Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Residual gas noises in vacuum of optical interferometer for ground-based gravitational wave detection

Guo Xi-Qing Zhou Jing Wang Chen-Xi Qin Chen Guo Cheng-Zhe Li Gang Zhang Peng-Fei Zhang Tian-Cai

Citation:

Residual gas noises in vacuum of optical interferometer for ground-based gravitational wave detection

Guo Xi-Qing, Zhou Jing, Wang Chen-Xi, Qin Chen, Guo Cheng-Zhe, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai
PDF
HTML
Get Citation
  • Gravitational waves (GWs) are ripples in spacetime caused by most violent and energetic processes in the universe, such as the rapid motion of massive celestial bodies. The GWs carry energy when they propagate through the universe. The detection of GWs holds significance for advancing human understanding of the nature and driving scientific and technological progress. The continual upgrading and optimizing of GW detectors offer novel avenues for cosmic measurements. However, ground-based GW detectors based on a large interferometer necessitate addressing various noises which are harmful to the sensitivity of the GW detectors. Among these noises, the noise from residual gas in the light beam of the interferometer is a crucial factor to affect the sensitivity. Consequently, it is necessary to establish a vacuum system to shield the laser interferometer from the effects of gas flow. This paper focuses on China’s third-generation ground-based GWs detector, conducting theoretical analysis of the influence of residual gas noise on both a 20-meter arm-length prototype and a full-scale device with a 10-kilometer arm-length. In this paper, a theoretical model for the residual gas particles passing through the laser beam is established and the effect on the beam phase is analyzed. The theoretical simulations are performed to discover the relations between the residual gas noise and significant parameters such as gas pressure of the vacuum system, temperature, mass of residual gas particles, polarization rate of the residual gas, and the curvature radius of the test mass. The simulations indicate that when the residual gas pressure is below 2×10–6 Pa, the GW detector can achieve the enough sensitivity, 10–24 Hz–1/2, in a frequency range from 10 to 103 Hz. The findings of this research offer crucial theoretical insights for designing and constructing the vacuum systems in future third-generation GWs detector prototypes and full-scale devices.
      Corresponding author: Zhang Peng-Fei, zhangpengfei@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974223, 11974225, 12104277, 12104278).
    [1]

    郭宗宽, 蔡荣根, 张元仲 2016 科技导报 34 30Google Scholar

    Guo Z K, Cai R G, Zhang Y Z 2016 Sci. Technol. Rev. 34 30Google Scholar

    [2]

    Accadia T, Acernese F, Antonucci F, et al. 2010 Class. Quantum Grav. 27 194011Google Scholar

    [3]

    Ringwald A, Tamarit C 2022 Phys. Rev. D 106 063027Google Scholar

    [4]

    吴树范, 王楠, 龚德仁 2020 深空探测学报 7 118Google Scholar

    Wu S F, Wang N, Gong D R 2020 J. Deep Sp. Explor. 7 118Google Scholar

    [5]

    Clubley D A, Skeldon K D, Newton G P, Barr B W, Strain K A, Hough J 2001 Phys. Lett. A 287 62Google Scholar

    [6]

    Zhao C, Blair D G, Barrigo P, et al. 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p368

    [7]

    Takahashi R, Saito Y, Fukushima M, Ando M, Arai K, Tatsumi D, Heinzel G, Kawamura S, Yamazaki T, Moriwaki S 2002 J. Vac. Sci. Technol. A 20 1237Google Scholar

    [8]

    Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quantum Grav. 27 084023Google Scholar

    [9]

    Hild S, Grote H, Smith J R, Hewitson M 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p66

    [10]

    Acernese F, Adams T, Agathos M, et al. 2015 Proceedings of the 10th International LISA Symposium Florida, United States, May 18–23, 2014 p1

    [11]

    Abbott B P, Abbott R, Adhikari R, et al. 2009 Rep. Prog. Phys. 72 076901Google Scholar

    [12]

