Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on up-down asymmetry of tungsten impurities in EAST tokamak

Zhao Wei-Kuan Zhang Ling Cheng Yun-Xin Zhou Cheng-Xi Zhang Wen-Min Duan Yan-Min Hu Ai-Lan Wang Shou-Xin Zhang Feng-Ling Li Zheng-Wei Cao Yi-Ming Liu Hai-Qing

Citation:

Experimental study on up-down asymmetry of tungsten impurities in EAST tokamak

Zhao Wei-Kuan, Zhang Ling, Cheng Yun-Xin, Zhou Cheng-Xi, Zhang Wen-Min, Duan Yan-Min, Hu Ai-Lan, Wang Shou-Xin, Zhang Feng-Ling, Li Zheng-Wei, Cao Yi-Ming, Liu Hai-Qing
PDF
HTML
Get Citation
  • By using the high-performance extreme ultraviolet spatial resolution impurity spectrometer, the up-down asymmetric distribution of tungsten impurity radiation in EAST tokamak is studied experimentally for the first time. The results show that during the co-directional neutral beam injection, the central toroidal rotation velocity is large, the up-down asymmetry is strong, and the side with strong radiation deviates from ion $B\times \nabla B$ drift direction. However, after injecting deuterated methane CD4 into plasma through the valve of the upper divertor outer plate, the central toroidal rotation velocity decreases rapidly, and the asymmetry of the original tungsten impurity radiation decreases soon and finally reverses. In this work, a further statistical study of the W32+ impurity radiation asymmetry factor Iu/Id depending on the central toroidal rotation velocity Vt0 is performed. The results show that when Vt0 is larger than 30 km/s, the side with strong radiation deviates from ion $B\times \nabla B$ drift direction, however, when Vt0 decreases to below 20 km/s, the asymmetry can be reversed. The relation of toroidal rotation velocity with impurity radiation asymmetry validates the prediction from drift-kinetic theory, and demonstrates that the centrifugal force induced by the toroidal rotation directly causes the asymmetric distribution of tungsten impurities through affecting the momentum conservation parallel to the magnetic field. The experimental observation of the asymmetric distribution of tungsten impurities in this work lays a solid foundation for further studying the poloidal transport of high-Z impurities and provides some important references for controlling the high-Z impurities in future fusion reactors.
      Corresponding author: Zhang Ling, zhangling@ipp.ac.cn ; Zhou Cheng-Xi, cxzhou@ustc.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Program of China (Grant No. 2022YFE03180400) and the National Natural Science Foundation for Excellent Young Scholars of China (Grant No. 12322512).
    [1]

    Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X 2022 Phys. Scr. 97 045604Google Scholar

    [2]

    Van Rooij G J, Coenen J W, Aho-Mantila L, Brezinsek S, Clever M, Dux R, Groth M, Krieger K, Marsen S, Matthews G F, Meigs A, Neu R, Potzel S, Pütterich T, Rapp J, Stamp M F 2013 J. Nucl. Mater. 438 S42Google Scholar

    [3]

    Wan B N, Gong X Z, Liang Y, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zhang B, Xia T Y, Huang J, Ding R, Zhang T, Zuo G Z, Sun Z, Zeng L, Zhang X J, Zang Q, Lyu B, Garofalo A M, Li G Q, Li K D, Yang Q Q and for the EAST Team and Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [4]

    Gao X, Zeng L, Wu M Q, Zhang T, Yang Y, Ming T F, Zhu X, Wang Y M, Liu H Q, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X and the EAST team 2020 Nucl. Fusion 60 102001Google Scholar

    [5]

    Terry J L, Marmar E S, Chen K I, Moos H W 1977 Phys. Rev. Lett. 39 1615.Google Scholar

    [6]

    Brau K, Suckewer S, Wong S K 1983 Nucl. Fusion 23 1657Google Scholar

    [7]

    Rice J E, Reinke M L, Cao N, Hughes J W, Ashbourn J M A, Ernst D R, Hubbard A E, Irby J H 2018 Nucl. Fusion 58 126008Google Scholar

