Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Top cell design and optimization of all-chalcopyrite CuGaSe2/CuInSe2 two-terminal tandem solar cells

Zhong Jian-Cheng Zhang Xiao-Tian Lin Chang-Qing Xue Yang Tang Huan Huang Dan

Citation:

Top cell design and optimization of all-chalcopyrite CuGaSe2/CuInSe2 two-terminal tandem solar cells

Zhong Jian-Cheng, Zhang Xiao-Tian, Lin Chang-Qing, Xue Yang, Tang Huan, Huang Dan
PDF
HTML
Get Citation
  • Solar cells have attracted much attention, for they can convert solar energy directly into electric energy, and have been widely utilized in manufacturing industry and people’s daily life. Although the power conversion efficiency (PCE) of single-junction solar cells has gradually improved in recent years, its maximum efficiency is still limited by the Shockley-Queisser (SQ) limit of single-junction solar cells. To exceed the SQ limit and further obtain high-efficiency solar cells, the concept of tandem solar cells has been proposed. In this work, the chalcopyrite CuGaSe2/CuInSe2 tandem solar cells are studied systematically in theory by combining first-principle calculations and SCAPS-1D device simulations. Firstly, the electronic structure, defect properties and corresponding macroscopic performance parameters of CuGaSe2 (CGS) are obtained by first-principles calculations, and are used as input parameters for subsequent device simulations of CGS solar cells. Then, the single-junction CGS and CuInSe2 (CIS) solar cells are simulated by using SCAPS-1D software, respectively. The simulation results for the single junction CIS solar cells are in good agreement with the experimental values. For single-junction CGS cells, the device simulations reveal that the CGS single-junction solar cells have the highest short-circuit current (Jsc) and PCE under the Cu-rich, Ga-rich and Se-poor chemical growth condition. Further optimization in the growth environment with the highest short circuit current (Jsc) shows that the open-circuit voltage (Voc) and PCE of CGS solar cells can be improved by replacing the electron transport layer (ETL) with ZnSe. Finally, after the optimized CGS and CIS solar cells are connected in series with two-terminal (2T) monolithic tandem solar cell, the device simulation results show that under the growth temperature of 700 K and the growth environment of Cu-rich, Ga-rich, and Se-poor, with ZnSe serving as the ETL, the CGS thickness of 2000 nm and the CIS thickness of 1336 nm, the PCE of 2T monolithic CGS/CIS tandem solar cell can reach 28.91%, which is higher than the ever-recorded efficiency of the current single-junction solar cells, and shows that this solar cell has a good application prospect.
      Corresponding author: Huang Dan, danhuang@gxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61964002), the Natural Science Foundation of Guangxi Province,China (Grant No. ZY23055002), and the Opening Project of Guangxi Key Laboratory of Precision Navigation Technology and Application, China (Grant No. DH202316).
    [1]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [2]

    李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 物理学报 67 158801Google Scholar

    Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar

    [3]

    Kasaeian A, Eshghi A T, Sameti M 2015 Renewable Sustainable Energy Rev. 43 584Google Scholar

    [4]

    Lin H, Yang M, Ru X N, Wang G S, Yin S, Peng F G, Hong C J, Qu M H, Lu J X, Fang L, Han C, Procel P, Isabella O, Gao P Q, Li Z G, Xu X X 2023 Nat. Energy 8 789Google Scholar

    [5]

    Chen W, Hong J L, Yuan X L, Liu J R 2016 J. Cleaner Prod. 112 1025Google Scholar

    [6]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 9 1863Google Scholar

    [7]

    Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X J 2024 Prog. Photovoltaics 32 3Google Scholar

    [8]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M, Redorici L 2019 Adv. Phys. X 4 1548305Google Scholar

    [9]

    Wang J Z, Qi Y C, Zheng H F, Wang R L, Bai S Y, Liu Y N, Liu Q, Xiao J, Zou D C, Hou S C 2023 J. Mater. Chem. A 11 13201Google Scholar

    [10]

    Miyasaka T, Kulkarni A, Kim G M, Öz S, Jena A K 2020 Adv. Energy Mater. 10 1902500Google Scholar

    [11]

    Wu X W, Ming C, Shi J, Wang H, West D, Zhang S B, Sun Y Y 2022 Chin. Phys. Lett. 39 046101Google Scholar

    [12]

    王雪婷, 付钰豪, 那广仁, 李红东, 张立军 2019 物理学报 68 157101Google Scholar

    Wang X T, Fu Y H, Na G R, Li H D, Zhang L J 2019 Acta Phys. Sin. 68 157101Google Scholar

    [13]

    Green M A, Bremner S P 2017 Nat. Mater. 16 23Google Scholar

    [14]

    Wang R, Huang T Y, Xue J J, Tong J H, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar

    [15]

    赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前 2022 物理学报 71 038801Google Scholar

    Zhao S, Zhou H, Wang S Y, Han F, Jiang S H, Shen X Q 2022 Acta Phys. Sin. 71 038801Google Scholar

    [16]

    Yue M, Wang Y, Liang H L, Mei Z X 2022 Chinese Phys. B 31 088801Google Scholar

    [17]

    Sharif M N, Yang J S, Zhang X K, Tang Y H, Wang K F 2023 Solar RRL 7 2300156Google Scholar