    Martynov D V, Hall E D, Abbott B P, et al. 2016 Phys. Rev. D 93 112004Google Scholar

    [13]

    Acernese F, Agathos M, Aiello L, et al. 2020 Phys. Rev. Lett. 125 131101Google Scholar

    [14]

    Dooley K L, Leong J R, Adams T, Affeldt C, Bisht A, Bogan C, Degallaix J, Gräf C, Hild S, Hough J, Khalaidovski A, Lastzka N, Lough J, Lück H, Macleod D, Nuttall L, Prijatelj M, Schnabel R, Schreiber E, Slutsky J, Sorazu B, Strain K A, Vahlbruch H, Wąs M, Willke B, Wittel H, Danzmann K, Grote H 2016 Classical Quantum Grav. 33 075009Google Scholar

    [15]

    Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88 043007Google Scholar

    [16]

    Hall E D, Kuns K, Smith J R, Bai Y, Wipf C, Biscans S, Adhikari R X, Arai K, Ballmer S, Barsotti L 2021 Phys. Rev. D 103 122004Google Scholar

    [17]

    Grado A, Tofani E, Angelucci M, Cimino R, Gargiulo J, Getman F, Liedl A, Limatola L, Mennella V, Pasqualetti A, Ricci F, Sentenac D, Spallino L 2023 J. Vac. Sci. Technol. B 41 024201Google Scholar

    [18]

    Adhikari, Rana X 2014 Rev. Mod. Phys. 86 121Google Scholar

    [19]

    Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 094011Google Scholar

    [20]

    Georgiadis A, Rogier H, Roselli L, Arcioni P 2012 Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications (Germany: John Wiley & Sons) pp5–25

    [21]

    Li Z X, Gao H, Ding X H, Wang G J, Zhang B 2018 Nat. Commun. 9 3833Google Scholar

    [22]

    刘志远 2016 科技导报 34 2

    Liu Z Y 2016 Sci. Technol. Rev. 34 2

    [23]

    罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞 2020 深空探测学报 7 3Google Scholar

    Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020 J. Deep Sp. Explor. 7 3Google Scholar

    [24]

    Schumaker B L, Caves C M Proceedings of the 5th Rochester Conference on Coherence and Quantum Optics Rochester, USA, June 13–15, 1983 p743

    [25]

    Gillespie A, Raab F 1995 Phys. Rev. D 52 577Google Scholar

    [26]

    Saulson P R 1990 Phys. Rev. D 42 2437Google Scholar

    [27]

    Hughes S A, Thorne K S 1998 Phys. Rev. D 58 122002Google Scholar

    [28]

    Zucker M E, Whitcomb S E 1996 Proceedings of the 7th Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories California, USA, July 24–30, 1994 p1434

    [29]

    Harms J, Paik H J 2015 Phys. Rev. D 92 022001Google Scholar

    [30]

    王运永, 朱宗宏 2019 现代物理知识 31 56Google Scholar

    Wang Y Y, Zhu Z H 2019 Mod. Phys. 31 56Google Scholar

    [31]

    严宇钊, 杨明, 姜万录 2019 电子测量技术 42 8Google Scholar

    Yan Y Z, Yang M, Jiang W L 2019 Electron. Meas. Technol. 42 8Google Scholar

    [32]

    Patel J, Woolley A, Zhao C, Ju L, Blair D G 2010 Vacuum 85 176Google Scholar

    [33]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [34]

    张天才, 郑耀辉, 牛家树 2022 新兴科学和技术趋势 1 10

    Zhang T C, Zheng Y H, Niu J S 2022 Emerging Sci. Technol. 1 10

    [35]

    王运永, 朱兴江, 刘见, 马宇波, 朱宗宏, 曹军威, 都志辉, 王小鸽, 钱进, 殷聪, 刘忠有 2014 天文学进展 32 348Google Scholar

