorg. Chem. 43 1667Google Scholar

    [6]

    Zhang W, Tang J, Ye J 2007 J. Mater. Res. 22 1859Google Scholar

    [7]

    Lee W J, Kim H J, Kang J, Jang D H, Kim T H, Lee J H, Kim K H 2017 Ann. Rev. Matter. Res. 47 391Google Scholar

    [8]

    Cui J M, Zhang Y Y, Wang J L, Zhao Z B, Huang H L, Zou W, Yang M M, Peng R R, Yan W S, Huang Q P, Fu Z P, Lu Y L 2019 Phys. Rev. B 100 165312Google Scholar

    [9]

    Feng Z X, Qin P X, Yang Y L, Yan H, Guo H X, Wang X N, Zhou X R, Han Y Y, Yi J B, Qi D C, Yu X J, Breese M B H, Zhang X, Wu H J, Chen H Y, Xiang H J, Jiang C B, Liu Z Q 2021 Acta Mater. 204 116516Google Scholar

    [10]

    Eom K, Paik H, Seo J, Campbell N, Tsymbal E Y, Oh S H, Rzchowski M S, Schlom D G, Eom C B 2022 Adv. Sci. 9 2105652Google Scholar

    [11]

    Lee W J, Kim H J, Sohn E, Kim T H, Park J Y, Park W, Jeong H, Lee T, Kim J H, Choi K Y, Kim K H 2016 Appl. Phys. Lett. 108 82105Google Scholar

    [12]

    Park C, Kim U, Ju C J, Park J S, Kim Y M, Char K 2014 Appl. Phys. Lett. 105 203503Google Scholar

    [13]

    Sanchela A V, Wei M, Zensyo H, Feng B, Lee J, Kim G, Jeen H, Ikuhara Y, Ohta H 2018 Appl. Phys. Lett. 112 232102Google Scholar

    [14]

    Prakash A, Dewey J, Yun H, Jeong J S, Mkhoyan K A, Jalan B 2015 J. Vac. Sci. Technol. A 33 60608Google Scholar

    [15]

    Lebens-Higgins Z, Scanlon D O, Paik H, Sallis S, Nie Y, Uchida M, Quackenbush N F, Wahila M J, Sterbinsky G E, Arena D A, Woicik J C, Schlom D G, Piper L F J 2016 Phys. Rev. Lett. 116 027602Google Scholar

    [16]

    Raghavan S, Schumann T, Kim H, Zhang J Y, Cain T A, Stemmer S 2016 APL Mater. 4 016106Google Scholar

    [17]

    Prakash A, Xu P, Faghaninia A, Shukla S, Ager J W, Lo C S, Jalan B 2017 Nat. Commun. 8 15167Google Scholar

    [18]

    Prakash A, Xu P, Wu X, Haugstad G, Wang X J, Jalan B 2017 J. Mater. Chem. C 5 5730Google Scholar

    [19]

    Ganguly K, Prakash A, Jalan B, Leighton C 2017 APL Mater. 5 056102Google Scholar

    [20]

    Mountstevens E H, Attfield J P, Redfern S A T 2003 J. Phys. Condensed Matter 15 8315Google Scholar

    [21]

    Shannon R D 1976 Acta Cryst. A 32 751Google Scholar

    [22]

    Liu Q Z, Liu J J, Li B, Li H, Zhu G P, Dai K, Liu Z L, Zhang P, Dai J M 2012 Appl. Phys. Lett. 101 241901Google Scholar

    [23]

    Hadjarab B, Bouguelia A, Trari M 2007 J. Phys. D Appl. Phys. 40 5833Google Scholar

    [24]

    Hadjarab B, Bouguelia A, Benchettara A, Trari M 2008 J. Alloys Compd. 461 360Google Scholar

    [25]

    Yasukawa M, Kono T, Ueda K, Yanagi H, Hosono H 2010 Mater. Sci. Eng. B 173 29Google Scholar

    [26]