    [18]

    Eperon G E, Hörantner M T, Snaith H J 2017 Nat. Rev. Chem. 1 0095Google Scholar

    [19]

    Ameri T, Li N, Brabec C J 2013 Energy Environ. Sci. 6 2390Google Scholar

    [20]

    Chen L J, Niu G X, Niu L B, Song Q L 2022 Chin. Phys. B 31 038802Google Scholar

    [21]

    Xie X P, Bai Q Y, Liu G, Dong P, Liu D W, Ni Y F, Liu C B, Xi H, Zhu W D, Chen D Z, Zhang C F 2022 Chin. Phys. B 31 108801Google Scholar

    [22]

    Adhyaksa G W P, Johlin E, Garnett E C 2017 Nano Lett. 17 5206Google Scholar

    [23]

    Hou F H, Ren X Q, Guo H K, Ning X L, Wang Y L, Li T T, Zhu C J, Zhao Y, Zhang X D 2024 Nano Energy 124 109476Google Scholar

    [24]

    Todorov T K, Bishop D M, Lee Y S 2018 Sol. Energy Mater. Sol. Cells 180 350Google Scholar

    [25]

    Young D L, Abushama J, Noufi R, Xiaonan Li, Keane J, Gessert T A, Ward J S, Contreras M, Symko-Davies M, Coutts T J 2002 Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, May 19–24, 2002 pp608–611

    [26]

    Nishiwaki S, Siebentritt S, Walk P, Lux-Steiner M Ch 2003 Prog. Photovoltaics 11 243Google Scholar

    [27]

    Schmid M, Caballero R, Klenk R, Krč J, Rissom T, Topi M, Lux-Steiner M Ch 2010 EPJ Photovolt. 1 10601

    [28]

    Outlaw-Spruell K, Crunk J, Septina W, Muzzillo C P, Zhu K, Gaillard N 2022 ACS Appl. Mater. Interfaces 14 54607Google Scholar

    [29]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [30]

    Ramanujam J, Singh U P 2017 Energy Environ. Sci. 10 1306Google Scholar

    [31]

    Xiao H, Tahir-Kheli J, Goddard W A 2011 J. Phys. Chem. Lett. 2 212Google Scholar

    [32]

    Ishizuka S 2019 Phys. Status Solidi A 216 1800873Google Scholar

    [33]

    Siebentritt S, Schuler S 2003 J. Phys. Chem. Solids 64 1621Google Scholar

    [34]

    Feurer T, Carron R, Torres Sevilla G, Fu F, Pisoni S, Romanyuk Y E, Buecheler S, Tiwari A N 2019 Adv. Energy Mater. 9 1901428Google Scholar

    [35]

    Gong J B, Gao D Q, Ma Z Y, Yang X K, Zhang J J, Liu X X, Chen C, Tang J, Da B, Li J M, Fang G J, Xiao X D 2022 Solar RRL 6 2200766Google Scholar

    [36]

    Prathapani S, Zhan Y Q 2021 Energy Technol. 9 2100193Google Scholar

    [37]

    Zhang Y, Wang Q, Zhang X B, Peng N, Liu Z Q, Chen B Z, Huang S S, Wang Z Y 2017 Chin. Phys. Lett. 34 028802Google Scholar

    [38]

    Bush K A, Manzoor S, Frohna K, Yu Z S J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [39]

    Hibberd C J, Chassaing E, Liu W, Mitzi D B, Lincot D, Tiwari A N 2010 Prog. Photovoltaics 18 434Google Scholar

    [40]

    Kemell M, Ritala M, Leskelä M 2005 Crit. Rev. Solid State Mater. Sci. 30 1Google Scholar

    [41]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar

    [42]

    甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 物理学报 70 038801Google Scholar

    Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta Phys. Sin. 70 038801Google Scholar

    [43]

    Hossain M K, Samajdar D P, Das R C, Arnab A A, Rahman Md F, Rubel M H K, Islam Md R, Bencherif H, Pandey R, Madan J, Mohammed M K A 2023 Energy Fuels 37 3957Google Scholar

    [44]

    Hossain M K, Toki G F I, Madan J, Pandey R, Bencherif H, Mohammed M K A, Islam Md R, Rubel M H K, Rahman Md F, Bhattarai S, Samajdar D P 2023 New J. Chem. 47 8602Google Scholar

    [45]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [46]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [47]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [48]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [49]

    Pindolia G, Shinde S M, Jha P K 2022 Sol. Energy 236 802Google Scholar

    [50]

    Choudhary K, Bercx M, Jiang J, Pachter R, Lamoen D, Tavazza F 2019 Chem. Mater. 31 5900Google Scholar

    [51]

    Minbashi M, Ghobadi A, Ehsani M H, Dizaji H R, Memarian N 2018 Sol. Energy 176 520Google Scholar

    [52]

    Madan J, Shivani, Pandey R, Sharma R 2020 Sol. Energy 197 212Google Scholar

    [53]

    Gupta G K, Dixit A 2018 Opt. Mater. 82 11Google Scholar

    [54]

    Islam Md T, Jani Md R, Islam A F, Shorowordi K Md, Chowdhury S, Nishat S S, Ahmed S 2021 IEEE Trans. Electron Devices 68 618Google Scholar