    Wang Y Y, Zhu X J, Liu J, Ma Y B, Zhu Z H, Cai J W, Du Z H, Wang X G, Qian J, Yin C, Liu Z Y 2014 Prog. Astron. 32 348Google Scholar

    [36]

    Santeler D J 1986 J. Vac. Sci. Technol. A 4 338Google Scholar

    [37]

    Tang Y L, He Y L, Meng Y S, Wang W W, Zhang R Y, Du E W, Du L J 2021 Proceedings of the 1st International Conference on Sensors and Instruments Qingdao, China, July 2, 2021 p171

    [38]

    Olney T N, Cann N M, Cooper G, Brion C E 1997 Chem. Phys. 223 59Google Scholar

    [39]

    Ottaway D J, Fritschel P, Waldman S J 2012 Opt. Express 20 8329Google Scholar

    [40]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [41]

    Shoemaker D 2011 LIGO Report No. LIGO- M060056-v2

    [42]

    Bersanetti D, Patricelli B, Piccinni O J, Piergiovanni F, Salemi F, Sequino V 2021 Universe 7 322Google Scholar

    [43]

    Akutsu T, Ando M, Arai K, et al. 2019 Class. Quantum Grav. 36 165008Google Scholar

  • 图 1  迈克耳孙干涉仪及残余气体粒子与光束碰撞示意图

    Figure 1.  Michelson interferometer and collision between residual gas particles and light beam.

    图 2  计划建设的真空系统设计图

    Figure 2.  Schematic of designed vacuum system.

    图 3  原型机和全尺寸装置在不同压强情况下, 残余气体噪声与探测频率的关系图

    Figure 3.  Relation of residual gas noise and detection frequency at different pressures.

    图 4  原型机和全尺寸装置中, 残余气体噪声与真空系统压强的关系图

    Figure 4.  Relation of residual gas noise and vacuum system pressure.

    图 5  原型机和全尺寸装置在不同温度情况下, 残余气体噪声与探测频率的关系图

    Figure 5.  Relation of residual gas noise and frequency at different temperatures.

    图 6  原型机和全尺寸装置中, 残余气体噪声与真空系统环境温度的关系图

    Figure 6.  Relation of residual gas noise and the temperature of vacuum system

    图 7  原型机和全尺寸装置中, 残余气体噪声与真空系统残余气体质量的关系图

    Figure 7.  Relation of between residual gas noise and residual gas mass in vacuum system.

    图 8  原型机和全尺寸装置在不同极化率下残留气体粒子噪声与探测频率的关系图

    Figure 8.  Relation of residual gas noise and frequency with different polarizability.

    图 9  原型机中测试质量曲率半径和残余气体噪声的变化示意图

    Figure 9.  Residual gas noise as a function of the radius of curvature of the test mass in the prototype.

    图 10  全尺寸装置中测试质量曲率半径和残余气体噪声的变化示意图

    Figure 10.  Residual gas noise as a function of the radius of curvature of the test mass in a full-size device.

    表 1  引力波探测干涉仪原型机和全尺寸装置的参数表

    Table 1.  Parameters of prototype and full-size device of gravitational wave detection interferometer.

    参数 符号/单位 原型机参数 全尺寸装置
    参数
    干涉仪长度 L/m 20 104
    激光器波长 λ/nm 1550 1550
    环境温度 T/K 300 300
    残余气体压强 P/Pa 2.0×10–7 2.0×10–6
    残余气体质量 m/kg 3.34765×10–27 3.34765×10–27
    残余气体
    极化率
    $ \alpha $/(C·m2·V–1) 7.81917×10–31 7.81917×10–31
    测试质量
    曲率半径
    R/m 10.2 5100
    DownLoad: CSV
  • [1]

    郭宗宽, 蔡荣根, 张元仲 2016 科技导报 34 30Google Scholar

    Guo Z K, Cai R G, Zhang Y Z 2016 Sci. Technol. Rev. 34 30Google Scholar

    [2]