    Echternach P M, Gershenson M E, Bozler H M 1993 Phys. Rev. B 47 13659Google Scholar

    [27]

    Yeh S S, Lin J J, Jing X, Zhang D 2005 Phys. Rev. B 72 024204Google Scholar

    [28]

    II’In K S, Ptitsina N G, Sergeev A V, Gol Tsman G N, Gershenzon E M, Karasik B S, Pechen E V, Krasnosvobodtsev S I 1998 Phys. Rev. B 57 15623Google Scholar

    [29]

    Gao Z H, Wang Z X, Hou D Y, Liu X D, Li Z Q 2022 J. Appl. Phys. 131 065109Google Scholar

    [30]

    Altshuler B L, Khmel’Nitzkii D, Larkin A I, Lee P A 1980 Phys. Rev. B 22 5142Google Scholar

    [31]

    Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288Google Scholar

    [32]

    Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673Google Scholar

    [33]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287Google Scholar

    [34]

    Fukuyama H, Hoshino K 1981 J. Phys. Soc. Jpn. 50 2131Google Scholar

    [35]

    Kawabata A 1980 Solid State Commun. 34 431Google Scholar

    [36]

    Kawabata A 1980 J. Phys. Soc. Jpn. 49 628Google Scholar

    [37]

    Wu C Y, Lin J J 1994 Phys. Rev. B 50 385Google Scholar

    [38]

    Lin J J 2000 Physica B 279 191Google Scholar

    [39]

    Lin J J, Bird J P 2002 J. Phys. Condensed Matter 14 R501Google Scholar

    [40]

    Kondo J 1964 Prog. Theor. Phys. 32 37Google Scholar

    [41]

    Hewson A C 1997 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) pp38–47

    [42]

    Xue H X, Hong Y P, Li C J, Meng J C, Li Y C, Liu K J, Liu M R, Jiang W M, Zhang Z, He L, Dou R F, Xiong C M, Nie J C 2018 Phys. Rev. B 98 085305Google Scholar

    [43]

    Das S, Rastogi A, Wu L J, Zheng J C, Hossain Z, Zhu Y M, Budhani R C 2014 Phys. Rev. B. 90 081107Google Scholar

    [44]

    Lee M, Williams J R, Zhang S P, Frisbie C D, Goldhaber-Gordon D 2011 Phys. Rev. Lett. 107 256601Google Scholar

    [45]

    Beloborodov I S, Efetov K B, Lopatin A V, Vinokur V M 2003 Phys. Rev. Lett. 91 246801Google Scholar

    [46]

    Efetov K B, Tschersich A 2003 Phys. Rev. B 67 174205Google Scholar

    [47]

    Beloborodov I S, Lopatin A V, Vinokur V M, Efetov K B 2007 Rev. Mod. Phys. 79 469Google Scholar

    [48]

    Kharitonov M Y, Efetov K B 2007 Phys. Rev. Lett. 99 056803Google Scholar

    [49]

    Kharitonov M Y, Efetov K B 2008 Phys. Rev. B 77 045116Google Scholar

    [50]

    Zhang Y J, Li Z Q, Lin J J 2011 Phys. Rev. B 84 052202Google Scholar

    [51]

    Wu Y N, Wei Y F, Li Z Q, Lin J J 2015 Phys. Rev. B 91 104201Google Scholar

    [52]

    Rotkina L, Oh S, Eckstein J N, Rotkin S V 2005 Phys. Rev. B 72 233407Google Scholar

    [53]

    Achatz P, Gajewski W, Bustarret E, Marcenat C, Piquerel R, Chapelier C, Dubouchet T, Williams O A, Haenen K, Garrido J A, Stutzmann M 2009 Phys. Rev. B 79 201203Google Scholar

    [54]

    Sun Y C, Yeh S S, Lin J J 2010 Phys. Rev. B 82 054203Google Scholar

    [55]

    Sachser R, Porrati F, Schwalb C H, Huth M 2011 Phys. Rev. Lett. 107 206803Google Scholar

