Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization and application of shock wave measurement technology for shock-timing experiments of small-scale capsules

Yang Wei-Ming Duan Xiao-Xi Zhang Chen Li Yu-long Liu Hao Guan Zan-yang Zhang Huan Sun Liang Dong Yun-song Yang Dong Wang Zhe-bin Yang Jia-Min

Citation:

Optimization and application of shock wave measurement technology for shock-timing experiments of small-scale capsules

Yang Wei-Ming, Duan Xiao-Xi, Zhang Chen, Li Yu-long, Liu Hao, Guan Zan-yang, Zhang Huan, Sun Liang, Dong Yun-song, Yang Dong, Wang Zhe-bin, Yang Jia-Min
PDF
Get Citation
  • In the realm of laser fusion research, the precision of shock-timing technology is pivotal for attaining optimal adiabat tuning during the compression phase of fusion capsules, which is crucial for ensuring the high-performance implosion. The current main technological approach for shock-timing experiments is the use of keyhole targets and VISAR diagnostics to measure the shock velocity history. Nonetheless, this approach encounters limitations when scaling down to smaller capsules, primarily due to the reduced effective reflection area available for VISAR diagnostics. This study introduces a novel high-precision shock-timing experimental methodology for a double-step radiation-driven implosion with a 0.375mm radius capsule on a 100 kJ laser facility. By developing a theoretical framework for calculating the intensity of VISAR images with spherical reflective surfaces, an innovative experimental technical route is proposed to utilize the keyhole cone reflection effect to enhance the VISAR diagnostic spatial area, effectively increasing the effective data collection region by nearly threefold for small-scale capsules. The technique has been adeptly applied to measure shock waves in cryogenic liquid-deuterium-filled capsules under shaped implosion experimental conditions, obtaining high-precision shock-timing experimental data. Experimental data reveals that the application of this technology has markedly enhanced both the image quality and the precision of data analysis for shock wave velocity measurements in small-scale capsules. Furthermore, it has been discovered that under similar laser conditions, there exist considerable variations in the shock velocity profiles. Simulation analysis suggests that the differences in the "N+1" reflected shock wave's catching-up behavior, caused by minor variations in laser intensity, are the main reason for the substantial merge velocity differences. It is demonstrated that minor variations in laser parameters can significantly affect the transmission behavior of the shock wave. This experiment highlights the intricate sensitivity of shock wave transmission in the high-performance shaped implosion physics process at the current small capsule scale, and it is essential to conduct shock-timing experiments for precisely tuning the actual shock wave behavior. This research not only lays a robust technical foundation for the advancement of adiabat tuning experiments on China's 100 kJ laser facility but also carries profound implications for the ultra-high pressure physics research based on the spherical convergence effect.
  • [1]

    Lindl J 1995 Phys. Plasmas 2 3933

    [2]

    Lindl J D, Amendt P, Berger R L, Gail Glendinning S, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [3]

    Atzeni S, Meyer-ter-vehn J (translated by Sheng B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) p41 (in Chinese) [Atzeni S, Meyer-ter-vehn J 著(沈百飞译) 2008 惯性聚变物理(北京:科学出版社) 第41页]

    [4]

    Robey H F, MacGowan B J, Landen O L, LaFortune K N, Widmayer C, Celliers P M, Moody J D, Ross J S, Ralph J, LePape S, Berzak Hopkins L F, Spears B K, Haan S W, Clark D, Lindl J D and Edwards M J 2013 Phys. Plasmas 20 052707

    [5]

    Dewald E L, Rosen M, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon F, Huser G, Neumayer P and Landen O L 2008 Phys. Plasmas 15 072706

    [6]

    Haan S W, Pollaine S M, Lindl J D, Suter L J, Berger R L, Powers L V, Alley W E, Amendt P A, Futterman J A, Levedahl W K, Rosen M D, Rowley D P, Sacks R A, Shestakov A I, Strobel G L, Tabak M, Weber S V, Zimmerman G B 1995 Phys. Plasmas 2 2480

    [7]

    Hu S X, Goncharov V N, Boehly T R, McCrory R L, Skupsky S, Collins L A, Kress J D, Militzer B 2015 Phys. Plasmas 22 056304

