Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Selective-area-epitaxied PbTe-superconductor hybrid nanowires: A new candidate system to realize topological quantum computing

Yang Shuai Zhang Hao He Ke

Citation:

Selective-area-epitaxied PbTe-superconductor hybrid nanowires: A new candidate system to realize topological quantum computing

Yang Shuai, Zhang Hao, He Ke
PDF
HTML
Get Citation
  • Semiconductor-superconductor hybrid nanowire is one of the major platforms for realizing Majorana zero modes (MZMs) and topological quantum computing (TQC), and the III-V InAs and InSb-based nanowires are the most-studied materials in this approach. Despite years of efforts to improve and optimize materials, too many defects and impurities in the nanowire samples remain the central problem hindering the research progress in this direction. In recent years, a new candidate Majorana nanowire system—IV-VI semiconductor PbTe-superconductor hybrid nanowire—has attracted much attention and witnessed rapid research progress. The unique advantages of PbTe-based nanowires, such as the large dielectric constant and the presence of a lattice-matched substrate, give them great potential in solving the bottleneck problem of sample defects and impurities, making them an ideal platform for studying MZMs and TQC. In this paper, we briefly introduce the recent research progress of selective area growth and transport characterization of in-plane PbTe nanowires and PbTe-superconductor hybrid nanowires. We also discuss the advantages and problems of the new candidate Majorana nanowire system as well as the prospect of realizing TQC based on it.
      Corresponding author: Zhang Hao, hzquantum@mail.tsinghua.edu.cn ; He Ke, kehe@tsinghua.edu.cn
    • Funds: Project supported by the Hefei National Laboratory, China and the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302400).
    [1]

    Kitaev A Y 2003 Annals Phys. 303 2Google Scholar

    [2]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [3]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [4]

    Cao Z, Chen S M, Zhang G, Liu D E 2023 Sci. China Phys. Mech. 66 267003Google Scholar

    [5]

    Vaitiekėnas S, Whiticar A M, Deng M T, et al. 2018 Phys. Rev. Lett. 121 147701Google Scholar

    [6]

    Aghaee M et al. (Microsoft Quantum) 2023 Phys. Rev. B 107 245423Google Scholar

    [7]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [8]

    Krogstrup P, Ziino N L B, Chang W, et al. 2015 Nat. Mater. 14 400Google Scholar

    [9]

    Chang W, Albrecht S M, Jespersen T S, Kuemmeth F, Krogstrup P, Nygard J, Marcus C M 2015 Nat. Nanotechnol. 10 232Google Scholar

    [10]

    Gul O, Zhang H, Bommer J D S, et al. 2018 Nat. Nanotechnol. 13 192Google Scholar

    [11]

    Wang Z Y, Song H D, Pan D, et al. 2022 Phys. Rev. Lett. 129 167702Google Scholar

    [12]

    Ahn S, Pan H N, Woods B, Stanescu T D, Das Sarma S 2021 Phys. Rev. Mater. 5 124602Google Scholar

    [13]

    Woods B D, Das Sarma S, Stanescu T D 2021 Phys. Rev. Appl. 16 054053Google Scholar

    [14]

    Pan H N, Das Sarma S 2020 Phys. Rev. Res. 2 013377Google Scholar

    [15]

    Pan D, Song H D, Zhang S, Liu L, Wen L J, Liao D Y, Zhuo R, Wang Z C, Zhang Z T, Yang S, Ying J H, Miao W T, Shang R N, Zhang H, Zhao J H 2022 Chin. Phys. Lett. 39 058101Google Scholar

    [16]

    Cao Z, Liu D E, He W X, Liu X, He K, Zhang H 2022 Phys. Rev. B 105 085424Google Scholar

    [17]

    Jiang Y Y, Yang S, Li L, et al. 2022 Phys. Rev. Mater. 6 034205Google Scholar

    [18]

    Geng Z H, Zhang Z T, Chen F T, et al. 2022 Phys. Rev. B 105 L241112Google Scholar

    [19]

    Schellingerhout S G, de Jong E J, Gomanko M, et al. 2022 Mater. Quantum Technol. 2 015001Google Scholar

    [20]

    Gomanko M, de Jong E J, Jiang Y F, Schellingerhout S G, Bakkers E P A M, Frolov S M 2022 SciPost Phys. 13 089Google Scholar

    [21]