    [56]

    Yang Y, Zhang Y J, Liu X D, Li Z Q 2012 Appl. Phys. Lett. 100 262101Google Scholar

    [57]

    Zheng B, He Z H, Li Z Q 2019 Phys. Status Solidi Rapid Res. Lett. 13 1900123Google Scholar

  • 图 1  退火时间为0, 1和2 h的BLSO薄膜的XRD $\theta-2\theta $扫描图谱. 插图为退火2 h的 BLSO薄膜的 (111) 晶面的$ \phi $扫描图

    Figure 1.  XRD $\theta-2\theta $ scan patters of BLSO films annealed in situ for 0, 1, and 2 h. The inset is the $ \phi $-scan spectrum of (111) plane for the BLSO film annealed for 2 h.

    图 2  (a) 退火时间为0, 1 和2 h 的BLSO薄膜的归一化电阻率$\rho /\rho (300{\text{ K}})$T (对数刻度) 的关系, 插图为$\rho /\rho (300{\text{ K}})$${T^2}$的关系; (b) 归一化电导率$\sigma /\sigma (300{\text{ K}})$${T^{1/2}}$的关系, 插图为$T = 2{\text{ K}}$时样品的磁电阻

    Figure 2.  (a) Normalized resistivity $\rho /\rho (300{\text{ K}})$ varies as a function of T (logarithmic scale) for BLSO films annealed for 0, 1, and 2 h, inset is $\rho /\rho (300{\text{ K}})$vs. ${T^2}$ for the films; (b) normalized conductivity $\sigma /\sigma (300{\text{ K}})$ versus ${T^{1/2}}$, and the inset is the magnetoresistance of the samples at $T = 2{\text{ K}}$.

    图 3  退火0, 1和2 h (插图) 的BLSO 薄膜在零磁场下的$ \Delta \sigma $T (对数刻度)的关系, 实线是(3) 式拟合的结果

    Figure 3.  At zero magnetic field, $ \Delta \sigma $ vs. T (logarithmic scale) for BLSO films annealed for 0, 1 and 2 h (inset), the solid lines are the fitting results using Eq. (3).

    图 4  薄膜的$ {R_{\text{H}}} $$ T $ (对数刻度) 的关系. 实心三角形是实验值, 实线是使用 (4) 式拟合得出的结果 (a) 退火0 h; (b) 退火1 h; (c) 退火2 h

    Figure 4.  Temperature (logarithmic scale) dependence of $ {R_{\text{H}}} $ for films. The solid triangles are experimental values, and the solid lines are least-squares fits to Eq. (4): (a) Annealed for 0 h; (b) annealed for 1 h; (c) annealed for 2 h.

    图 5  (a) 退火1 h和 (b) 退火2 h的 BLSO薄膜的表面SEM图像; (c) 退火2 h薄膜的断面HRTEM形貌图; (d) 图 (c) 中虚线矩形区域的放大图

    Figure 5.  SEM images for the surfaces of the BLSO films (a) annealed for 1 h and (b) annealed for 2 h; (c) cross-sectional HRTEM micrograph of the BLSO films annealed for 2 h; (d) the enlarged image of the dashed rectangular area in panel (c).

    表 1  BLSO薄膜的相关参数, 其中tA是薄膜原位退火时间, t是薄膜的厚度, $ {n^*} $是有效载流子浓度, $ {g_{\text{T}}} $是使用(3)式拟合电导率与温度关系得出的值, $ {c_{\text{d}}} $是使用(4)式拟合霍尔系数与温度关系得出的值

    Table 1.  Relevant parameters for BLSO films, where tA is in-situ annealing time. t is the thickness of the films. $ {n^*} $ is the mean value of carrier concentration, $ {g_{\text{T}}} $ is the value obtained by fitting the conductivity vs. temperature with Eq. (3), $ {c_{\text{d}}} $is the value obtained by fitting the Hall coefficient vs. temperature with Eq. (4).