    [55]

    Houck D W, Siegler T D, Korgel B A 2019 ACS Appl. Energy Mater. 2 1494Google Scholar

    [56]

    Wang R, Dou B Y, Zheng Y F, Wei S H 2022 Sci. China: Phys. , Mech. Astron. 65 107311Google Scholar

    [57]

    Liu X H, Hu Y 2022 J. Mater. Sci. Mater. Electron. 33 6253Google Scholar

    [58]

    Persson C 2008 Appl. Phys. Lett. 93 072106Google Scholar

    [59]

    Chowdhury M S, Shahahmadi S A, Chelvanathan P, Tiong S K, Amin N, Techato K, Nuthammachot N, Chowdhury T, Suklueng M 2020 Results Phys. 16 102839Google Scholar

    [60]

    Simya O K, Mahaboobbatcha A, Balachander K 2015 Superlattice Microstruct. 82 248Google Scholar

    [61]

    Gupta G K, Dixit A 2020 Int. J. Energy Res. 44 3724Google Scholar

    [62]

    Ahmed S, Jannat F, Khan Md A K, Alim M A 2021 Optik 225 165765Google Scholar

    [63]

    Saad M, Kassis A 2011 Sol. Energy Mater. Sol. Cells 95 1927Google Scholar

    [64]

    Saad M, Kassis A 2003 Sol. Energy Mater. Sol. Cells 77 415Google Scholar

    [65]

    Aida Y, Depredurand V, Larsen J K, Arai H, Tanaka D, Kurihara M, Siebentritt S 2015 Prog. Photovoltaics 23 754Google Scholar

    [66]

    Wang J Q, Wang Z H, Wang W, Wang Y, Hu X L, Liu J X, Gong X Z, Miao W L, Ding L L, Li X B, Tang J G 2022 Nanoscale 14 6709Google Scholar

    [67]

    Abdelaziz S, Zekry A, Shaker A, Abouelatta M 2020 Opt. Mater. 101 109738Google Scholar

    [68]

    Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181 372Google Scholar

    [69]

    Ganose A M, Scanlon D O 2016 J. Mater. Chem. C 4 1467Google Scholar

    [70]

    Bencherif H, Meddour F, Elshorbagy M H, Khalid Hossain M, Cuadrado A, Abdi M A, Bendib T, Kouda S, Alda J 2022 Micro Nanostruct. 171 207403Google Scholar

    [71]

    Alsalme A, Alsaeedi H 2022 Nanomaterials 13 96Google Scholar

    [72]

    Moiz S A, Alzahrani M S, Alahmadi A N M 2022 Polymers 14 3610Google Scholar

    [73]

    Dai C M, Xu P, Huang M L, Cai Z H, Han D, Wu Y N, Chen S Y 2019 APL Mater. 7 081122Google Scholar

    [74]

    Huang D, Persson C, Ju Z P, Dou M F, Yao C M, Guo J 2014 EPL 105 37007Google Scholar

    [75]

    Ju Z P, Lin C Q, Xue Y, Huang D, Persson C 2023 J. Phys. Chem. Solids 183 111655Google Scholar

    [76]

    Green M A 1990 J. Appl. Phys. 67 2944Google Scholar

    [77]

    Zhang S B, Wei S H, Zunger A 2001 Phys. Rev. B 63 075205Google Scholar

    [78]

    Lany S, Zunger A 2008 Phys. Rev. B 78 235104Google Scholar

    [79]

    Huang D, Lin C Q, Xue Y, Chen S Y, Zhao Y J, Persson C 2022 Phys. Chem. Chem. Phys. 24 25258Google Scholar

    [80]

    Van De Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar

    [81]

    Chu W B, Zheng Q J, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453Google Scholar

    [82]

    Wei J C, Jiang L L, Huang M L, Wu Y N, Chen S Y 2021 Adv. Funct. Mater. 31 2104913Google Scholar

    [83]

    Huang M L, Zheng Z N, Dai Z X, Guo X J, Wang S S, Jiang L S, Wei J C, Chen S Y 2022 J. Semicond. 43 042101Google Scholar

    [84]

    Huang M L, Cai Z H, Wang S S, Gong X G, Wei S H, Chen S Y 2021 Small 17 2102429Google Scholar

    [85]

    Ma J, Wei S H, Gessert T A, Chin K K 2011 Phys. Rev. B 83 245207Google Scholar

    [86]

    Wang C L, Zhao Y, Ma T S, An Y D, He R, Zhu J W, Chen C, Ren S Q, Fu F, Zhao D W, Li X F 2022 Nat. Energy 7 744Google Scholar

    [87]

    Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 66 1994Google Scholar

    [88]

    Fan S W, Chen Y, Yang L 2022 J. Phys. Chem. C 126 19446Google Scholar

    [89]

    Choi J W, Shin B, Gorai P, Hoye R L Z, Palgrave R 2022 ACS Energy Lett. 7 1553Google Scholar

    [90]

    Patel P K 2021 Sci. Rep. 11 3082Google Scholar

    [91]

    Deepthi Jayan K, Sebastian V 2021 Sol. Energy 217 40Google Scholar

    [92]