    [8]

    Boehly T R, Munro D, Celliers P M, Olson R E, Hicks D G, Goncharov V N, Collins G W, Robey H F, Hu S X, Marozas J A, Sangster J C, Landen O L, Meyerhofer D D 2009 Phys. Plasmas 16 056302

    [9]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916

    [10]

    Boehly T R, Goncharov V N, Seka W, Barrios M A, Celliers P M, Hicks D G, Collins G W, Hu S X, Marozas J A, Meyerhofer D D 2011 Phys. Rev. Lett. 106 195005

    [11]

    Robey H F, Boehly T R, Celliers P M, Eggert J H, Hicks D, Smith R F, Collins R, Bowers M W, Krauter K G, Datte P S, Munro D H, Milovich J L, Jones O S, Michel P A, Thomas C A, Olson R E, Pollaine S, Town R P J, Haan S, Callahan D, Clark D, Edwards J, Kline J L, Dixit S, Schneider M B, Dewald E L, Widmann K, Moody J D, Döppner T, Radousky H B, Throop A, Kalantar D, DiNicola P, Nikroo A, Kroll J J, Hamza A V, Horner J B, Bhandarkar S D, Dzenitis E, Alger E, Giraldez E, Castro C, Moreno K, Haynam C, LaFortune K N, Widmayer C, Shaw M, Jancaitis K, Parham T, Holunga D M, Walters C F, Haid B, Mapoles E R, Sater J, Gibson C R, Malsbury T, Fair J, Trummer D, Coffee K R, Burr B, Berzins L V, Choate C, Brereton S J, Azevedo S, Chandrasekaran H, Eder D C, Masters N D, Fisher A C, Sterne P A, Young B K, Landen O L, Van Wonterghem B M, MacGowan B J, Atherton J, Lindl J D, Meyerhofer D D, Moses E 2012 Phys. Plasmas 19 042706

    [12]

    Robey H F, Muncro D H, Spears B K, Marinak M M, Jones O S, Patel M V, Haan S W, Salmonson J D, Landen O L, Boehly T R, Nikroo A 2008 J. Phys.: Conf. Ser. 112 022078

    [13]

    Robey H F, Celliers P M, Moody J D, Sater J, Parham T, Kozioziemski B, Dylla-Spears R, Ross J S, LePape S, Ralph J E, Hohenberger M, Dewald E L, Berzak Hopkins L, Kroll J J, Yoxall B E, Hamza A V, Boehly T R, Nikroo A, Landen O L, Edwards M J 2014 Phys. Plasmas 21 022703

    [14]

    Robey H F, Celliers P M, Kline J L, Mackinnon A J, Boehly T R, Landen O L, Eggert J H, Hicks D, LePape S, Farley D R, Bowers M W, Krauter K G, Munro D H, Jones O S, Milovich J L, Clark D, Spears B K, Town R P J, Haan S W, Dixit S, Schneider M B, Dewald E L, Widmann K, Moody J D, Döppner T, Radousky H B, Nikroo A, Kroll J J, Hamza A V, Horner J B, Bhandarkar S D, Dzenitis E, Alger E, Giraldez E, Castro C, Moreno K, Haynam C, LaFortune K N, Widmayer C, Shaw M, Jancaitis K, Parham T, Holunga D M, Walters C F, Haid B, Malsbury T, Trummer D, Coffee K R, Burr B, Berzins L V, Choate C, Brereton S J, Azevedo S, Chandrasekaran H, Young B K, Edwards M J, Van Wonterghem B M, MacGowan B J, Atherton J, Lindl J D, Meyerhofer D D, Moses E 2012 Phys. Rev. Lett. 108 215004

    [15]

    Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Yuan X D, Dai W J, Zhou W, Wang F, Xu D P, Xie X D, Feng B, Peng Z T, Guo L F, Chen Y B, Zhang X J, Liu L Q, Lin D H, Dang Z, Xiang Y, Zhang R, Wang F, Jia H T, Deng X W 2017 Matter Radiat. Extremes 2 243

    [16]

