Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of low-temporal coherence light self-focusing effect by spatial resolved method

Shan Chong Kong Ling-Bao Cui Yong Ji Lai-Lin Zhao Xiao-Hui Li Fu-Jian Rao Da-Xing Zhao Yuan-An Sui Zhan Shao Jian-Da

Citation:

Investigation of low-temporal coherence light self-focusing effect by spatial resolved method

Shan Chong, Kong Ling-Bao, Cui Yong, Ji Lai-Lin, Zhao Xiao-Hui, Li Fu-Jian, Rao Da-Xing, Zhao Yuan-An, Sui Zhan, Shao Jian-Da
PDF
HTML
Get Citation
  • The low-temporal coherence light (LTCL) has received extensive attention in the research of inertial confinement fusion due to its physical properties of instantaneous broadband. Recent reports demonstrated that the LTCL has significant suppression effects on laser plasma instability. However, the temporal spike structures of the LTCL will not only induce the amplification of the self-focusing effect, but also make its small-scale self-focusing characteristics and corresponding damage mechanism more complicated. Exploring the self-focusing characteristics of the LTCL will provide an important information for improving the output power of the LTCL. In this work, we design a more accurate test method for comparing the nonlinear self-focusing effects of different lasers, and compare the self-focusing effect of LTCL with single longitudinal mode (SLM) pulse. In the experiments, fused silica is tightly focused by a short focal length lens to avoid damaging the input surface. A spatially resolved test method is designed to measure the nonlinear I×L value (where I is the incident intensity, L is the distance from the head of filamentation damage to the input surface), which is accumulated from the input surface to the head of filamentation damage. The results show that the nonlinear I×L value obtained by the spatially resolved method is lower than by the traditional test method, since the energy loss caused by incident surface damage and backward stimulated Brillouin scattering (SBS) has been resolved. Furthermore, the nonlinear I×L values of the SLM pulse and the LTCL are also compared by the traditional test method and spatially resolved method. The test results show that due to the temporal spike structure, the LTCL has a lower nonlinear I×L value than the SLM pulse. The SBS effect and the different damage characteristics of the input surface are also analyzed. This study provides a more accurate test method for better analyzing the self-focusing effect of LTCL and laser pulses with different characteristics, and hence presenting a reference for designing high-power devices of low-temporal coherence light.
  • 图 1  (a)传统非线性$ I\times L $测试法; (b)空间分辨测试法

    Figure 1.  (a) Traditional nonlinear $ I\times L $ test method; (b) spatial resolved test method.

    图 2  理论计算得到的 (a)激光在熔石英体内不同位置的光斑尺寸; (b)空间分辨法得到激光在熔石英体内不同位置的非线性$ I\times L $数值

    Figure 2.  Theoretical calculation of (a) the beam size at different position of the fused silica, and (b) the nonlinear $ I\times L $ of different position obtained by the spatial resolution method.

    图 3  非线性$ I\times L $测试结果 (a)传统测试方法; (b)空间分辨测试法

    Figure 3.  Non-linear I × L test results: (a) Traditional test method; (b) spatially resolved test method.

    图 4  SBS反射率随入射能量的变化 (a)传统测试法; (b)空间分辨测试法

    Figure 4.  Reflectivity of stimulated Brillouin scattering as a function of the incident energy: (a) Traditional test method; (b) the spatial resolved test method.

    图 5  (a)时间低相干光和传统单模脉冲激光的光谱测试图; (b)时间低相干光的时域测试图以及时间尖峰结构示意图

    Figure 5.  (a) Spectrum of low-temporal coherence light and traditional single longitudinal mode pulse laser; (b) the temporal test pattern of low-temporal coherence light and schematic diagram of temporal spike structures.

    图 6  激光诱导熔石英前表面损伤的形貌 (a)单模脉冲激光; (b)时间低相干光

    Figure 6.  Laser-induced input surface damage morphologies: (a) Single longitudinal mode pulse laser; (b) the low-temporal coherence light.