    [8]

    Zhang D, Burhenn R, Beidler C D, Feng Y, Thomsen H, Brandt C, Buller S, Reimold F, Hacker P, Laube R, Geiger J, García Regaña J M, Smith H M, König R, Giannone L, Penzel F, Klinger T, Baldzuhn J, Bozhenkov S, Bräuer T, Brunner J K, Buttenschön B, Damm H, Endler M, Effenberg F, Fuchert G, Gao Y, Jakubowski M, Knauer J, Kremeyer T, Krychowiak M, Kwak S, Laqua H P, Langenberg A, Otte M, PablantN, Pasch E, Rahbarnia K, Pavone A, Rudischhauser L, Svensson J, Killer C, Windisch T, the W7-X Team 2021 Nucl. Fusion 61 116043Google Scholar

    [9]

    Hinton F L, Hazeltine R D 1976 Rev. Mod. Phys. 48 239Google Scholar

    [10]

    Hinton F L, Wong S K 1985 Phys. Fluids 28 3082Google Scholar

    [11]

    Wong S K 1987 Phys. Fluids 30 818Google Scholar

    [12]

    王文章, 向玲燕, 吴金华, 杨钟时, 丁芳, 王亮, 段艳敏, 胡振华, 毛红敏, 罗广南 2016 核聚变与等离子体物理 36 42Google Scholar

    Wang W Z, Xiang L Y, Wu J H, Yang Z S, Ding F, Wang L, Duan Y M, Hu Z H, Mao H M, Luo G N 2016 Nuclear Fusion Plasma Phys. 36 42Google Scholar

    [13]

    Zhao L M, Shan J F, Liu F K, Jia H, Wang M, Liu L, Wang X J, Xu H D, the LHCD team 2010 Plasma Sci. Technol. 12 118Google Scholar

    [14]

    Xu H D, Wang X J, Liu F K, Zhang J, Huang Y Y, Han J F, Wu D J, Hu H C, Li B, Li M H, Yang Y, Feng J Q, Xu W Y, Tang Y Y, Wei W, Xu L Q, Liu Y, Zhao H L, Lohr J, Gorelov Y A, Anderson J P, Ma W D, Wu Z G, Wang J, Zhang L Y, Guo F, Sun H Z, Yan X S, East Team 2016 Plasma Sci. Technol. 18 442Google Scholar

    [15]

    Zhao Y P, Zhang X J, Man Y Z, Yuan S, Xue D Y, Deng X, Wang L, Ju S Q, Cheng Y, Qin C M, Chen G, Lin Y, Li J G, Wan B N, Song Y T, Braun F, Kumazawa R, Wukitch S 2014 Fusion Eng. Des. 89 2642Google Scholar

    [16]

    刘成岳, 陈美霞, 吴斌 2017 核聚变与等离子体物理 37 313Google Scholar

    Liu C Y, Chen M X, Wu B 2017 Nuclear Fusion Plasma Phys. 37 313Google Scholar

    [17]

    Zhang L, Morita S, Xu Z, Wu Z W, Zhang P F, Wu C R, Gao W, Ohishi T, Goto M, Shen J S, Chen Y J, Liu X, Wang Y M, Dong C F, Zhang H M, Huang X L, Gong X Z, Hu L Q, Chen J L, Zhang X D, Wan B N, Li J G 2015 Rev. Sci. Instrum 86 123509Google Scholar

    [18]

    Xu Z, Zhang L, Cheng Y X, Morita S, Li L, Zhang W M, Zhang F L, Zhao Z H, Zhou T F, Wu Z W, Lin X D, Gao X, Ding X B, Yang Y, Liu H Q 2021 Nucl. Instrum. Methods Phys. Res. A 1010 165545Google Scholar

    [19]

    Zhang L, Morita S, Wu Z W, Xu Z, Yang X D, Cheng Y X, Zang Q, Liu H Q, Liu Y, Zhang H M, Ohishi T, Chen Y J, Xu L Q, Wu C R, Duan Y M, Gao W, Huang J, Gong X Z, Hu L Q 2019 Nucl. Instrum. Methods Phys. Res. A 916 169Google Scholar

