Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical origin of transient Kerr peak induced by circularly polarized laser in ferromagnetic films

Chen Da-Xin Chen Zhi-Feng Xu Chu-Dong Lai Tian-Shu

Physical origin of transient Kerr peak induced by circularly polarized laser in ferromagnetic films

Chen Da-Xin, Chen Zhi-Feng, Xu Chu-Dong, Lai Tian-Shu
PDF
Get Citation
  • The magnetization dynamics of in-plane anisotropic FePt and perpendicularly anisotropic GdFeCo films induced by circularly polarized laser excitation is investigated using femtosecond time-resolved pump-probe Kerr spectroscopy. It is found that a transient Kerr peak occurs near zero-time delay, respectively for each sample. The origin of the peaks is analyzed. It is pointed out that the transient Kerr peaks are not related to ferromagnetism and may originate from paramagnetic magnetization of free electrons in the samples, while the magnetic field that magnetizes the free electrons comes from inverse Faraday effect of the circularly polarized pump laser. The calculation results based on the paramagnetic magnetization model support such a viewpoint. Based on our points, the duration of magnetic pulses induced by inverse Faraday effect should be the same as that of the pump laser pulses.
    • Funds:
    [1]

    Van der Ziel J P, Pershan P S, Malmstrom L D 1965 Phys. Rev. Lett. 15 190

    [2]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing Th 2007 Phys. Rev. Lett. 99 047601

    [3]

    Hohlfeld J, Stanciu C D, Rebei A 2009 Appl. Phys. Lett. 94 152504

    [4]

    Vahaplar K, Kalashnikova A M, Kimel A V, Hinzke D, Nowak U, Chantrell R, Tsukamoto A, Itoh A, Kirilyuk A, Rasing Th 2009 Phys. Rev. Lett. 103 117201

    [5]

    Wilks R, Hicken R J, Ali M, Hickey B J, Buchanan J D R, Pym A T G, Tanner B K 2004 J. Appl. Phys. 95 7441

    [6]

    Dalla Longa F, Kohlhepp J T, de Jonge W J M, Koopmans B 2007 Phys. Rev. B 75 224431

    [7]

    Zhang G P, George T F 2008 Phys. Rev. B 78 052407

    [8]

    Kruglyak V V, Hicken R J, Ali M, Hickey B J, Pym A T G, Tanner B K 2005 J. Opt. A: Pure Appl. Opt. 7 S235

    [9]

    Wilks R, Hicken R J 2004 J. Phys: Condens. Matter 16 4607

    [10]

    Koopmans B, Haverkort J E M, de Jonge W J M, Karczewski G 1999 J. Appl. Phys. 85 6763

    [11]

    Wang S H, Zha C L, Gao J, Ma B, Zhang Z Z, Jin Q Y 2007 Acta Phys. Sin. 56 1719 (in Chinese)[王淑华、査超麟、高 静、马 斌、张宗芝、金庆原 2007 物理学报 56 1719]

    [12]

    Gao R X, Xu Z, Chen D X, Xu C D, Chen Z F, Liu X D, Zhou S M, Lai T S 2009 Acta Phys. Sin. 58 580(in Chinese)[高瑞鑫、徐 振、陈达鑫、徐初东、陈志峰、刘晓东、周仕明、赖天树 2009 物理学报 58 580]

    [13]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655

    [14]

    Pauli W 1927 Z. f. Physik 41 81

    [15]

    Landau L 1930 Z. f. Physik 64 629

  • [1]

    Van der Ziel J P, Pershan P S, Malmstrom L D 1965 Phys. Rev. Lett. 15 190

    [2]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing Th 2007 Phys. Rev. Lett. 99 047601

    [3]

    Hohlfeld J, Stanciu C D, Rebei A 2009 Appl. Phys. Lett. 94 152504

    [4]

    Vahaplar K, Kalashnikova A M, Kimel A V, Hinzke D, Nowak U, Chantrell R, Tsukamoto A, Itoh A, Kirilyuk A, Rasing Th 2009 Phys. Rev. Lett. 103 117201

    [5]

    Wilks R, Hicken R J, Ali M, Hickey B J, Buchanan J D R, Pym A T G, Tanner B K 2004 J. Appl. Phys. 95 7441

    [6]

    Dalla Longa F, Kohlhepp J T, de Jonge W J M, Koopmans B 2007 Phys. Rev. B 75 224431

    [7]

    Zhang G P, George T F 2008 Phys. Rev. B 78 052407

    [8]

    Kruglyak V V, Hicken R J, Ali M, Hickey B J, Pym A T G, Tanner B K 2005 J. Opt. A: Pure Appl. Opt. 7 S235

    [9]

    Wilks R, Hicken R J 2004 J. Phys: Condens. Matter 16 4607

    [10]