    Hossain M K, Uddin M S, Toki G F I, Mohammed M K A, Pandey R, Madan J, Rahman Md F, Islam Md R, Bhattarai S, Bencherif H, Samajdar D P, Amami M, Dwivedi D K 2023 RSC Adv. 13 23514Google Scholar

    [93]

    Liang H M, Feng J G, Rodríguez-Gallegos C D, Krause M, Wang X, Alvianto E, Guo R J, Liu H H, Kothandaraman R K, Carron R, Tiwari A N, Peters I M, Fu F, Hou Y 2023 Joule 7 2859Google Scholar

    [94]

    Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S 2022 Sol. Energy 236 195Google Scholar

    [95]

    Xu Q J, Zhao Y, Zhang X D 2020 Sol. RRL 4 1900206Google Scholar

    [96]

    Singh V K, Srivastava S, Singh A K, Chauhan M S, Patel S P, Singh R S 2023 Environ. Sci. Pollut. Res. 30 98747Google Scholar

    [97]

    张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801Google Scholar

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 058801Google Scholar

  • 图 1  空间群为$I{\bar 4} 2d$的CuGaSe2和CuInSe2的晶体结构和原子位置

    Figure 1.  Crystal structure and atomic positions of CuGaSe2 and CuInSe2 with the space group $I{\bar 4} 2d $.

    图 2  (a)初始顶部电池构型; (b)底部电池构型; (c)所涉及材料的能带排列图

    Figure 2.  (a) Initial top cell configuration; (b) bottom cell configuration; (c) energy band alignment of all materials.

    图 3  (a) CuGaSe2能带结构; (b) CuGaSe2总态密度和Cu, Ga和Se的分波态密度

    Figure 3.  (a) Band structure of CuGaSe2; (b) total state density of CuGaSe2 and partial state density of Cu, Ga and Se atom, respectively.

    图 4  (a) 形成稳定CuGaSe2所允许的相对化学势范围(灰色区域), AG点分别代表7个不同化学势极限条件; (b)—(h)不同化学势条件下CuGaSe2中各本征缺陷的形成能

    Figure 4.  (a) Allowable relative chemical potential range (gray area) for a stable CuGaSe2, and the AG points represent seven different relative chemical potential conditions; (b)—(h) formation energies of intrinsic defects in CuGaSe2 under different relative chemical potential conditions.

    图 5  (a)—(g) CuGaSe2AG点的主要缺陷浓度; (h) CuGaSe2AG点的空穴浓度, 计算的空穴浓度所设定的工作温度为300 K

    Figure 5.  (a)–(g) Defect concentration of major defects in CuGaSe2 at AG point; (h) hole concentrations in CuGaSe2 at AG point, and the operating temperature for the calculations on hole concentration is set as 300 K.

    图 6  模拟不同化学势生长点和生长温度对单结CuGaSe2太阳能电池的影响 (a) Voc; (b) Jsc; (c) FF; (d) PCE

    Figure 6.  Influences of single-junction CuGaSe2 solar cells under different chemical potential growth points and growth temperatures: (a) Voc; (b) Jsc; (c) FF; (d) PCE.

    图 7  单结CuGaSe2太阳能电池效率随吸收层变化趋势

    Figure 7.  PCE of single-junction CuGaSe2 as a function of thickness.

    图 8  模拟不同ETL (CdS, TiO2, SnO2和ZnSe)对CuGaSe2太阳能电池的影响 (a) Voc; (b) Jsc; (c) FF; (d) PCE

    Figure 8.  Influences of CuGaSe2 solar cell by different ETL (CdS, TiO2, SnO2 and ZnSe): (a) Voc; (b) Jsc; (c) FF; (d) PCE.

    图 9  最终优化后的2T单片叠层太阳能电池结构

    Figure 9.  Final optimized configuration of the 2T monolithic tandem solar cell.

    表 1  用于模拟初始单结CGS和CIS太阳能电池各材料的输入参数. 输入参数取自参考文献以及第一性原理计算值(用加粗的黑体标注)

    Table 1.  Input parameters for each material in the initial single-junction CGS and CIS device simulations. Parameters are obtained from references and first principles calculations (highlighted in bold).

    参数 CuInSe2[55] CuGaSe2[5658] CdS[56,59] ZnO[56,60] Al:ZnO[61]
    厚度/nm 3000 2000 50 70 200
    带隙/eV 1.04 1.70 2.40 3.30 3.30
    电子亲和能/eV 4.5 3.9 4.2 4.6 4.6
    介电常数 13.6 10.6 10.0 9.0 9.0
    导带有效态密度/(1018 cm–3) 2.20 1.31 2.20 2.20 2.20
    价带有效态密度/(1018 cm–3) 18.00 9.14 18.00 18.00 18.00
    电子迁移率/(cm·V–1·s–1) 10 100 100 100 100
    空穴迁移率/(cm·V–1·s–1) 10 25 25 25 25
    施主浓度/(1017 cm–3) 0 0 1 10 1000
    受主浓度/(1016 cm–3) 2 变量 0 0 0
    缺陷类型 中性 变量 中性 中性 单受主(–/0)
    电子俘获截面/(10–17 cm2) 10000 1 1 100 100
    空穴俘获截面/(10–15 cm2) 1 1 1000 1000 1
    能量分布 单一 单一 单一 单一 单一
    缺陷能级 Et 的参考 高于最高价带能级 高于最高价带能级 高于最高价带能级 高于最高价带能级 高于最高价带能级
    相对于参考能级的能量/eV 0.6 变量 0.6 0.6 0.6
    缺陷浓度/(1015 cm–3) 1 变量 100 100 10
    DownLoad: CSV

    表 2  界面缺陷的输入参数

    Table 2.  Input parameters for interface defects.