    Accadia T, Acernese F, Antonucci F, et al. 2010 Class. Quantum Grav. 27 194011Google Scholar

    [3]

    Ringwald A, Tamarit C 2022 Phys. Rev. D 106 063027Google Scholar

    [4]

    吴树范, 王楠, 龚德仁 2020 深空探测学报 7 118Google Scholar

    Wu S F, Wang N, Gong D R 2020 J. Deep Sp. Explor. 7 118Google Scholar

    [5]

    Clubley D A, Skeldon K D, Newton G P, Barr B W, Strain K A, Hough J 2001 Phys. Lett. A 287 62Google Scholar

    [6]

    Zhao C, Blair D G, Barrigo P, et al. 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p368

    [7]

    Takahashi R, Saito Y, Fukushima M, Ando M, Arai K, Tatsumi D, Heinzel G, Kawamura S, Yamazaki T, Moriwaki S 2002 J. Vac. Sci. Technol. A 20 1237Google Scholar

    [8]

    Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quantum Grav. 27 084023Google Scholar

    [9]

    Hild S, Grote H, Smith J R, Hewitson M 2006 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves Bankoku Shinryoukan, Okinawa, Japan, June 20–24, 2005 p66

    [10]

    Acernese F, Adams T, Agathos M, et al. 2015 Proceedings of the 10th International LISA Symposium Florida, United States, May 18–23, 2014 p1

    [11]

    Abbott B P, Abbott R, Adhikari R, et al. 2009 Rep. Prog. Phys. 72 076901Google Scholar

    [12]

    Martynov D V, Hall E D, Abbott B P, et al. 2016 Phys. Rev. D 93 112004Google Scholar

    [13]

    Acernese F, Agathos M, Aiello L, et al. 2020 Phys. Rev. Lett. 125 131101Google Scholar

    [14]

    Dooley K L, Leong J R, Adams T, Affeldt C, Bisht A, Bogan C, Degallaix J, Gräf C, Hild S, Hough J, Khalaidovski A, Lastzka N, Lough J, Lück H, Macleod D, Nuttall L, Prijatelj M, Schnabel R, Schreiber E, Slutsky J, Sorazu B, Strain K A, Vahlbruch H, Wąs M, Willke B, Wittel H, Danzmann K, Grote H 2016 Classical Quantum Grav. 33 075009Google Scholar

    [15]

    Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88 043007Google Scholar

    [16]

    Hall E D, Kuns K, Smith J R, Bai Y, Wipf C, Biscans S, Adhikari R X, Arai K, Ballmer S, Barsotti L 2021 Phys. Rev. D 103 122004Google Scholar

    [17]

    Grado A, Tofani E, Angelucci M, Cimino R, Gargiulo J, Getman F, Liedl A, Limatola L, Mennella V, Pasqualetti A, Ricci F, Sentenac D, Spallino L 2023 J. Vac. Sci. Technol. B 41 024201Google Scholar

    [18]

    Adhikari, Rana X 2014 Rev. Mod. Phys. 86 121Google Scholar

    [19]

    Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 094011Google Scholar

    [20]

    Georgiadis A, Rogier H, Roselli L, Arcioni P 2012 Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications (Germany: John Wiley & Sons) pp5–25

    [21]

    Li Z X, Gao H, Ding X H, Wang G J, Zhang B 2018 Nat. Commun. 9 3833Google Scholar

    [22]

    刘志远 2016 科技导报 34 2

    Liu Z Y 2016 Sci. Technol. Rev. 34 2

    [23]

    罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞 2020 深空探测学报 7 3Google Scholar

    Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020 J. Deep Sp. Explor. 7 3Google Scholar

    [24]

    Schumaker B L, Caves C M Proceedings of the 5th Rochester Conference on Coherence and Quantum Optics Rochester, USA, June 13–15, 1983 p743

    [25]

    Gillespie A, Raab F 1995 Phys. Rev. D 52 577Google Scholar

    [26]