    Jung J, Schellingerhout S G, Ritter M F, ten Kate S C, van der Molen O A H, de Loijer S, Verheijen M A, Riel H, Nichele F, Bakkers E P A M 2022 Adv. Funct. Mater. 32 2208974Google Scholar

    [22]

    Ten Kate S C, Ritter M F, Fuhrer A, Jung J, Schellingerhout S G, Bakkers E P A M, Riel H, Nichele F 2022 Nano Lett. 22 7049Google Scholar

    [23]

    Song W Y, Wang Y H, Miao W T, Yu Z H, Gao Y C, Li R D, Yang S, Chen F T, Geng Z H, Zhang Z T, Zhang S, Zang Y Y, Cao Z, Liu D E, Shang R N, Feng X, Li L, Xue Q K, He K, Zhang H 2023 Phys. Rev. B 108 045426Google Scholar

    [24]

    Zhang Z T, Song W Y, Gao Y C, Wang Y H, Yu Z H, Yang S, Jiang Y Y, Miao W T, Li R D, Chen F T, Geng Z H, Zhang Q H, Meng F Q, Lin T, Gu L, Zhu K J, Zang Y Y, Li L, Shang R N, Feng X, Xue Q K, He K, Zhang H 2023 Phys. Rev. Mater. 7 086201Google Scholar

    [25]

    Wang Y H, Chen F T, Song W Y, Geng Z H, Yu Z H, Yang L N, Gao Y C, Li R D, Yang S, Miao W T, Xu W, Wang Z Y, Xia Z Z, Song H D, Feng X, Zang Y Y, Li L, Shang R N, Xue Q K, He K, Zhang H 2023 Nano Lett. published online (DOI: 10.1021/acs.nanolett.3c03604

    [26]

    Gao Y C, Song W Y, Yang S, Yu Z H, Li R D, Miao W T, Wang Y H, Chen F T, Geng Z H, Yang L N, Xia Z Z, Feng X, Zang Y Y, Li L, Shang R N, Xue Q K, He K, Zhang H 2023 arXiv 2309.01355

    [27]

    Springholz G 2018 Chapter 11-Molecular Beam Epitaxy of IV–VI Semiconductors: Fundamentals, Low-dimensional Structures, and Device Applications, Molecular Beam Epitaxy (Second Edition) (Elsevier) pp211–276

    [28]

    Grabecki G, Wróbel J, Zagrajek P, Fronc K, Aleszkiewicz M, Dietl T, Papis E, Kamińska E, Piotrowska A, Springholz G, Bauer G 2006 Physica E 35 332Google Scholar

    [29]

    Beznasyuk D V, Martí-Sánchez S, Kang J H, Tanta R, Rajpalke M, Stankevic T, Christensen A W, Spadaro M C, Bergamaschini R, Maka N N, Petersen C E N, Carrad D J, Jespersen T S, Arbiol J, Krogstrup P 2022 Phys. Rev. Mater. 6 034602Google Scholar

    [30]

    Aseev P, Wang G Z, Binci L, Singh A, Marti-Sanchez S, Botifoll M, Stek L J, Bordin A, Watson J D, Boekhout F, Abel D, Gamble J, Van Hoogdalem K, Arbiol J, Kouwenhoven L P, de Lange G, Caroff P 2019 Nano Lett. 19 9102Google Scholar

    [31]

    Kanne T, Marnauza M, Olsteins D, Carrad D J, Sestoft J E, de Bruijckere J, Zeng L J, Johnson E, Olsson E, Grove-Rasmussen K, Nygard J 2021 Nat. Nanotechnol. 16 776Google Scholar

    [32]

    Liu D E 2013 Phys. Rev. Lett. 111 207003Google Scholar

    [33]

    Zhang H, Liu D E, Wimmer M, Kouwenhoven L P 2019 Nat. Commun. 10 5128Google Scholar

    [34]

    Azab A A, Ward A A, Mahmoud G M, El-Hanafy E M, El-Zahed H, Terra F S 2018 J. Semicond. 39 123006Google Scholar

  • 图 1  (a) PbTe和CdTe的晶格结构示意图; (b) 选区外延生长PbTe-Pb杂化纳米线的制备流程; (c)选区外延生长的不同结构的平面PbTe纳米线; (d) 结合选区外延生长和投影墙生长制备出的PbTe-Pb杂化平面异质结构; (e) PbTe-Pb, PbTe-CdTe, Pb-CdTe覆盖层界面处原子分辨的TEM图像. 除(d)外所有图均来自文献[17]

    Figure 1.  (a) Crystal structures of PbTe and CdTe; (b) fabrication procedure of PbTe-Pb hybrid nanowires by selective area growth technique; (c) in-plane epitaxial PbTe nanowires of different structures prepared by selective area growth; (d) in-plane PbTe-Pb heterostructures prepared by combining selective area growth and shadow wall growth; (e) atomically resolved TEM images near the interfaces of PbTe-Pb, PbTe-CdTe and Pb-CdTe capping layer. All figures but (d) are cited from Ref. [17].