    参数 CuGaSe2/CdS[6264] CuInSe2/CdS[65]
    缺陷类型 中性 中性
    电子俘获截面/(10–18 cm2) 8.1 1.0
    空穴俘获截面/(10–18 cm2) 8.1 1.0
    能量分布 单一 单一
    缺陷能级 Et 的参考 高于最高价带能级 高于最高价带能级
    相对于参考能级的能量/eV 0.2 0.2
    缺陷浓度/(10–14 cm–3) 10 1
    DownLoad: CSV

    表 3  各种ETL的输入参数

    Table 3.  Input parameters for various ETLs.

    参数 TiO2[6668] SnO2[49,69,70] ZnSe[67,71,72]
    厚度/nm 30 50 50
    带隙/eV 3.20 3.60 2.67
    电子亲和能/eV 3.90 4.00 4.09
    介电常数 9.0 9.0 8.6
    导带有效态密度/(1017 cm–3) 10000 2.2 22
    价带有效态密度/(1017 cm–3) 2000 2.2 180
    电子迁移率/(cm·V–1·s–1) 20 200 400
    空穴迁移率/(cm·V–1·s–1) 10 80 110
    施主浓度/(1019 cm–3) 1 1 1
    受主浓度/cm–3 0 0 0
    缺陷类型 中性 中性 中性
    电子俘获截面/(10–15 cm2) 1 1 1
    空穴俘获截面/(10–15 cm2) 1 1 1
    能量分布 单一 单一 单一
    缺陷能级 Et 的参考 高于最高价带能级 高于最高价带能级 高于最高价带能级
    相对于参考能级的能量/eV 0.6 0.6 0.6
    缺陷浓度/(1015 cm–3) 1 1 1
    DownLoad: CSV

    表 4  本工作计算获得及文献[74]报道的CuGaSe2电子和空穴的有效质量(单位: me)

    Table 4.  Effective masses of electrons and holes in CuGaSe2 from this work and Ref. [74] (unit: me).

    有效质量本工作文献[74]
    电子m*100, m*0100.150.10
    m*0010.130.09
    电子平均有效质量0.140.09
    空穴m*100, m*0100.620.77
    m*0010.150.10
    空穴平均有效质量0.510.63
    DownLoad: CSV

    表 5  CuInSe2电池性能参数模拟值和实验值[34,93]及它们之间的百分比差异

    Table 5.  Simulated and experimental[34,93] performance parameters of CuInSe2 solar cell and the percentage difference between them.

    电池 性能参数 本工作(SCAPS-1D模拟) 实验值[34] 模拟数据与实验值的差异/% 实验值[93] 模拟数据与实验值的差异/%
    CuInSe2 Voc/V 0.61 0.61 0 0.60 1.67
    Jsc/(mA⋅cm–2) 41.98 42.30 –0.76 39.70 5.74
    FF/% 77.54 74.60 3.94 72.90 6.36
    PCE/% 19.90 19.20 3.65 17.30 15.03
    DownLoad: CSV

    表 6  不同生长温度下电流匹配后CGS顶部电池(在AM 1.5G 1 sun光谱下照射)、CIS底部电池(透过CGS电池后的光谱下照射)及2T单片叠层器件的光伏性能参数

    Table 6.  Photovoltaic performance parameters of CGS top cell (irradiated at AM 1.5G 1 sun), CIS bottom cell (irradiated at the transmission spectrum after CGS cell) and 2T monolithic tandem solar cell after current matching at different growth temperatures

    电池 厚度/nm 开路电压/V 短路电流
    /(mA·cm–2)
    填充因子/% 光电转换效率/%
    A-600 K-CGS顶部电池 2000 1.06 20.58 85.63 18.63
    CIS底部电池 1820 0.59 20.58 77.59 9.42
    2T单片叠层太阳能电池 1.65 20.58 82.60 28.05
    A-700 K-CGS顶部电池 2000 1.16 19.99 86.04 19.92
    CIS底部电池 1336 0.58 19.99 76.68 8.99
    2T单片叠层太阳能电池 1.74 19.99 83.12 28.91
    A-800 K-CGS顶部电池 2000 1.22 19.39 86.40 20.35
    CIS底部电池 1050 0.57 19.39 75.81 8.38
    2T单片叠层太阳能电池 1.79 19.39 82.78 28.73
    A-900 K-CGS顶部电池 2000 1.03 17.68 82.60 15.07
    CIS底部电池 636 0.55 17.68 73.33 7.13
    2T单片叠层太阳能电池 1.58 17.68 79.47 22.20
    DownLoad: CSV
  • [1]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [2]

    李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 物理学报 67 158801Google Scholar

    Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar

    [3]

    Kasaeian A, Eshghi A T, Sameti M 2015 Renewable Sustainable Energy Rev. 43 584Google Scholar

    [4]