    Saulson P R 1990 Phys. Rev. D 42 2437Google Scholar

    [27]

    Hughes S A, Thorne K S 1998 Phys. Rev. D 58 122002Google Scholar

    [28]

    Zucker M E, Whitcomb S E 1996 Proceedings of the 7th Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories California, USA, July 24–30, 1994 p1434

    [29]

    Harms J, Paik H J 2015 Phys. Rev. D 92 022001Google Scholar

    [30]

    王运永, 朱宗宏 2019 现代物理知识 31 56Google Scholar

    Wang Y Y, Zhu Z H 2019 Mod. Phys. 31 56Google Scholar

    [31]

    严宇钊, 杨明, 姜万录 2019 电子测量技术 42 8Google Scholar

    Yan Y Z, Yang M, Jiang W L 2019 Electron. Meas. Technol. 42 8Google Scholar

    [32]

    Patel J, Woolley A, Zhao C, Ju L, Blair D G 2010 Vacuum 85 176Google Scholar

    [33]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [34]

    张天才, 郑耀辉, 牛家树 2022 新兴科学和技术趋势 1 10

    Zhang T C, Zheng Y H, Niu J S 2022 Emerging Sci. Technol. 1 10

    [35]

    王运永, 朱兴江, 刘见, 马宇波, 朱宗宏, 曹军威, 都志辉, 王小鸽, 钱进, 殷聪, 刘忠有 2014 天文学进展 32 348Google Scholar

    Wang Y Y, Zhu X J, Liu J, Ma Y B, Zhu Z H, Cai J W, Du Z H, Wang X G, Qian J, Yin C, Liu Z Y 2014 Prog. Astron. 32 348Google Scholar

    [36]

    Santeler D J 1986 J. Vac. Sci. Technol. A 4 338Google Scholar

    [37]

    Tang Y L, He Y L, Meng Y S, Wang W W, Zhang R Y, Du E W, Du L J 2021 Proceedings of the 1st International Conference on Sensors and Instruments Qingdao, China, July 2, 2021 p171

    [38]

    Olney T N, Cann N M, Cooper G, Brion C E 1997 Chem. Phys. 223 59Google Scholar

    [39]

    Ottaway D J, Fritschel P, Waldman S J 2012 Opt. Express 20 8329Google Scholar

    [40]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [41]

    Shoemaker D 2011 LIGO Report No. LIGO- M060056-v2

    [42]

    Bersanetti D, Patricelli B, Piccinni O J, Piergiovanni F, Salemi F, Sequino V 2021 Universe 7 322Google Scholar

    [43]

    Akutsu T, Ando M, Arai K, et al. 2019 Class. Quantum Grav. 36 165008Google Scholar