    图 2  PbTe纳米线的输运特征 (a) 场效应迁移率[17]; (b) 反弱局域效应[17]; (c), (d) AB效应[21]; (e)—(g) QPC器件中的弹道输运[25]; (h)—(k) 量子点中的库仑阻塞效应[22]

    Figure 2.  Transport properties of PbTe nanowires: (a) Field effect mobility[17]; (b) weak antilocalization effect[17]; (c), (d) AB effect[21]; (e)–(g) ballistic transport in QPC device[25]; (h)–(k) Coulomb blockade effect in quantum dot[22].

    图 3  PbTe-Pb杂化纳米线中的超导近邻效应 (a), (b)约瑟夫森结中的超流[24]; (c), (d)隧道结中的超导硬能隙[26]

    Figure 3.  Superconducting proximity effect in PbTe-Pb hybrid nanowires: (a), (b) Supercurrent in a Josephson junction[24]; (c), (d) hard gap in a tunneling junction[26].

  • [1]

    Kitaev A Y 2003 Annals Phys. 303 2Google Scholar

    [2]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [3]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [4]

    Cao Z, Chen S M, Zhang G, Liu D E 2023 Sci. China Phys. Mech. 66 267003Google Scholar

    [5]

    Vaitiekėnas S, Whiticar A M, Deng M T, et al. 2018 Phys. Rev. Lett. 121 147701Google Scholar

    [6]

    Aghaee M et al. (Microsoft Quantum) 2023 Phys. Rev. B 107 245423Google Scholar

    [7]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [8]

    Krogstrup P, Ziino N L B, Chang W, et al. 2015 Nat. Mater. 14 400Google Scholar

    [9]

    Chang W, Albrecht S M, Jespersen T S, Kuemmeth F, Krogstrup P, Nygard J, Marcus C M 2015 Nat. Nanotechnol. 10 232Google Scholar

    [10]

    Gul O, Zhang H, Bommer J D S, et al. 2018 Nat. Nanotechnol. 13 192Google Scholar

    [11]

    Wang Z Y, Song H D, Pan D, et al. 2022 Phys. Rev. Lett. 129 167702Google Scholar

    [12]

    Ahn S, Pan H N, Woods B, Stanescu T D, Das Sarma S 2021 Phys. Rev. Mater. 5 124602Google Scholar

    [13]

    Woods B D, Das Sarma S, Stanescu T D 2021 Phys. Rev. Appl. 16 054053Google Scholar

    [14]

    Pan H N, Das Sarma S 2020 Phys. Rev. Res. 2 013377Google Scholar

    [15]

    Pan D, Song H D, Zhang S, Liu L, Wen L J, Liao D Y, Zhuo R, Wang Z C, Zhang Z T, Yang S, Ying J H, Miao W T, Shang R N, Zhang H, Zhao J H 2022 Chin. Phys. Lett. 39 058101Google Scholar

    [16]

    Cao Z, Liu D E, He W X, Liu X, He K, Zhang H 2022 Phys. Rev. B 105 085424Google Scholar

    [17]

    Jiang Y Y, Yang S, Li L, et al. 2022 Phys. Rev. Mater. 6 034205Google Scholar

    [18]

    Geng Z H, Zhang Z T, Chen F T, et al. 2022 Phys. Rev. B 105 L241112Google Scholar

    [19]

    Schellingerhout S G, de Jong E J, Gomanko M, et al. 2022 Mater. Quantum Technol. 2 015001Google Scholar

    [20]

    Gomanko M, de Jong E J, Jiang Y F, Schellingerhout S G, Bakkers E P A M, Frolov S M 2022 SciPost Phys. 13 089Google Scholar

    [21]