    Lin H, Yang M, Ru X N, Wang G S, Yin S, Peng F G, Hong C J, Qu M H, Lu J X, Fang L, Han C, Procel P, Isabella O, Gao P Q, Li Z G, Xu X X 2023 Nat. Energy 8 789Google Scholar

    [5]

    Chen W, Hong J L, Yuan X L, Liu J R 2016 J. Cleaner Prod. 112 1025Google Scholar

    [6]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 9 1863Google Scholar

    [7]

    Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X J 2024 Prog. Photovoltaics 32 3Google Scholar

    [8]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M, Redorici L 2019 Adv. Phys. X 4 1548305Google Scholar

    [9]

    Wang J Z, Qi Y C, Zheng H F, Wang R L, Bai S Y, Liu Y N, Liu Q, Xiao J, Zou D C, Hou S C 2023 J. Mater. Chem. A 11 13201Google Scholar

    [10]

    Miyasaka T, Kulkarni A, Kim G M, Öz S, Jena A K 2020 Adv. Energy Mater. 10 1902500Google Scholar

    [11]

    Wu X W, Ming C, Shi J, Wang H, West D, Zhang S B, Sun Y Y 2022 Chin. Phys. Lett. 39 046101Google Scholar

    [12]

    王雪婷, 付钰豪, 那广仁, 李红东, 张立军 2019 物理学报 68 157101Google Scholar

    Wang X T, Fu Y H, Na G R, Li H D, Zhang L J 2019 Acta Phys. Sin. 68 157101Google Scholar

    [13]

    Green M A, Bremner S P 2017 Nat. Mater. 16 23Google Scholar

    [14]

    Wang R, Huang T Y, Xue J J, Tong J H, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar

    [15]

    赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前 2022 物理学报 71 038801Google Scholar

    Zhao S, Zhou H, Wang S Y, Han F, Jiang S H, Shen X Q 2022 Acta Phys. Sin. 71 038801Google Scholar

    [16]

    Yue M, Wang Y, Liang H L, Mei Z X 2022 Chinese Phys. B 31 088801Google Scholar

    [17]

    Sharif M N, Yang J S, Zhang X K, Tang Y H, Wang K F 2023 Solar RRL 7 2300156Google Scholar

    [18]

    Eperon G E, Hörantner M T, Snaith H J 2017 Nat. Rev. Chem. 1 0095Google Scholar

    [19]

    Ameri T, Li N, Brabec C J 2013 Energy Environ. Sci. 6 2390Google Scholar

    [20]

    Chen L J, Niu G X, Niu L B, Song Q L 2022 Chin. Phys. B 31 038802Google Scholar

    [21]

    Xie X P, Bai Q Y, Liu G, Dong P, Liu D W, Ni Y F, Liu C B, Xi H, Zhu W D, Chen D Z, Zhang C F 2022 Chin. Phys. B 31 108801Google Scholar

    [22]

    Adhyaksa G W P, Johlin E, Garnett E C 2017 Nano Lett. 17 5206Google Scholar

    [23]

    Hou F H, Ren X Q, Guo H K, Ning X L, Wang Y L, Li T T, Zhu C J, Zhao Y, Zhang X D 2024 Nano Energy 124 109476Google Scholar

    [24]

    Todorov T K, Bishop D M, Lee Y S 2018 Sol. Energy Mater. Sol. Cells 180 350Google Scholar

    [25]

    Young D L, Abushama J, Noufi R, Xiaonan Li, Keane J, Gessert T A, Ward J S, Contreras M, Symko-Davies M, Coutts T J 2002 Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, May 19–24, 2002 pp608–611

    [26]

    Nishiwaki S, Siebentritt S, Walk P, Lux-Steiner M Ch 2003 Prog. Photovoltaics 11 243Google Scholar

    [27]

    Schmid M, Caballero R, Klenk R, Krč J, Rissom T, Topi M, Lux-Steiner M Ch 2010 EPJ Photovolt. 1 10601

    [28]

    Outlaw-Spruell K, Crunk J, Septina W, Muzzillo C P, Zhu K, Gaillard N 2022 ACS Appl. Mater. Interfaces 14 54607Google Scholar

    [29]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [30]

    Ramanujam J, Singh U P 2017 Energy Environ. Sci. 10 1306Google Scholar

    [31]

    Xiao H, Tahir-Kheli J, Goddard W A 2011 J. Phys. Chem. Lett. 2 212Google Scholar

    [32]

    Ishizuka S 2019 Phys. Status Solidi A 216 1800873Google Scholar

    [33]

    Siebentritt S, Schuler S 2003 J. Phys. Chem. Solids 64 1621Google Scholar

    [34]

    Feurer T, Carron R, Torres Sevilla G, Fu F, Pisoni S, Romanyuk Y E, Buecheler S, Tiwari A N 2019 Adv. Energy Mater. 9 1901428Google Scholar

    [35]

    Gong J B, Gao D Q, Ma Z Y, Yang X K, Zhang J J, Liu X X, Chen C, Tang J, Da B, Li J M, Fang G J, Xiao X D 2022 Solar RRL 6 2200766Google Scholar

    [36]

    Prathapani S, Zhan Y Q 2021 Energy Technol. 9 2100193Google Scholar

    [37]