  • [1] Wang Jia-Wei, Li Jian-Bo, Li Fan, Zheng Li-Ang, Gao Zi-Chao, An Bing-Nan, Ma Zheng-Lei, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Programmable precision voltage reference source for space-based gravitational wave detection. Acta Physica Sinica, 2023, 72(4): 049502. doi: 10.7498/aps.72.20222119
    [2] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [3] Li Fan, Wang Jia-Wei, Gao Zi-Chao, Li Jian-Bo, An Bing-Nan, Li Rui-Xin, Bai Yu, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Laser intensity noise evaluation system for space-based gravitational wave detection. Acta Physica Sinica, 2022, 71(20): 209501. doi: 10.7498/aps.71.20220841
    [4] Li Qing-Hui, Li Wei, Sun Yu, Wang Ya-Jun, Tian Long, Chen Li-Rong, Zhang Peng-Fei, Zheng Yao-Hui. Laser parameters requirement for third-generation ground-based gravitational wave detection. Acta Physica Sinica, 2022, 71(16): 164203. doi: 10.7498/aps.71.20220552
    [5] Xu Yu-Rong, Liu Yang-Yang, Wang Jin, Sun Yu, Xi Zhen-Hua, Li De-Tian, Hu Shui-Ming. Vacuum metrology based on refractive index of gas. Acta Physica Sinica, 2020, 69(15): 150601. doi: 10.7498/aps.69.20200706
    [6] Wang Shuai, Sui Yong-Xing, Meng Xiang-Guo. Application of photon-added two-mode squeezed vacuum states to phase estimation based on Mach-Zehnder interferometer. Acta Physica Sinica, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [7] Li Shi-Yu,  Tian Jian-Feng,  Yang Chen,  Zuo Guan-Hua,  Zhang Yu-Chi,  Zhang Tian-Cai. Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [8] Wang Jun, Cui Meng, Lu Hong, Wang Li, Yan Qing, Liu Jing-Jing, Hua Deng-Xin. Investigation of the absolute detection method of atmospheric temperature based on solid cavity scanning Fabry-Perot interferometer. Acta Physica Sinica, 2017, 66(8): 089202. doi: 10.7498/aps.66.089202
    [9] Tang Yuan-He, Cui Jin, Gao Hai-Yang, Qu Ou-Yang, Duan Xiao-Dong, Li Cun-Xia, Liu Li-Na. Calibrations of ground based airglow imaging interferometer for the upper atmospheric wind field measurement. Acta Physica Sinica, 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [10] Wang Feng, Peng Xiao-Shi, Mei Lu-Sheng, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [11] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment in polystyrene target based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, 2011, 60(8): 085203. doi: 10.7498/aps.60.085203
    [12] Zhu Hua-Chun, Zhang Chun-Min. Theoretical study of polarization atmosphere Michelsoninterferometer using multi-wavelength. Acta Physica Sinica, 2011, 60(7): 074211. doi: 10.7498/aps.60.074211
    [13] Liu Ning, Zhang Chun-Min, Wang Jin-Chan, Mu Ting-Kui. The theoretical measurement error of a novel static polarization wind imaging interferometer. Acta Physica Sinica, 2010, 59(6): 4369-4379. doi: 10.7498/aps.59.4369
    [14] Zhao Xing-Hai, Hu Jian-Ping, Gao Yang, Pan Feng, Ma Ping. Laser induced damage and fracture of optical fiber in vacuum chamber. Acta Physica Sinica, 2010, 59(6): 3917-3923. doi: 10.7498/aps.59.3917
    [15] Ruan Kai, Zhang Chun-Min, Zhao Bao-Chang. Exact calculation of the optical path difference and lateral displacement of modified large optical path difference Sagnac interferometer in full view field used in upper atmospheric wind field measurement. Acta Physica Sinica, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [16] Shang Ya-Na, Wang Dong, Yan Zhi-Hui, Wang Wen-Zhe, Jia Xiao-Jun, Peng Kun-Chi. Measurement of entangled state of light with non-degenerate frequency utilizing non-balanced fiber Mach-Zehnder interferometer. Acta Physica Sinica, 2008, 57(6): 3514-3518. doi: 10.7498/aps.57.3514
    [17] Shao Dan, Shao Liang, Shao Chang-Gui, Chen Yi-Han. Curvature vacuum correlations in quantum gravity. Acta Physica Sinica, 2004, 53(2): 367-372. doi: 10.7498/aps.53.367
    [18] FANG LI-ZHI. THE INFLUENCE OF GRAVITATION ON THE VACUUM STATE. Acta Physica Sinica, 1978, 27(2): 181-186. doi: 10.7498/aps.27.181
    [19] . Acta Physica Sinica, 1975, 24(5): 375-380. doi: 10.7498/aps.24.375
    [20] T. F. HU, C. WEI, C. S. CHANG. GE IR INTERFEREMETER. Acta Physica Sinica, 1964, 20(11): 1164-1171. doi: 10.7498/aps.20.1164
Metrics
  • Abstract views:  708
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2023
  • Accepted Date:  11 October 2023
  • Available Online:  01 December 2023
  • Published Online:  05 March 2024

/

返回文章
返回