    [20]

    Versloot T W, de Vries P C, Giroud C, Brix M, von Hellermann M G, Lomas P J, Moulton D, Mullane M O', Nunes I M, Salmi A, Tala T, Voitsekhovitch I, Zastrow K D, JET-EFDA Contributors 2011 Plasma. Phys. Control. Fusion 53 065017Google Scholar

    [21]

    Angioni C, Helander P 2014 Plasma. Phys. Control. Fusion 56 124001Google Scholar

    [22]

    Fülöp T, Helander P 1999 Phys. Plasmas 6 3066Google Scholar

    [23]

    Angioni C 2021 Plasma. Phys. Control. Fusion 63 073001Google Scholar

  • 图 1  EAST极向截面、上单零位形(绿色线为最外磁面)以及3套极紫外光谱仪的观测弦(湛蓝色为EUV_Short, 红色为EUV_Long, 蓝色为EUV_Long2)

    Figure 1.  Poloidal cross section of EAST tokamak with upper single null (USN) plasma and the lines of sight (LOS) of three EUV spectrometers (azure blue is EUV_Short, red is EUV_Long, blue is EUV_Long2).

    图 2  EAST上不同类型的典型杂质辐射强度剖面 (a)芯部峰化分布; (b)近似对称(Iu/Id = 1)的双峰分布; (c)不对称性朝上(Iu/Id > 1)的双峰分布; (d)不对称性朝下(Iu/Id < 1)的双峰分布, 其中灰色虚线表示磁轴$ \rho =0 $所在的中平面位置

    Figure 2.  Typical vertical profiles of normalized intensity of impurity lines: (a) Peaked profile; (b) symmetrical profile with double peaks (Iu/Id = 1); (c) upward asymmetrical profile (Iu/Id > 1); (d) downward asymmetrical profile (Iu/Id < 1). The gray dash line indicates the mid-plane where $ \rho =0 $ locates.

    图 3  EAST #93801放电波形图 (a)等离子体电流Ip; (b)低杂波加热功率PLHW及电子回旋加热功率PECRH; (c)中性束加热功率PNBI1L; (d)弦平均电子密度ne和芯部电子温度Te0; (e) O窗口上外充气口的充气阀门电压; (f)上偏滤器Dα信号; (g) CVI (C5+, 33.73 Å)线辐射强度; (h)钨未分解跃迁系辐射强度(W-UTA, 45—70 Å); (i)芯部环向旋转速度Vt0; (j) W27+ 51.457 Å, W32+ 52.2 Å线辐射不对称性因子Iu/Id

    Figure 3.  Time evolution of (a) plasma current, Ip; (b) heating power from lower hybrid wave, PLHW, and electron cyclotron wave, PECRH; (c) heating power from neutral beam injection, PNBI1L; (d) line-averaged electron density, ne, and central electron temperature, Te0; (e) valve voltage of upper outboard gas puff inlet located at window “O”; (f) Dα signal of upper divertor; (g) line emission intensity of CVI (C5+ at 33.73 Å); (h) line emission intensity of tungsten in unresolved transition array (W-UTA at 45–70 Å); (i) central toroidal rotation velocity, Vt0; (j) asymmetry factor Iu/Id of line emission intensity for W27+ at 51.457 Å, W32+ at 52.2 Å for EAST discharge #93801.

    图 4  EAST #93801在t1 = 2.4—2.6 s (蓝色)、t2 = 3.6—3.8 s (红色)、t3 = 5.0—5.2 s (绿色)时间段内钨不同电离态线辐射剖面 (a), (d) W27+ 51.457 Å; (b), (e) W32+ 52.2 Å; (c), (f) W44+ 60.93 Å. (a)—(c)为归一化辐射强度, (d)—(f)为原始光谱强度计数

    Figure 4.  Vertical profiles of line emission intensity for (a), (d), W27+ 51.457 Å; (b), (e), W32+ 52.2 Å; (c), (f) W44+ 60.93 Å during t1 = 2.4–2.6 s (blue), t2 = 3.6–3.8 s (red) and t3 = 5.0–5.2 s (green) in EAST discharge # 93801. Normalized line intensity Inor in (a)–(c), and raw line intensity I in (d)—(f) .