    Jung J, Schellingerhout S G, Ritter M F, ten Kate S C, van der Molen O A H, de Loijer S, Verheijen M A, Riel H, Nichele F, Bakkers E P A M 2022 Adv. Funct. Mater. 32 2208974Google Scholar

    [22]

    Ten Kate S C, Ritter M F, Fuhrer A, Jung J, Schellingerhout S G, Bakkers E P A M, Riel H, Nichele F 2022 Nano Lett. 22 7049Google Scholar

    [23]

    Song W Y, Wang Y H, Miao W T, Yu Z H, Gao Y C, Li R D, Yang S, Chen F T, Geng Z H, Zhang Z T, Zhang S, Zang Y Y, Cao Z, Liu D E, Shang R N, Feng X, Li L, Xue Q K, He K, Zhang H 2023 Phys. Rev. B 108 045426Google Scholar

    [24]

    Zhang Z T, Song W Y, Gao Y C, Wang Y H, Yu Z H, Yang S, Jiang Y Y, Miao W T, Li R D, Chen F T, Geng Z H, Zhang Q H, Meng F Q, Lin T, Gu L, Zhu K J, Zang Y Y, Li L, Shang R N, Feng X, Xue Q K, He K, Zhang H 2023 Phys. Rev. Mater. 7 086201Google Scholar

    [25]

    Wang Y H, Chen F T, Song W Y, Geng Z H, Yu Z H, Yang L N, Gao Y C, Li R D, Yang S, Miao W T, Xu W, Wang Z Y, Xia Z Z, Song H D, Feng X, Zang Y Y, Li L, Shang R N, Xue Q K, He K, Zhang H 2023 Nano Lett. published online (DOI: 10.1021/acs.nanolett.3c03604

    [26]

    Gao Y C, Song W Y, Yang S, Yu Z H, Li R D, Miao W T, Wang Y H, Chen F T, Geng Z H, Yang L N, Xia Z Z, Feng X, Zang Y Y, Li L, Shang R N, Xue Q K, He K, Zhang H 2023 arXiv 2309.01355

    [27]

    Springholz G 2018 Chapter 11-Molecular Beam Epitaxy of IV–VI Semiconductors: Fundamentals, Low-dimensional Structures, and Device Applications, Molecular Beam Epitaxy (Second Edition) (Elsevier) pp211–276

    [28]

    Grabecki G, Wróbel J, Zagrajek P, Fronc K, Aleszkiewicz M, Dietl T, Papis E, Kamińska E, Piotrowska A, Springholz G, Bauer G 2006 Physica E 35 332Google Scholar

    [29]

    Beznasyuk D V, Martí-Sánchez S, Kang J H, Tanta R, Rajpalke M, Stankevic T, Christensen A W, Spadaro M C, Bergamaschini R, Maka N N, Petersen C E N, Carrad D J, Jespersen T S, Arbiol J, Krogstrup P 2022 Phys. Rev. Mater. 6 034602Google Scholar

    [30]

    Aseev P, Wang G Z, Binci L, Singh A, Marti-Sanchez S, Botifoll M, Stek L J, Bordin A, Watson J D, Boekhout F, Abel D, Gamble J, Van Hoogdalem K, Arbiol J, Kouwenhoven L P, de Lange G, Caroff P 2019 Nano Lett. 19 9102Google Scholar

    [31]

    Kanne T, Marnauza M, Olsteins D, Carrad D J, Sestoft J E, de Bruijckere J, Zeng L J, Johnson E, Olsson E, Grove-Rasmussen K, Nygard J 2021 Nat. Nanotechnol. 16 776Google Scholar

    [32]

    Liu D E 2013 Phys. Rev. Lett. 111 207003Google Scholar

    [33]

    Zhang H, Liu D E, Wimmer M, Kouwenhoven L P 2019 Nat. Commun. 10 5128Google Scholar

    [34]

    Azab A A, Ward A A, Mahmoud G M, El-Hanafy E M, El-Zahed H, Terra F S 2018 J. Semicond. 39 123006Google Scholar