    Yan J, Zhang X, Zheng J H, Yuan Y T, Kang D G, Ge F J, Chen L, Song Z F, Yuan Z, Jiang W, Yu B, Chen B L, Pu Y D, Huang T X 2015 Acta Phys. Sin. 64 125203 (in Chinese) [晏骥,张兴,郑建华,袁永腾,康洞国,葛峰骏,陈黎,宋仔峰,袁铮,蒋炜,余波,陈伯伦,蒲昱东,黄天晅 2015 物理学报 64 125203]

    [17]

    Pu Y D, Kang D G, Huang T X, Gao Y M, Chen J B, Tang Q, Song Z F, Peng X S, Chen B L, Jiang W, Yu B, Yan J, Jiang S E, Liu S Y, Yang J M, Ding Y K 2014 Acta Phys. Sin. 63 125211 (in Chinese) [蒲昱东,康洞国,黄天晅,高耀明,陈家斌,唐琦,宋仔峰,彭晓世,陈伯伦,蒋炜,余波,晏骥,江少恩,刘慎业,杨家敏,丁永坤 2014 物理学报 63 125211]

    [18]

    Huang T X, Wu C S, Chen Z J, Yan J, Li X, Ge F J, Zhang X, Jiang W, Deng B, Hou L F, Pu Y D, Dong Y S, Wang L F 2023 Acta Phys. Sin. 72 025201 (in Chinese) [黄天晅,吴畅书,陈忠靖,晏骥,李欣,葛峰峻,张兴,蒋炜,邓博,侯立飞,蒲昱东,董云松,王立锋 2023 物理学报 72 025201]

    [19]

    Ge F J, Pu Y D, Wang K, Huang T X, Sun C K, Qi X B, Wu C S, Gu J F, Chen Z J, Yan J, Jiang W, Yang D, Dong Y S, Wang F, Zhou S Y, Ding Y K 2023 Nucl. Fusion 63 086033

    [20]

    Philpott M K, George A, Whiteman G, De’Ath J, Millett J C F 2015 Meas. Sci. Technol. 26 125204

    [21]

    Barker L 1998 AIP Conference Proceedings 429 833

    [22]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K, 2010 Rev. Sci. Instrum. 81 073504

    [23]

    Li Z C, Zhu X L, Jiang X H, Liu S Y, Zheng J, Li S W, Wang Z B, Yang D, Zhang H, Guo L, Xin J, Song T M, Ding Y K, Rev. Sci. Instrum. 82 106106

    [24]

    Theobald W, Miller J E, Boehly T R, Vianello E, MeyerhoferD D, Sangster T C 2006 Phys. Plasmas 13 122702

    [25]

    Celliers P M, Collins G W, Da Silva L B, Cauble R, Gold D M, Foord M E, Holmes N C, Hammel B A, Wallace R J, Ng A 2000 Phys. Rev. Lett. 84 5564

    [26]

    Zaghoo M, Boehly T R, Rygg J R, Celliers P M, Hu S X, Collins G W 2019 Phys. Rev. Lett. 122 085001

    [27]

    Erskine D, Eggert J, Celliers P, Hicks D 2017 AIP Conference Proceedings 1793 160016

    [28]

    Ramis R, Schmalz R and Meyer-Ter-Vehn J 1988 Comput.Phys. Commun. 49 475

    [29]

    Eidmann K 1994 Las. Part. Beams 12 223

    [30]

    Landen O L, Caseya D T, DiNicola J M, Döppner T, Hartouni E P, Hinkel D E, Berzak Hopkins L F, Hohenberger M, Kritcher A L, LePape S, MacGowan B J, Maclaren S, Meaney K D, Millot M, Patel P K, Park J, Pickworth L A, Robey H F, Ross J S, Yang S T, Zylstra A B, Baker K L, Callahan D A, Celliers P M, Edwards M J, Hurricane O A, Lindl J D, Moody J D, Ralph J, Smalyuk V A, Thomas C A, Van Wonterghem B M, Weber C R 2020 High Energy Density Phys. 36 100755