    Sample tA/h t/nm ρ(300 K)/(mΩ·m) ρ(2 K)/(mΩ·m) D/(cm2·s–1) $ {n^*} $/(1020 cm–3) $ {g_{\text{T}}} $ $ {c_{\text{d}}} $
    No.1 0 800 0.3 0.33 0.09 1.20 1.53 0.81
    No.2 1 800 0.19 0.21 0.142 1.35 1.89 0.31
    No.3 2 500 0.084 0.079 0.037 1.44 6.15 0.75
    DownLoad: CSV
  • [1]

    Luo X, Oh Y S, Sirenko A, Gao P, Tyson T A, Char K, Cheong S W 2012 Appl. Phys. Lett. 100 172112Google Scholar

    [2]

    Kim H J, Kim U, Kim T H, Mun H S, Jeon B G, Hong K T, Lee W J, Ju C, Kim K H, Char K 2012 Appl. Phys. Express 5 061102Google Scholar

    [3]

    Kim H J, Kim U, Kim T H, Kim J, Kim H M, Jeon B G, Lee W J, Mun H S, Hong K T, Yu J, Char K, Kim K H 2012 Phys. Rev. B 86 165205Google Scholar

    [4]

    Kim K H, Kim J, Kim T H, Lee W J, Jeon B G, Park J Y, Choi W S, Jeong D W, Lee S H, Yu J, Noh T W, Kim H J 2013 Phys. Rev. B 88 125204Google Scholar

    [5]

    Mizoguchi H, Eng H W, Woodward P M 2004 Inorg. Chem. 43 1667Google Scholar

    [6]

    Zhang W, Tang J, Ye J 2007 J. Mater. Res. 22 1859Google Scholar

    [7]

    Lee W J, Kim H J, Kang J, Jang D H, Kim T H, Lee J H, Kim K H 2017 Ann. Rev. Matter. Res. 47 391Google Scholar

    [8]

    Cui J M, Zhang Y Y, Wang J L, Zhao Z B, Huang H L, Zou W, Yang M M, Peng R R, Yan W S, Huang Q P, Fu Z P, Lu Y L 2019 Phys. Rev. B 100 165312Google Scholar

    [9]

    Feng Z X, Qin P X, Yang Y L, Yan H, Guo H X, Wang X N, Zhou X R, Han Y Y, Yi J B, Qi D C, Yu X J, Breese M B H, Zhang X, Wu H J, Chen H Y, Xiang H J, Jiang C B, Liu Z Q 2021 Acta Mater. 204 116516Google Scholar

    [10]

    Eom K, Paik H, Seo J, Campbell N, Tsymbal E Y, Oh S H, Rzchowski M S, Schlom D G, Eom C B 2022 Adv. Sci. 9 2105652Google Scholar

    [11]

    Lee W J, Kim H J, Sohn E, Kim T H, Park J Y, Park W, Jeong H, Lee T, Kim J H, Choi K Y, Kim K H 2016 Appl. Phys. Lett. 108 82105Google Scholar

    [12]

    Park C, Kim U, Ju C J, Park J S, Kim Y M, Char K 2014 Appl. Phys. Lett. 105 203503Google Scholar

    [13]

    Sanchela A V, Wei M, Zensyo H, Feng B, Lee J, Kim G, Jeen H, Ikuhara Y, Ohta H 2018 Appl. Phys. Lett. 112 232102Google Scholar

    [14]

    Prakash A, Dewey J, Yun H, Jeong J S, Mkhoyan K A, Jalan B 2015 J. Vac. Sci. Technol. A 33 60608Google Scholar

    [15]

    Lebens-Higgins Z, Scanlon D O, Paik H, Sallis S, Nie Y, Uchida M, Quackenbush N F, Wahila M J, Sterbinsky G E, Arena D A, Woicik J C, Schlom D G, Piper L F J 2016 Phys. Rev. Lett. 116 027602Google Scholar