  • [1] Dai Xue-Feng, Gong Tong. Decoupling of Majorana bound states in T-shaped double-quantum-dot structure with ferromagnetic leads. Acta Physica Sinica, 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [2] Li Geng, Ding Hong, Wang Zi-Qiang, Gao Hong-Jun. Majorana zero mode and its lattice construction in iron-based superconductors. Acta Physica Sinica, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [3] Xu Lei, Li Pei-Ling, Lü Zhao-Zheng, Shen Jie, Qu Fan-Ming, Liu Guang-Tong, Lü Li. Detecting Majorana zero modes with transport measurements. Acta Physica Sinica, 2023, 72(17): 177401. doi: 10.7498/aps.72.20230951
    [4] Wang Ning, Wang Bao-Chuan, Guo Guo-Ping. New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [5] Jiang Da, Yu Dong-Yang, Zheng Zhan, Cao Xiao-Chao, Lin Qiang, Liu Wu-Ming. Research progress of material, physics, and device of topological superconductors for quantum computing. Acta Physica Sinica, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [6] Chen Chen, Liu Qin, Zhang Tong, Feng Dong-Lai. Vortex bound states and Majorana zero mode in electron-doped FeSe-based high-temperature superconductor. Acta Physica Sinica, 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [7] Wen Lian-Jun, Pan Dong, Zhao Jian-Hua. From high-quality semiconductor/superconductor nanowires to Majorana zero mode. Acta Physica Sinica, 2021, 70(5): 058101. doi: 10.7498/aps.70.20201750
    [8] Wang Jing. Chiral Majorana fermion. Acta Physica Sinica, 2020, 69(11): 117302. doi: 10.7498/aps.69.20200534
    [9] Yu Chun-Lin, Zhang Hao. Majorana quasi-particles and superconductor-semiconductor hybrid nanowires. Acta Physica Sinica, 2020, 69(7): 077303. doi: 10.7498/aps.69.20200177
    [10] Kong Ling-Yuan, Ding Hong. Emergent vortex Majorana zero mode in iron-based superconductors. Acta Physica Sinica, 2020, 69(11): 110301. doi: 10.7498/aps.69.20200717
    [11] He Ying-Ping, Hong Jian-Song, Liu Xiong-Jun. Non-abelian statistics of Majorana modes and the applications to topological quantum computation. Acta Physica Sinica, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [12] Li Yao-Yi, Jia Jin-Feng. Search for Majorana zero mode in the magnetic vortex of artificial topological superconductor. Acta Physica Sinica, 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [13] Zhang Wei-Feng, Li Chun-Yan, Chen Xian-Feng, Huang Chang-Ming, Ye Fang-Wei. Topological zero-energy modes in time-reversal-symmetry-broken systems. Acta Physica Sinica, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [14] Wang Zao, Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Xiao Lian-Tuan, Jia Suo-Tang. Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial. Acta Physica Sinica, 2015, 64(24): 247803. doi: 10.7498/aps.64.247803
    [15] Lei Xiao-Li, Wang Da-Wei, Liang Shi-Xiong, Wu Zhao-Xin. Wavefunction and Fourier coefficients of excitons in quantum wells: computation and application. Acta Physica Sinica, 2012, 61(5): 057803. doi: 10.7498/aps.61.057803
    [16] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of (InAs)1/(GaSb)1 superlattice nanowires. Acta Physica Sinica, 2012, 61(11): 117103. doi: 10.7498/aps.61.117103
    [17] Cheng Cheng, Zhang Hang. A semiconductor nanocrystal PbSe quantum dot fiber amplifier. Acta Physica Sinica, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [18] Shen Jian-Qi, Zhuang Fei. The nonadiabatic conditional geometric phase shift in a coiled fiber system. Acta Physica Sinica, 2005, 54(3): 1048-1052. doi: 10.7498/aps.54.1048
    [19] LI JIN-MIN, GUO LI-HUI, HOU XUN. THEORETICAL CALCULATION OF QUANTUM EFFICIENCY FOR FIELD-ASSISTED InP/InGaAsP SEMICONDUCTOR PHOTOCATHODES. Acta Physica Sinica, 1992, 41(10): 1672-1678. doi: 10.7498/aps.41.1672
    [20] РАВНОВЕСНЫЕ СВОЙСТВА ПОЛУПРОВОДНИКА С ЭНЕРГЕТИЧЕСКОЙ ЩЕЛЮ,РАВНОЙ НУЛЮ. Acta Physica Sinica, 1961, 17(11): 505-511. doi: 10.7498/aps.17.505
Metrics
  • Abstract views:  1753
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  06 October 2023
  • Accepted Date:  29 October 2023
  • Available Online:  16 November 2023
  • Published Online:  05 December 2023

/

返回文章
返回