  • [1] Liu Qing-Kang, Zhang Xu, Cai Hong-Bo, Zhang En-Hao, Gao Yan-Qi, Zhu Shao-Ping. Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser. Acta Physica Sinica, doi: 10.7498/aps.73.20231679
    [2] Huang Tian-Xuan, Wu Chang-Shu, Chen Zhong-Jing, Yan Ji, Li Xin, Ge Feng-Jun, Zhang Xing, Jiang Wei, Deng Bo, Hou Li-Fei, Pu Yu-Dong, Dong Yun-Song, Wang Li-Feng. Improving symmetry tuning with I-raum in indirect-driven implosions. Acta Physica Sinica, doi: 10.7498/aps.72.20220861
    [3] Shui Min, Yu Ming-Hai, Chu Gen-Bai, Xi Tao, Fan Wei, Zhao Yong-Qiang, Xin Jian-Ting, He Wei-Hua, Gu Yu-Qiu. Observation of ejecta tin particles into polymer foam through high-energy X-ray radiograpy using high-intensity short-pulse laser. Acta Physica Sinica, doi: 10.7498/aps.68.20182280
    [4] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, doi: 10.7498/aps.68.20182091
    [5] Li Teng-Fei, Zhong Zhe-Qiang, Zhang Bin. Novel dynamic wavefront control scheme for ultra-fast beam smoothing. Acta Physica Sinica, doi: 10.7498/aps.67.20172527
    [6] Xue Quan-Xi, Jiang Shao-En, Wang Zhe-Bin, Wang Feng, Zhao Xue-Qing, Yi Ai-Ping, Ding Yong-Kun, Liu Jing-Ru. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility. Acta Physica Sinica, doi: 10.7498/aps.67.20172159
    [7] Deng Xue-Wei, Zhou Wei, Yuan Qiang, Dai Wan-Jun, Hu Dong-Xia, Zhu Qi-Hua, Jing Feng. Capsule illumination uniformity illuminated by direct laser-driven irradiation from several tens of directions. Acta Physica Sinica, doi: 10.7498/aps.64.195203
    [8] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, doi: 10.7498/aps.64.045205
    [9] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, doi: 10.7498/aps.61.145204
    [10] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, doi: 10.7498/aps.61.068703
    [11] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, doi: 10.7498/aps.60.014205
    [12] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Ding Lei, Tang Jun, Liu Hua, Jing Feng, Zhang Xiao-Min. Experimental research on smoothing by spectral dispersion based on wave-guide phase modulator. Acta Physica Sinica, doi: 10.7498/aps.59.6290
    [13] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Deng Qing-Hua. Experimental study on smoothing by spectral dispersion using linear frequency-modulated pulse. Acta Physica Sinica, doi: 10.7498/aps.59.1088
    [14] Cheng Wen-Yong, Zhang Xiao-Min, Su Jing-Qin, Zhao Sheng-Zhi, Dong Jun, Li Ping, Zhou Li-Dan. Suppression of small-scale self focusing of high power laser using moving beam. Acta Physica Sinica, doi: 10.7498/aps.58.7012
    [15] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, doi: 10.7498/aps.58.4598
    [16] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, doi: 10.7498/aps.58.3130
    [17] Yao Xin, Gao Fu-Hua, Li Jian-Feng, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang. Study on the near field modulation and laser induced damage of beam sampling grating. Acta Physica Sinica, doi: 10.7498/aps.57.4891
    [18] Hu Jian-Bo, Tan Hua, Yu Yu-Ying, Dai Cheng-Da, Ran Xian-Wen. Measurements of dynamic yield strength of aluminum alloy and mechanism analysis of elastic precursor during reloading. Acta Physica Sinica, doi: 10.7498/aps.57.405
    [19] Near field modulation and laser induced damage of color separation gratings and combined color separation gratings-beam sampling gratings optical elements for use in inertial confinement fusion system. Acta Physica Sinica, doi: 10.7498/aps.56.6945
    [20] YANG HONG-QIONG, YANG JIAN-LUN, WEN SHU-HUAI, WANG GEN-XING, GUO YU-ZHI, TANG ZHENG-YUAN, MU WEI-BING, MA CHI. DT FUEL AREAL DENSITY DIAGNOSTIC IN DIRECT-DRIVEN IMPLOSIONS. Acta Physica Sinica, doi: 10.7498/aps.50.2408
Metrics
  • Abstract views:  103
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Available Online:  24 April 2024

/

返回文章
返回