    表 1  传统测试法和空间分辨法测得的单模脉冲激光和时间低相干光的非线性$ I\times {L}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $

    Table 1.  Nonlinear $ I\times {L}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $ of single longitudinal mode pulse laser and the low-temporal coherence light measured by traditional test method and spatial resolved method.

    $ I\times {L}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $ /(GW·cm–1)
    单模脉冲激光时间低相干光
    传统测试法157.5649.70
    空间分辨法15.197.48
    DownLoad: CSV
  • [1]

    Tollefson J, Gibney E 2022 Nature 612 7941

    [2]

    Clery D 2022 Science 378 6625

    [3]

    Gao Y Q, Ji L L, Zhao X H, Cui Y, Rao D X, Feng W, Xia L, Liu D, Wang T, Shi H T, Li F J, Liu J N, Du P Y, Li X L, Liu J, Zhang T X, Shan C, Hua Y L, Ma W X, Sui Z, Pei W B, Fu S Z, Sun X, Chen X F 2020 Opt. Lett. 45 24

    [4]

    Cui Y, Gao Y Q, Rao D X, Liu D, Li F J, Ji L L, Shi H T, Liu J N, Zhao X H, Feng W, Liu J N, Wang T, Ma W X, Sui Z 2019 Opt. Lett. 44 11

    [5]

    Ji L L, Zhao X X, Liu D, Gao Y Q, Cui Y, Rao D X, Feng W, Li F J, Shi H T, Liu J N, Li X L, Xia L, Wang T, Liu J, Du P Y, Sun X, Ma W X, Sui Z, Chen X F 2019 Opt. Lett. 44 17Google Scholar

    [6]

    Zhao X H, Ji L L, Liu D, Gao Y Q, Rao D X, Cui Y, Feng W, Li F J, Shi H T, Shan C, Ma W X, Sui Z 2020 APL Photonics 5 091301

    [7]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extrem. 9 1

    [8]

    Lei A L, Kang N, Zhao Y, Liu H Y, An H H, Xiong J, Wang R R, Xie Z Y, Tu Y C, Xu G X, Zhou X C, Fang Z H, Wang W, Xia L, Feng W, Zhao X H, Ji L L, Cui Y, Zhou X H, Liu Z J, Zheng C Y, Wang L F, Gao Y Q, Huang X G, Fu S Z 2024 Phys. Rev. Lett. 132 035102Google Scholar

    [9]

    Suydam B 1974 IEEE J. Quantum Elect. 10 11

    [10]

    Simmons W, Hunt J, Warren W 1981 IEEE J. Quantum Elect. 17 9

    [11]

    Sacks R A, Henesian M A, Haney S W, Trenholme J B 1996 LLNL Laser Program Quarterly Report 96 4

    [12]

    Williams W, Trenholme J, Orth C, Haney S, Sacks R, Auerbach J, Renard P 1996 LLNL Laser Program Quarterly Report 96 4

    [13]

    Williams W, Renard P A, Manes K R, Milam D, Hunt J T, Eimerl D 1966 LLNL Laser Program Quarterly Report 96 1

    [14]

    Murray J, Sacks R, Auerbach J, Trenholme J, Hunt J, Williams W, Manes K 1997 LLNL Laser Program Quarterly Report 97 3

    [15]

    Taylor D G, Amiel A I, Luat T V, Alexander L G 2006 Opt. Express 14 12

    [16]

    Bliss E S, Speck D R, Holzrichter J F, Erkkila J H, Glass A J 1974 Appl. Phys. Lett. 25 8

    [17]

    Fleck J, Morris J, Bliss E 1978 Quantum Electron. 14 5

    [18]

    Ranka J K, Schirmer R W, Gaeta A L 1996 Phy. Rev. Lett. 77 18

    [19]

    Milam D, Manes K R, Williams W H 1996 Proc. SPIE 2966, Laser-Induced Damage in Optical Materials Boulder, CO, United States, May 13, 1996 p2966

    [20]

    Bespalov V I, Talanov V I 1966 J. Exp. Theor. Phys. 3 11

    [21]