    [16]

    Raghavan S, Schumann T, Kim H, Zhang J Y, Cain T A, Stemmer S 2016 APL Mater. 4 016106Google Scholar

    [17]

    Prakash A, Xu P, Faghaninia A, Shukla S, Ager J W, Lo C S, Jalan B 2017 Nat. Commun. 8 15167Google Scholar

    [18]

    Prakash A, Xu P, Wu X, Haugstad G, Wang X J, Jalan B 2017 J. Mater. Chem. C 5 5730Google Scholar

    [19]

    Ganguly K, Prakash A, Jalan B, Leighton C 2017 APL Mater. 5 056102Google Scholar

    [20]

    Mountstevens E H, Attfield J P, Redfern S A T 2003 J. Phys. Condensed Matter 15 8315Google Scholar

    [21]

    Shannon R D 1976 Acta Cryst. A 32 751Google Scholar

    [22]

    Liu Q Z, Liu J J, Li B, Li H, Zhu G P, Dai K, Liu Z L, Zhang P, Dai J M 2012 Appl. Phys. Lett. 101 241901Google Scholar

    [23]

    Hadjarab B, Bouguelia A, Trari M 2007 J. Phys. D Appl. Phys. 40 5833Google Scholar

    [24]

    Hadjarab B, Bouguelia A, Benchettara A, Trari M 2008 J. Alloys Compd. 461 360Google Scholar

    [25]

    Yasukawa M, Kono T, Ueda K, Yanagi H, Hosono H 2010 Mater. Sci. Eng. B 173 29Google Scholar

    [26]

    Echternach P M, Gershenson M E, Bozler H M 1993 Phys. Rev. B 47 13659Google Scholar

    [27]

    Yeh S S, Lin J J, Jing X, Zhang D 2005 Phys. Rev. B 72 024204Google Scholar

    [28]

    II’In K S, Ptitsina N G, Sergeev A V, Gol Tsman G N, Gershenzon E M, Karasik B S, Pechen E V, Krasnosvobodtsev S I 1998 Phys. Rev. B 57 15623Google Scholar

    [29]

    Gao Z H, Wang Z X, Hou D Y, Liu X D, Li Z Q 2022 J. Appl. Phys. 131 065109Google Scholar

    [30]

    Altshuler B L, Khmel’Nitzkii D, Larkin A I, Lee P A 1980 Phys. Rev. B 22 5142Google Scholar

    [31]

    Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288Google Scholar

    [32]

    Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673Google Scholar

    [33]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287Google Scholar

    [34]

    Fukuyama H, Hoshino K 1981 J. Phys. Soc. Jpn. 50 2131Google Scholar

    [35]

    Kawabata A 1980 Solid State Commun. 34 431Google Scholar

    [36]

    Kawabata A 1980 J. Phys. Soc. Jpn. 49 628Google Scholar

    [37]

    Wu C Y, Lin J J 1994 Phys. Rev. B 50 385Google Scholar

    [38]

    Lin J J 2000 Physica B 279 191Google Scholar

    [39]

    Lin J J, Bird J P 2002 J. Phys. Condensed Matter 14 R501Google Scholar

    [40]

    Kondo J 1964 Prog. Theor. Phys. 32 37Google Scholar

    [41]

    Hewson A C 1997 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) pp38–47

    [42]

    Xue H X, Hong Y P, Li C J, Meng J C, Li Y C, Liu K J, Liu M R, Jiang W M, Zhang Z, He L, Dou R F, Xiong C M, Nie J C 2018 Phys. Rev. B 98 085305Google Scholar

    [43]

    Das S, Rastogi A, Wu L J, Zheng J C, Hossain Z, Zhu Y M, Budhani R C 2014 Phys. Rev. B. 90 081107Google Scholar

    [44]

    Lee M, Williams J R, Zhang S P, Frisbie C D, Goldhaber-Gordon D 2011 Phys. Rev. Lett. 107 256601Google Scholar