    Zhang Y, Wang Q, Zhang X B, Peng N, Liu Z Q, Chen B Z, Huang S S, Wang Z Y 2017 Chin. Phys. Lett. 34 028802Google Scholar

    [38]

    Bush K A, Manzoor S, Frohna K, Yu Z S J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [39]

    Hibberd C J, Chassaing E, Liu W, Mitzi D B, Lincot D, Tiwari A N 2010 Prog. Photovoltaics 18 434Google Scholar

    [40]

    Kemell M, Ritala M, Leskelä M 2005 Crit. Rev. Solid State Mater. Sci. 30 1Google Scholar

    [41]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar

    [42]

    甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 物理学报 70 038801Google Scholar

    Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta Phys. Sin. 70 038801Google Scholar

    [43]

    Hossain M K, Samajdar D P, Das R C, Arnab A A, Rahman Md F, Rubel M H K, Islam Md R, Bencherif H, Pandey R, Madan J, Mohammed M K A 2023 Energy Fuels 37 3957Google Scholar

    [44]

    Hossain M K, Toki G F I, Madan J, Pandey R, Bencherif H, Mohammed M K A, Islam Md R, Rubel M H K, Rahman Md F, Bhattarai S, Samajdar D P 2023 New J. Chem. 47 8602Google Scholar

    [45]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [46]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [47]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [48]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [49]

    Pindolia G, Shinde S M, Jha P K 2022 Sol. Energy 236 802Google Scholar

    [50]

    Choudhary K, Bercx M, Jiang J, Pachter R, Lamoen D, Tavazza F 2019 Chem. Mater. 31 5900Google Scholar

    [51]

    Minbashi M, Ghobadi A, Ehsani M H, Dizaji H R, Memarian N 2018 Sol. Energy 176 520Google Scholar

    [52]

    Madan J, Shivani, Pandey R, Sharma R 2020 Sol. Energy 197 212Google Scholar

    [53]

    Gupta G K, Dixit A 2018 Opt. Mater. 82 11Google Scholar

    [54]

    Islam Md T, Jani Md R, Islam A F, Shorowordi K Md, Chowdhury S, Nishat S S, Ahmed S 2021 IEEE Trans. Electron Devices 68 618Google Scholar

    [55]

    Houck D W, Siegler T D, Korgel B A 2019 ACS Appl. Energy Mater. 2 1494Google Scholar

    [56]

    Wang R, Dou B Y, Zheng Y F, Wei S H 2022 Sci. China: Phys. , Mech. Astron. 65 107311Google Scholar

    [57]

    Liu X H, Hu Y 2022 J. Mater. Sci. Mater. Electron. 33 6253Google Scholar

    [58]

    Persson C 2008 Appl. Phys. Lett. 93 072106Google Scholar

    [59]

    Chowdhury M S, Shahahmadi S A, Chelvanathan P, Tiong S K, Amin N, Techato K, Nuthammachot N, Chowdhury T, Suklueng M 2020 Results Phys. 16 102839Google Scholar

    [60]

    Simya O K, Mahaboobbatcha A, Balachander K 2015 Superlattice Microstruct. 82 248Google Scholar

    [61]

    Gupta G K, Dixit A 2020 Int. J. Energy Res. 44 3724Google Scholar

    [62]

    Ahmed S, Jannat F, Khan Md A K, Alim M A 2021 Optik 225 165765Google Scholar

    [63]

    Saad M, Kassis A 2011 Sol. Energy Mater. Sol. Cells 95 1927Google Scholar

    [64]

    Saad M, Kassis A 2003 Sol. Energy Mater. Sol. Cells 77 415Google Scholar

    [65]

    Aida Y, Depredurand V, Larsen J K, Arai H, Tanaka D, Kurihara M, Siebentritt S 2015 Prog. Photovoltaics 23 754Google Scholar

    [66]

    Wang J Q, Wang Z H, Wang W, Wang Y, Hu X L, Liu J X, Gong X Z, Miao W L, Ding L L, Li X B, Tang J G 2022 Nanoscale 14 6709Google Scholar

    [67]

    Abdelaziz S, Zekry A, Shaker A, Abouelatta M 2020 Opt. Mater. 101 109738Google Scholar

    [68]

    Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181 372Google Scholar

    [69]

    Ganose A M, Scanlon D O 2016 J. Mater. Chem. C 4 1467Google Scholar

    [70]

    Bencherif H, Meddour F, Elshorbagy M H, Khalid Hossain M, Cuadrado A, Abdi M A, Bendib T, Kouda S, Alda J 2022 Micro Nanostruct. 171 207403Google Scholar

    [71]

    Alsalme A, Alsaeedi H 2022 Nanomaterials 13 96Google Scholar

    [72]

    Moiz S A, Alzahrani M S, Alahmadi A N M 2022 Polymers 14 3610Google Scholar

    [73]

    Dai C M, Xu P, Huang M L, Cai Z H, Han D, Wu Y N, Chen S Y 2019 APL Mater. 7 081122Google Scholar

    [74]

    Huang D, Persson C, Ju Z P, Dou M F, Yao C M, Guo J 2014 EPL 105 37007Google Scholar

    [75]

    Ju Z P, Lin C Q, Xue Y, Huang D, Persson C 2023 J. Phys. Chem. Solids 183 111655Google Scholar