    Feit M, Fleck Jr J 1992 LLNL Annual Rep. 112523

    [22]

    邓锡铭, 余文炎, 陈时胜, 丁丽明, 谭维翰 1983 光学学报 3 2Google Scholar

    Deng X M, Yu W Y, Chen S S, Ding L M, Tan W H 1983 J. Opt. 3 2Google Scholar

    [23]

    Deng J Q, Fu X Q, Zhang L F, Zhang J, Wen S C 2013 Opt. Laser Technol. 45 56Google Scholar

    [24]

    Stuart B C, Feit M D, Herman S, Rubenchick A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar

    [25]

    Rubenchik A M, Feit M D 2002 Proc. SPIE, Laser-Induced Damage in Optical Materials Boulder, CO, United States, April 9, 2002 p4679

    [26]

    Fibich G, Eisenmann S, Ilan B, Erlich Y, Fraenkel M, Henis Z, Gaeta A L, Zigler A 2005 Opt. Express 13 15

    [27]

    Yoshida H, Fujita H, Nakatsuka M 1997 Opt. Eng. 36 9

    [28]

    Murray J R, Smith J R, Ehrlich R B, Kyrazis D T, Thompson C E, Weiland T L, Wilcox R B 1989 J. Opt. Soc. Am. B 6 12

    [29]

    Zhang J, Wen S C, Fu X Q, Zhang L F, Deng J Q, Fan D Y 2010 High-Power Lasers and Applications V Beijing, China, November 16, 2010 p7843

    [30]

    McKenty P W, Skupsky S, Kelly J H, Cotton C T 1994 J. Appl. Phys. 76 4

    [31]

    Melloni A, Frasca M, Garavaglia A, Tonini A, Martinelli M 1998 Opt. Lett. 23 9

    [32]

    Murray J R, Smith J R, Ehrlich R B, Kyrazis D T, Thompson C E, Weiland T L, Wilcox R B 1989 J. Opt. Soc. Am. B 6 12

    [33]

    Bercegol H, Lamaignère L, Cavaro V, Loiseau M 2005 Proc. SPIE, Laser-Induced Damage in Optical Materials Boulder, CO, United States, February 7, 2006 p5991

    [34]

    Bercegol H, Boscheron A, Lepage C, Mazataud E, Donval T, Lamaignère L, Loiseau M, Razé G, Sudre C 2004 Proc. SPIE, Laser-Induced Damage in Optical Materials Boulder, Co, United States, June 10, 2004 p5273