    [45]

    Beloborodov I S, Efetov K B, Lopatin A V, Vinokur V M 2003 Phys. Rev. Lett. 91 246801Google Scholar

    [46]

    Efetov K B, Tschersich A 2003 Phys. Rev. B 67 174205Google Scholar

    [47]

    Beloborodov I S, Lopatin A V, Vinokur V M, Efetov K B 2007 Rev. Mod. Phys. 79 469Google Scholar

    [48]

    Kharitonov M Y, Efetov K B 2007 Phys. Rev. Lett. 99 056803Google Scholar

    [49]

    Kharitonov M Y, Efetov K B 2008 Phys. Rev. B 77 045116Google Scholar

    [50]

    Zhang Y J, Li Z Q, Lin J J 2011 Phys. Rev. B 84 052202Google Scholar

    [51]

    Wu Y N, Wei Y F, Li Z Q, Lin J J 2015 Phys. Rev. B 91 104201Google Scholar

    [52]

    Rotkina L, Oh S, Eckstein J N, Rotkin S V 2005 Phys. Rev. B 72 233407Google Scholar

    [53]

    Achatz P, Gajewski W, Bustarret E, Marcenat C, Piquerel R, Chapelier C, Dubouchet T, Williams O A, Haenen K, Garrido J A, Stutzmann M 2009 Phys. Rev. B 79 201203Google Scholar

    [54]

    Sun Y C, Yeh S S, Lin J J 2010 Phys. Rev. B 82 054203Google Scholar

    [55]

    Sachser R, Porrati F, Schwalb C H, Huth M 2011 Phys. Rev. Lett. 107 206803Google Scholar

    [56]

    Yang Y, Zhang Y J, Liu X D, Li Z Q 2012 Appl. Phys. Lett. 100 262101Google Scholar

    [57]

    Zheng B, He Z H, Li Z Q 2019 Phys. Status Solidi Rapid Res. Lett. 13 1900123Google Scholar