    图 5  W32+ 52.2 Å线辐射强度不对称因子Iu/Id随芯部环向旋转速度Vt0的变化

    Figure 5.  Asymmetry factor Iu/Id of line emission intensity for W32+ 52.2 Å as a function of central toroidal rotation velocity, Vt0.

  • [1]

    Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X 2022 Phys. Scr. 97 045604Google Scholar

    [2]

    Van Rooij G J, Coenen J W, Aho-Mantila L, Brezinsek S, Clever M, Dux R, Groth M, Krieger K, Marsen S, Matthews G F, Meigs A, Neu R, Potzel S, Pütterich T, Rapp J, Stamp M F 2013 J. Nucl. Mater. 438 S42Google Scholar

    [3]

    Wan B N, Gong X Z, Liang Y, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zhang B, Xia T Y, Huang J, Ding R, Zhang T, Zuo G Z, Sun Z, Zeng L, Zhang X J, Zang Q, Lyu B, Garofalo A M, Li G Q, Li K D, Yang Q Q and for the EAST Team and Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [4]

    Gao X, Zeng L, Wu M Q, Zhang T, Yang Y, Ming T F, Zhu X, Wang Y M, Liu H Q, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X and the EAST team 2020 Nucl. Fusion 60 102001Google Scholar

    [5]

    Terry J L, Marmar E S, Chen K I, Moos H W 1977 Phys. Rev. Lett. 39 1615.Google Scholar

    [6]

    Brau K, Suckewer S, Wong S K 1983 Nucl. Fusion 23 1657Google Scholar

    [7]

    Rice J E, Reinke M L, Cao N, Hughes J W, Ashbourn J M A, Ernst D R, Hubbard A E, Irby J H 2018 Nucl. Fusion 58 126008Google Scholar

    [8]

    Zhang D, Burhenn R, Beidler C D, Feng Y, Thomsen H, Brandt C, Buller S, Reimold F, Hacker P, Laube R, Geiger J, García Regaña J M, Smith H M, König R, Giannone L, Penzel F, Klinger T, Baldzuhn J, Bozhenkov S, Bräuer T, Brunner J K, Buttenschön B, Damm H, Endler M, Effenberg F, Fuchert G, Gao Y, Jakubowski M, Knauer J, Kremeyer T, Krychowiak M, Kwak S, Laqua H P, Langenberg A, Otte M, PablantN, Pasch E, Rahbarnia K, Pavone A, Rudischhauser L, Svensson J, Killer C, Windisch T, the W7-X Team 2021 Nucl. Fusion 61 116043Google Scholar

    [9]

    Hinton F L, Hazeltine R D 1976 Rev. Mod. Phys. 48 239Google Scholar

    [10]

    Hinton F L, Wong S K 1985 Phys. Fluids 28 3082Google Scholar

    [11]

    Wong S K 1987 Phys. Fluids 30 818Google Scholar

    [12]

    王文章, 向玲燕, 吴金华, 杨钟时, 丁芳, 王亮, 段艳敏, 胡振华, 毛红敏, 罗广南 2016 核聚变与等离子体物理 36 42Google Scholar

    Wang W Z, Xiang L Y, Wu J H, Yang Z S, Ding F, Wang L, Duan Y M, Hu Z H, Mao H M, Luo G N 2016 Nuclear Fusion Plasma Phys. 36 42Google Scholar

    [13]

    Zhao L M, Shan J F, Liu F K, Jia H, Wang M, Liu L, Wang X J, Xu H D, the LHCD team 2010 Plasma Sci. Technol. 12 118Google Scholar

    [14]