  • [1] Guo Fu-Cheng, Li Cui, Li Yan-Zhong. Analysis of influence of spatial distribution error of directional infrared light on temperature field of cryogenic targets. Acta Physica Sinica, doi: 10.7498/aps.71.20212351
    [2] Zhao Hai-Long, Wang Gang-Hua, Xiao Bo, Wang Qiang, Kan Ming-Xian, Duan Shu-Chao, Xie Long. Evolution characteristic of axial magnetic field and Nernst effect in magnetized liner inertial fusion. Acta Physica Sinica, doi: 10.7498/aps.70.20202215
    [3] Zou Xiong, Qi Xiao-Bo, Zhang Tao-Xian, Gao Zhang-Fan, Huang Wei-Xing. Numerical simulation of filling and evacuating process of impurity gas in target capsule of inertial confinement fusion. Acta Physica Sinica, doi: 10.7498/aps.70.20201491
    [4] Guo Fu-Cheng, Li Cui, Li Yan-Zhong. Influence of directional infrared irradiations on the temperature field in ICF cryotargets. Acta Physica Sinica, doi: 10.7498/aps.70.20210029
    [5] Zhao Hai-Long, Xiao Bo, Wang Gang-Hua, Wang Qiang, Zhang Zheng-Wei, Sun Qi-Zhi, Deng Jian-Jun. One-dimensional integrated simulations of magnetized liner inertial fusion. Acta Physica Sinica, doi: 10.7498/aps.69.20191411
    [6] Gao Yan-Qi, Zhao Xiao-Hui, Jia Guo, Li Fu-Jian, Cui Yong, Rao Da-Xing, Ji Lai-Lin, Liu Dong, Feng Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan. Low-coherece laser based lens array beam smoothing techique. Acta Physica Sinica, doi: 10.7498/aps.68.20182138
    [7] Tang Xiong-Xin, Qiu Ji-Si, Fan Zhong-Wei, Wang Hao-Cheng, Liu Yue-Liang, Liu Hao, Su Liang-Bi. Experimental study of diode-pumped Nd, Y:CaF2 amplifier for inertial confinement fusion laser driver. Acta Physica Sinica, doi: 10.7498/aps.65.204206
    [8] Chen Xue-Mei, Zhang Jing, Yi Xing-Wen, Zeng Deng-Ke, Yang He-Ming, Qiu Kun. Fiber nonlinearity tolerance research of coherent optical orthogonal frequency division multiplexed system based on digital coherent superposition. Acta Physica Sinica, doi: 10.7498/aps.64.144203
    [9] Ruan Wang-Chao, Cen Zhao-Feng, Li Xiao-Tong, Liu Yang-Zhou, Pang Wu-Bin. Simulation and analysis of nonlinear self-focusing phenomenon based on ray-tracing. Acta Physica Sinica, doi: 10.7498/aps.62.044202
    [10] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, doi: 10.7498/aps.61.068703
    [11] Bi Peng, Lei Hai-Le, Liu Yuan-Qiong, Li Jun, Yang Xiang-Dong. Redistribution of solid-deuterium induced by infrared irradation. Acta Physica Sinica, doi: 10.7498/aps.61.062802
    [12] Li Xiang-Heng, Zhang Bing-Zhi, She Wei-Long. Asymmetrical collision among coherentphotovoltaic spatial solitons. Acta Physica Sinica, doi: 10.7498/aps.60.074216
    [13] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, doi: 10.7498/aps.60.014205
    [14] Wang Xiao-Fang, Wang Jing-Yu. Analysis of high-resolution X-ray imaging of an inertial-confinement-fusion target by using a Fresnel zone plate. Acta Physica Sinica, doi: 10.7498/aps.60.025212
    [15] Bi Peng, Liu Yuan-Qiong, Tang Yong-Jian, Yang Xiang-Dong, Lei Hai-Le. Infrared absorption of liquid-hydrogen planar cryotargets. Acta Physica Sinica, doi: 10.7498/aps.59.7531
    [16] Wang Ping, Dai Xin-Gang. Numerical modeling of non-linear characteristics for barotropic atmosphere with external forcing. Acta Physica Sinica, doi: 10.7498/aps.54.4961
    [17] Peng Zhi-Tao, Jing Feng, Liu Lan-Qin, Zhu Qi-Hua, Chen Bo, Zhang Kun, Liu Hua, hang Qing-Quan, Cheng Xiao-Feng, Jiang Dong-Bin, Liu Hong-Jie, Peng Han Sheng. Power spectra density estimation of quality of the laserbeam passing through an selffocusing media. Acta Physica Sinica, doi: 10.7498/aps.52.87
    [18] Xie Yong, Xu Jian-Xue, Yang Hong-Jun, Hu San-Jue. . Acta Physica Sinica, doi: 10.7498/aps.51.205
    [19] SHE WEI-LONG, HE SUI-RONG, WANG HE-ZHOU, YU ZHEN-XIN, MO DANG. PHOTOREFRACTIVE ASYMMETRICAL SELF-DEFOCUSING INDUCED BY THERMAL SELF-FOCUSING. Acta Physica Sinica, doi: 10.7498/aps.45.2022
    [20] LUO SHI-YU, LIU ZHENG-RONG, SHAO MING-ZHU. ON THE NONLINEAR PROPERTIES OF THE PHOTO-MAGNETOELECTRIC EFFECT IN SEMICONDUCTORS. Acta Physica Sinica, doi: 10.7498/aps.36.547
Metrics
  • Abstract views:  255
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2024
  • Accepted Date:  15 February 2024
  • Available Online:  02 March 2024

/

返回文章
返回