  • [1] Cai Wen-Bo, Yang Yang, Li Zhi-Qing. Preparation and electrical transport properties of TiO thin films. Acta Physica Sinica, 2023, 72(22): 227302. doi: 10.7498/aps.72.20231083
    [2] Jing Jing, Li Zhi-Peng, Lu Wei-Sheng, Wang Hong-Yu, Yang Zu-An, Yang Yi, Yin Qi-Sheng, Yang Fu-Ling, Shen Xiao-Ming, Zeng Jian-Min, Zhan Feng. Transparent conductive oxide film with antireflective properties for Cu2ZnSnS4 solar cells. Acta Physica Sinica, 2020, 69(23): 237801. doi: 10.7498/aps.69.20200897
    [3] Zhang Fei-Peng, Zhang Jing-Wen, Zhang Jiu-Xing, Yang Xin-Yu, Lu Qing-Mei, Zhang Xin. Effects of Sr doping on electronic and thermoelectrical transport properties of CaMnO3 based oxide. Acta Physica Sinica, 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [4] Qi Wei-Hua, Ma Li, Li Zhuang-Zhi, Tang Gui-De, Wu Guang-Heng. Dependences of valence electronic structure on magnetic moment and electrical resistivity of metals. Acta Physica Sinica, 2017, 66(2): 027101. doi: 10.7498/aps.66.027101
    [5] Liu Xiao-Jun, Miao Feng-Juan, Li Rui, Zhang Cun-Hua, Li Qi-Nan, Yan Bing. Configuration interaction study on electronic structures and transitional properties of excited states of GeO molecule. Acta Physica Sinica, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [6] Zhou Ding-Bang, Liu Xin-Dian, Li Zhi-Qing. Electrical transport properties of polycrystalline TaN1- films. Acta Physica Sinica, 2015, 64(19): 197302. doi: 10.7498/aps.64.197302
    [7] Liu Ran, Bao De-Liang, Jiao Yang, Wan Ling-Wen, Li Zong-Liang, Wang Chuan-Kui. Study on force sencitivity of electronic transport properties of 1,4-butanedithiol molecular device. Acta Physica Sinica, 2014, 63(6): 068501. doi: 10.7498/aps.63.068501
    [8] Jiao Hui-Cong, An Xing-Tao, Liu Jian-Jun. 0.7 structure of conductance quantization in quantum point contact. Acta Physica Sinica, 2013, 62(1): 017301. doi: 10.7498/aps.62.017301
    [9] Na Yuan-Yuan, Wang Cong, Chu Li-Hua, Ding Lei, Yan Jun. Study on electronic transport and magnetic properties for antiperovskite Mn3CuNx thin films fabricated with different N2 flow rates. Acta Physica Sinica, 2012, 61(3): 036801. doi: 10.7498/aps.61.036801
    [10] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [11] Hu Wei, Li Zong-Liang, Ma Yong, Li Ying-De, Wang Chuan-Kui. Geometric structure and electronic transport property of single alkanemonothiol molecule junction: external force effect and terminal group effect. Acta Physica Sinica, 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [12] Hu Ni, Xiong Rui, Wei Wei, Wang Zi-Yu, Wang Li-Li, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. Raman scattering study of the spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [13] Chen Xin-Liang, Xue Jun-Ming, Zhang De-Kun, Sun Jian, Ren Hui-Zhi, Zhao Ying, Geng Xin-Hua. Effect of substrate temperature on the ZnO thin films as TCO in solar cells grown by MOCVD technique. Acta Physica Sinica, 2007, 56(3): 1563-1567. doi: 10.7498/aps.56.1563
    [14] Hu Ni, Xie Hui, Wang Li-Li, Lin Ying, Xiong Rui, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. B-site Fe doping effect on the structure and electronic transport properties of quasi-one-dimensional spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [15] MA JIN-YI, QIU XI-JUN. INTERACTION BETWEEN AN ELECTRONIC SYSTEM AND MULTIPHOTONS IN A STRONG LASER FIELD. Acta Physica Sinica, 2001, 50(3): 416-421. doi: 10.7498/aps.50.416
    [16] Hu Wei-Ying, Zeng Zhi, Zheng Qing-Qi, Huang Mei-Chun. . Acta Physica Sinica, 1995, 44(2): 273-279. doi: 10.7498/aps.44.273
    [17] YU CHAO-FAN, CHEN BIN, HE GUO-ZHU. INFLUENCE OF INTERACTION BETWEEN ELECTRONS AND PHONONS ON THE MAGNETIC EXCITATION OF ITINERANT ELECTRONS SYSTEM. Acta Physica Sinica, 1994, 43(5): 839-845. doi: 10.7498/aps.43.839
    [18] LI JUN-QING, GU JIN-NAN, ZHU JIE-DING. BIELECTRON INTERACTION IN HELIUM ATOM AND THE CORRESPONDING SPECTRAL STATISTICAL FLUCTUATION PROPERTIES. Acta Physica Sinica, 1991, 40(10): 1567-1574. doi: 10.7498/aps.40.1567
    [19] FU ROU-LI, SHUAI ZHI-GANG, SUN XIN. EFFECT OF ELECTRON INTERACTION ON THE BANDWIDTH OF CONDUCTIVE POLYMERS. Acta Physica Sinica, 1990, 39(4): 607-613. doi: 10.7498/aps.39.607
    [20] ВЗАИМОДЕЙСТВИЕ s-ЭЛЕКТРОНОВ СО СПИНОВЫМИ ВОЛНАМИ В ФЕРРОМАГНЕТИКЕ. Acta Physica Sinica, 1964, 20(3): 193-206. doi: 10.7498/aps.20.193
Metrics
  • Abstract views:  1357
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  02 July 2023
  • Accepted Date:  02 August 2023
  • Available Online:  12 September 2023
  • Published Online:  20 November 2023

/

返回文章
返回