    Xu H D, Wang X J, Liu F K, Zhang J, Huang Y Y, Han J F, Wu D J, Hu H C, Li B, Li M H, Yang Y, Feng J Q, Xu W Y, Tang Y Y, Wei W, Xu L Q, Liu Y, Zhao H L, Lohr J, Gorelov Y A, Anderson J P, Ma W D, Wu Z G, Wang J, Zhang L Y, Guo F, Sun H Z, Yan X S, East Team 2016 Plasma Sci. Technol. 18 442Google Scholar

    [15]

    Zhao Y P, Zhang X J, Man Y Z, Yuan S, Xue D Y, Deng X, Wang L, Ju S Q, Cheng Y, Qin C M, Chen G, Lin Y, Li J G, Wan B N, Song Y T, Braun F, Kumazawa R, Wukitch S 2014 Fusion Eng. Des. 89 2642Google Scholar

    [16]

    刘成岳, 陈美霞, 吴斌 2017 核聚变与等离子体物理 37 313Google Scholar

    Liu C Y, Chen M X, Wu B 2017 Nuclear Fusion Plasma Phys. 37 313Google Scholar

    [17]

    Zhang L, Morita S, Xu Z, Wu Z W, Zhang P F, Wu C R, Gao W, Ohishi T, Goto M, Shen J S, Chen Y J, Liu X, Wang Y M, Dong C F, Zhang H M, Huang X L, Gong X Z, Hu L Q, Chen J L, Zhang X D, Wan B N, Li J G 2015 Rev. Sci. Instrum 86 123509Google Scholar

    [18]

    Xu Z, Zhang L, Cheng Y X, Morita S, Li L, Zhang W M, Zhang F L, Zhao Z H, Zhou T F, Wu Z W, Lin X D, Gao X, Ding X B, Yang Y, Liu H Q 2021 Nucl. Instrum. Methods Phys. Res. A 1010 165545Google Scholar

    [19]

    Zhang L, Morita S, Wu Z W, Xu Z, Yang X D, Cheng Y X, Zang Q, Liu H Q, Liu Y, Zhang H M, Ohishi T, Chen Y J, Xu L Q, Wu C R, Duan Y M, Gao W, Huang J, Gong X Z, Hu L Q 2019 Nucl. Instrum. Methods Phys. Res. A 916 169Google Scholar

    [20]

    Versloot T W, de Vries P C, Giroud C, Brix M, von Hellermann M G, Lomas P J, Moulton D, Mullane M O', Nunes I M, Salmi A, Tala T, Voitsekhovitch I, Zastrow K D, JET-EFDA Contributors 2011 Plasma. Phys. Control. Fusion 53 065017Google Scholar

    [21]

    Angioni C, Helander P 2014 Plasma. Phys. Control. Fusion 56 124001Google Scholar

    [22]

    Fülöp T, Helander P 1999 Phys. Plasmas 6 3066Google Scholar

    [23]