    [76]

    Green M A 1990 J. Appl. Phys. 67 2944Google Scholar

    [77]

    Zhang S B, Wei S H, Zunger A 2001 Phys. Rev. B 63 075205Google Scholar

    [78]

    Lany S, Zunger A 2008 Phys. Rev. B 78 235104Google Scholar

    [79]

    Huang D, Lin C Q, Xue Y, Chen S Y, Zhao Y J, Persson C 2022 Phys. Chem. Chem. Phys. 24 25258Google Scholar

    [80]

    Van De Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar

    [81]

    Chu W B, Zheng Q J, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453Google Scholar

    [82]

    Wei J C, Jiang L L, Huang M L, Wu Y N, Chen S Y 2021 Adv. Funct. Mater. 31 2104913Google Scholar

    [83]

    Huang M L, Zheng Z N, Dai Z X, Guo X J, Wang S S, Jiang L S, Wei J C, Chen S Y 2022 J. Semicond. 43 042101Google Scholar

    [84]

    Huang M L, Cai Z H, Wang S S, Gong X G, Wei S H, Chen S Y 2021 Small 17 2102429Google Scholar

    [85]

    Ma J, Wei S H, Gessert T A, Chin K K 2011 Phys. Rev. B 83 245207Google Scholar

    [86]

    Wang C L, Zhao Y, Ma T S, An Y D, He R, Zhu J W, Chen C, Ren S Q, Fu F, Zhao D W, Li X F 2022 Nat. Energy 7 744Google Scholar

    [87]

    Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 66 1994Google Scholar

    [88]

    Fan S W, Chen Y, Yang L 2022 J. Phys. Chem. C 126 19446Google Scholar

    [89]

    Choi J W, Shin B, Gorai P, Hoye R L Z, Palgrave R 2022 ACS Energy Lett. 7 1553Google Scholar

    [90]

    Patel P K 2021 Sci. Rep. 11 3082Google Scholar

    [91]

    Deepthi Jayan K, Sebastian V 2021 Sol. Energy 217 40Google Scholar

    [92]

    Hossain M K, Uddin M S, Toki G F I, Mohammed M K A, Pandey R, Madan J, Rahman Md F, Islam Md R, Bhattarai S, Bencherif H, Samajdar D P, Amami M, Dwivedi D K 2023 RSC Adv. 13 23514Google Scholar

    [93]

    Liang H M, Feng J G, Rodríguez-Gallegos C D, Krause M, Wang X, Alvianto E, Guo R J, Liu H H, Kothandaraman R K, Carron R, Tiwari A N, Peters I M, Fu F, Hou Y 2023 Joule 7 2859Google Scholar

    [94]

    Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S 2022 Sol. Energy 236 195Google Scholar

    [95]

    Xu Q J, Zhao Y, Zhang X D 2020 Sol. RRL 4 1900206Google Scholar

    [96]

    Singh V K, Srivastava S, Singh A K, Chauhan M S, Patel S P, Singh R S 2023 Environ. Sci. Pollut. Res. 30 98747Google Scholar

    [97]

    张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801Google Scholar

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 058801Google Scholar

  • [1] Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong. Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations. Acta Physica Sinica, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [2] Zhang Mei-Rong, Zhu Zeng-Wei, Yang Xiao-Qin, Yu Tong-Xu, Yu Xiao-Qi, Lu Di, Li Shun-Feng, Zhou Da-Yong, Yang Hui. Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%. Acta Physica Sinica, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [3] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [5] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [6] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [7] Lu Xin, Xie Meng-Lin, Liu Jing, Jin Wei, Li Chun, Georgios Lefkidis, Wolfgang Hübner. First-principles study of ultrafast spin dynamics in FemB20 (m = 1, 2) clusters. Acta Physica Sinica, 2021, 70(12): 127505. doi: 10.7498/aps.70.20210056
    [8] Yin Yuan, Li Ling, Yin Wan-Jian. Theoretical and computational study on defects of solar cell materials. Acta Physica Sinica, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [9] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [10] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [11] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [12] Luo Ming-Hai, Li Ming-Kai, Zhu Jia-Kun, Huang Zhong-Bing, Yang Hui, He Yun-Bin. First-principles study on thermodynamic properties of CdxZn1-xO alloys. Acta Physica Sinica, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [13] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [14] Gu Mu, Lin Ling, Liu Bo, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. Fist-principle calculation for electronic structure of M’-GdTaO4. Acta Physica Sinica, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [15] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [16] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [17] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [18] Huang Dan, Shao Yuan-Zhi, Chen Di-Hu, Guo Jin, Li Guang-Xu. First-principles calculation on the electronic structure and absorption spectrum of the wurtzite Zn1-xMgxO alloys. Acta Physica Sinica, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [19] Song Qing-Gong, Wang Yan-Feng, Song Qing-Long, Kang Jian-Hai, Chu Yong. First-principle study on the electronic structures of intercalation compound Ag1/4TiSe2. Acta Physica Sinica, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [20] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
Metrics
  • Abstract views:  1820
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2024
  • Accepted Date:  17 March 2024
  • Available Online:  02 April 2024
  • Published Online:  20 May 2024

/

返回文章
返回