    Koopmans B, Haverkort J E M, de Jonge W J M, Karczewski G 1999 J. Appl. Phys. 85 6763

    [11]

    Wang S H, Zha C L, Gao J, Ma B, Zhang Z Z, Jin Q Y 2007 Acta Phys. Sin. 56 1719 (in Chinese)[王淑华、査超麟、高 静、马 斌、张宗芝、金庆原 2007 物理学报 56 1719]

    [12]

    Gao R X, Xu Z, Chen D X, Xu C D, Chen Z F, Liu X D, Zhou S M, Lai T S 2009 Acta Phys. Sin. 58 580(in Chinese)[高瑞鑫、徐 振、陈达鑫、徐初东、陈志峰、刘晓东、周仕明、赖天树 2009 物理学报 58 580]

    [13]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655

    [14]

    Pauli W 1927 Z. f. Physik 41 81

    [15]

    Landau L 1930 Z. f. Physik 64 629

  • [1] Cai Wei, Xu You-An, Yang Zhi-Yong, Miao Li-Yao, Zhao Zhong-Hao. Discussion on Verdet constant solution model of paramagnetic magneto-optical materials. Acta Physica Sinica, 2019, 68(20): 207802. doi: 10.7498/aps.68.20190845
    [2] Shi Er-Wei, Song Li-Xin, Chen Zhi-Zhan, Liu Xue-Chao, Zhang Hua-Wei. Magnetic and optical properties of Co doped ZnO powders synthesized by solid-state reaction. Acta Physica Sinica, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [3] Wang Feng, Wang Yue-Yan, Huang Wei-Wei, Zhang Xiao-Ting, Li Shan-Yu. Magnetic properties of CoxZn1-xO by solid-state reaction. Acta Physica Sinica, 2012, 61(15): 157503. doi: 10.7498/aps.61.157503
    [4] Ran Mao-Yi, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Effect of high power microwave injection on tropospheric freon. Acta Physica Sinica, 2017, 66(4): 045101. doi: 10.7498/aps.66.045101
    [5] ZHU JIA-QING. ENERGY CONVERSION OF FREE ELECTRON LASER. Acta Physica Sinica, 1996, 45(1): 52-57. doi: 10.7498/aps.45.52
    [6] WEN SHUANG-CHUN. HARMONICS IN NOVEL WIGGLER FREE-ELECTRON LASER. Acta Physica Sinica, 1997, 46(2): 272-278. doi: 10.7498/aps.46.272
    [7] LI ZHI-KUAN. QUASI-DIRAC EQUATION IN FREE-ELECTRON LASER. Acta Physica Sinica, 1997, 46(7): 1349-1353. doi: 10.7498/aps.46.1349
    [8] LI ZHI-KUAN. DAMPED MOTION OF AN ELECTRON IN FREE-ELECTRON LASER. Acta Physica Sinica, 2000, 49(5): 893-897. doi: 10.7498/aps.49.893
    [9] YIN YUAN-ZHAO. THEORETICAL ANALYSIS OF FREE ELECTRON LASER AMPLIFIER. Acta Physica Sinica, 1983, 32(11): 1407-1415. doi: 10.7498/aps.32.1407
    [10] FANG HONG-LIE, FU SHU-FEN, G. T. MOORE. STATIONARY PULSE SOLUTIONS FOR A FREE ELECTRON LASER. Acta Physica Sinica, 1984, 33(7): 935-942. doi: 10.7498/aps.33.935
    [11] G. T. MOORE, M. O. SCULLY, FANG HONG-LIE. THE EFFECT OF AN INJECTION SIGNAL ON THE FREE-ELECTRON-LASER. Acta Physica Sinica, 1985, 34(1): 17-23. doi: 10.7498/aps.34.17
  • Citation:
Metrics
  • Abstract views:  2598
  • PDF Downloads:  606
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2010
  • Accepted Date:  04 February 2010
  • Published Online:  15 October 2010

Physical origin of transient Kerr peak induced by circularly polarized laser in ferromagnetic films

  • 1. State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China

Abstract: The magnetization dynamics of in-plane anisotropic FePt and perpendicularly anisotropic GdFeCo films induced by circularly polarized laser excitation is investigated using femtosecond time-resolved pump-probe Kerr spectroscopy. It is found that a transient Kerr peak occurs near zero-time delay, respectively for each sample. The origin of the peaks is analyzed. It is pointed out that the transient Kerr peaks are not related to ferromagnetism and may originate from paramagnetic magnetization of free electrons in the samples, while the magnetic field that magnetizes the free electrons comes from inverse Faraday effect of the circularly polarized pump laser. The calculation results based on the paramagnetic magnetization model support such a viewpoint. Based on our points, the duration of magnetic pulses induced by inverse Faraday effect should be the same as that of the pump laser pulses.

Reference (15)

Catalog

    /

    返回文章
    返回