    Angioni C 2021 Plasma. Phys. Control. Fusion 63 073001Google Scholar

  • [1] Long Ting, Ke Rui, Wu Ting, Gao Jin-Ming, Cai Lai-Zhong, Wang Zhan-Hui, Xu Min. Studies of edge poloidal rotation and turbulence momentum transport during divertor detachment on HL-2A tokamak. Acta Physica Sinica, 2024, 73(8): 088901. doi: 10.7498/aps.73.20231749
    [2] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [3] Pan Shan-Shan, Duan Yan-Min, Xu Li-Qing, Chao Yan, Zhong Guo-Qiang, Sun You-Wen, Sheng Hui, Liu Hai-Qing, Chu Yu-Qi, Lü Bo, Jin Yi-Fei, Hu Li-Qun. Influence of resonant magnetic perturbation on sawtooth behavior in experimental advanced superconducting Tokamak. Acta Physica Sinica, 2023, 72(13): 135203. doi: 10.7498/aps.72.20230347
    [4] Yu Zai-Yang, Zheng Jin-Tao, Zhang Yang, Wang Zhi-Guo, Sun Hui, Xiong Zhi-Qiang, Luo Hui. Asymmetry of EPR signal response in nuclear magnetic resonance gyroscope. Acta Physica Sinica, 2022, 71(22): 220701. doi: 10.7498/aps.71.20220775
    [5] Zhang Wen-Min, Zhang Ling, Cheng Yun-Xin, Wang Zheng-Xiong, Hu Ai-Lan, Duan Yan-Min, Zhou Tian-Fu, Liu Hai-Qing. Line identification of extreme ultraviolet spectra of Mo V to Mo XVIII in EAST tokamak. Acta Physica Sinica, 2022, 71(11): 115203. doi: 10.7498/aps.71.20212383
    [6] Shen Yong, Dong Jia-Qi, Xu Hong-Bing. Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak. Acta Physica Sinica, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [7] Sun Zhen-Yue, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen. Simulation of erosion of the tungsten wall by impurities in the divertor plasma. Acta Physica Sinica, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [8] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [9] Li Jia-Hong, Hu Jian-Sheng, Wang Xiao-Ming, Yu Yao-Wei, Wu Jin-Hua, Chen Yue, Wang Hou-Yin. Wall cleanings for pre-treatment on EAST. Acta Physica Sinica, 2012, 61(20): 205203. doi: 10.7498/aps.61.205203
    [10] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [11] Ou Jing, Yang Jin-Hong. The effect of the divertor operation regimes on the plasma parallel flow in the edge of a tokamak. Acta Physica Sinica, 2012, 61(7): 075201. doi: 10.7498/aps.61.075201
    [12] Zheng Yong-Zhen, Feng Xing-Ya, Zheng Yin-Jia, Guo Gan-Cheng, Xu De-Ming, Deng Zhong-Chao. Potential safe termination by laser ablation of high-Z impurity in the HL-1M tokamak. Acta Physica Sinica, 2005, 54(6): 2809-2813. doi: 10.7498/aps.54.2809
    [13] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [14] LI QI-LIANG, ZHENG YONG-ZHEN, CHENG FA-YIN, DENG XIAO-BO, DENG DONG-SHENG, YOU PEI-LIN, LIU GUI-ANG, CHEN XIANG-DONG. THE ANALYTIC STUDY OF PLASMA TRANSPORT IN TOKAMAK DIVERTOR REGION AND SCRAPE OFF LAYER. Acta Physica Sinica, 2001, 50(3): 507-511. doi: 10.7498/aps.50.507
    [15] SHI BING-REN, SUI GUO-FANG, GUO GAN-CHENG. STABILITY ANALYSIS OF TOKAMAK RESISTIVE INTERNAL KINK MODE IN ION KINETIC REGIME. Acta Physica Sinica, 1996, 45(5): 801-810. doi: 10.7498/aps.45.801
    [16] Zhen Shao-Bai, A.J.Wootton, S.C.McCool, W.A.Craven. . Acta Physica Sinica, 1995, 44(5): 715-725. doi: 10.7498/aps.44.715
    [17] ZHENG SHAO-BAI, YANG XUAN-ZONG, W. P. WEST, D. M. THOMAS. MEASUREMENT OF POLOIDAL MAGNETIC FIELD OF TOKA-MAK BY LASER EXCITED FLUORESCENCE OF HIGH ENERGY Li BEAM. Acta Physica Sinica, 1990, 39(4): 531-540. doi: 10.7498/aps.39.531
    [18] Zhang Zuo-yang, Huo Yu-ping. FEEDBACK STABILIZATION OF AXISYMMETRIC MODES IN NON-CIRCULAR TOKAMAKS. Acta Physica Sinica, 1986, 35(10): 1364-1368. doi: 10.7498/aps.35.1364
    [19] . Acta Physica Sinica, 1964, 20(4): 374-377. doi: 10.7498/aps.20.374
    [20] HU NING. UP-DOWN ASYMMETRIES OF Λ AND Σ DECAYS. Acta Physica Sinica, 1961, 17(7): 315-320. doi: 10.7498/aps.17.315
Metrics
  • Abstract views:  831
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  06 September 2023
  • Accepted Date:  07 October 2023
  • Available Online:  27 October 2023
  • Published Online:  05 February 2024

/

返回文章
返回