Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of high brightness laser synchrotron source based on the technique of oval supercavity

Meng Xian-Zhu Wang Ming-Hong Ren Zhong-Min

Analysis of high brightness laser synchrotron source based on the technique of oval supercavity

Meng Xian-Zhu, Wang Ming-Hong, Ren Zhong-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The novel technical scheme of oval supercavity is presented. The light intensity in focus of oval supercavity are computed. By using the Compton scattering theory, the high brightness laser synchrotron source based on the technique of oval supercavity, including photon yield and radiant power, are calculated and discussed. The results show that when the reflectivity of oval supercavity mirror is equal to 99.99%, the light intensity in focus of oval supercavity is about 5000 times higher than that of the incident intensity (I0). the γ-ray with energy up to 10975 MeV are expected to be produced by Compton vertical scattering of laser photons on the 3.5 GeV electron bunches, the photon yield and the radiant power of Compton vertical scattering between electron bunches and laser beam in focus of oval supercavity is about 25×107 times higher than that of Compton vertical scattering between electron bunches and single laser beam.
    • Funds:
    [1]

    [1]Guo W, Xu W, Chen J G, Ma Y G, Cai X Z, Wang H W, Xu Y, Wang C B, Lu G C, Tian W D, Yuan R Y, Xu J Q, Wei Z Y, Yan Z, Shen W Q 2007 Nuclear Instruments and Methods in Physics Research A. 578 457

    [2]

    [2]Ding Y T, Zhao K, Quan S W, Zhang B C, Gu A J, Chen J E 2004 High Power Lasers and Particle Beams. 16 667 (in Chinese)[丁原涛、赵夔、全胜文、张保澄、谷安佳、陈佳洱 2004 强激光与粒子束16 667]

    [3]

    [3]Schoenlein R W, Leemans W P, Chin A H, Volfbeyn P, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Science 274 236

    [4]

    [4]Sprangle P, Ting A, Esarey E, Fisher A 1992 J. Appl Phys. 72 5032

    [5]

    [5]Ride S K, Esarey E, Baine M 1995 Phys. Rev. E 52 5425

    [6]

    [6]Hartemann F V, Baldis H A, Kerman A K, Foll A L, Luhmann N C, Jr., Rupp B 2001 Phys. Rev. E 64 016501

    [7]

    [7]Fujiwafl M 2003 Progress in Particle and Nuclear Physics 50 487

    [8]

    [8]Pan Q Y, Xu W, Chen J Y, Guo W, Fan G T, Yan Z, Xu Y, Wang H W, Wang C B, Lu G C, Xu J Q, Xu B J, Ma Y G, Cai X Z, Shen W Q 2008 Nuclear Physics Review. 25 129(in Chinese)[潘强岩、徐望、陈金根、郭威、范功涛、阎喆、徐毅、王宏伟、王呈斌、陆广成、徐加强、徐本基、马余刚、蔡翔舟、沈文庆 2008原子核物理评论 25 129]

    [9]

    [9]Ge Y C 2009 Acta Phys. Sin. 58 3094(in Chinese)[葛愉成 2009 物理学报58 3094]

    [10]

    ]Zheng J, Sheng Z M, Zhang J, Wei Z Y, Yu W 2005 Acta Phys. Sin. 54 1018(in Chinese)[郑君、盛政明、张杰、魏志义、余玮 2005 物理学报54 1018]

    [11]

    ]Meng X Z, Ren Z M, Wang M H 2009 Chinese Journal of Lasers, 36 2300 (in Chinese)[孟现柱、任忠民、王明红 2009 中国激光 36 2300]

    [12]

    ]Fujita M, Moon A, Yasuda E, Asakuma T, Minamiguchi T, Asakawa M, Chen J, Imasaki K, Yamanaka C, Roy P K, Mima K, Nakai S, Nakao N, Ishida T, Watanabe T, Ohigashi N, Tsunawaki Y, Yamazaki Y, Sakuma M 1996 Nucl. Instr. and Meth A 375 ABS14

    [13]

    ]Zhao Y 2001 The High-Energy Physics Institute, Chinese Academy of Sciences, Beijing 10(in Chinese)[赵宇2001中国科学院高能物理研究所,北京10]

    [14]

    ]Meng X Z, Ren Z M 2006 College Physics 25 14(in Chinese)[孟现柱、任忠民 2006 大学物理 25 14]

    [15]

    ]Meng X Z 2004 Acta Sinica Quantum Optica 10 11(in Chinese)[孟现柱. 2004量子光学学报 10 11]

    [16]

    ]Meng X Z 2003 Acta Sinica Quantum Optica 9 102(in Chinese)[孟现柱2003量子光学学报9 102]

    [17]

    ]Zheng J, Sheng Z M, Zhang J 2005 Acta Phys. Sin. 54 2638[郑君、盛政明、张杰 2005 物理学报54 2638]

  • [1]

    [1]Guo W, Xu W, Chen J G, Ma Y G, Cai X Z, Wang H W, Xu Y, Wang C B, Lu G C, Tian W D, Yuan R Y, Xu J Q, Wei Z Y, Yan Z, Shen W Q 2007 Nuclear Instruments and Methods in Physics Research A. 578 457

    [2]

    [2]Ding Y T, Zhao K, Quan S W, Zhang B C, Gu A J, Chen J E 2004 High Power Lasers and Particle Beams. 16 667 (in Chinese)[丁原涛、赵夔、全胜文、张保澄、谷安佳、陈佳洱 2004 强激光与粒子束16 667]

    [3]

    [3]Schoenlein R W, Leemans W P, Chin A H, Volfbeyn P, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Science 274 236

    [4]

    [4]Sprangle P, Ting A, Esarey E, Fisher A 1992 J. Appl Phys. 72 5032

    [5]

    [5]Ride S K, Esarey E, Baine M 1995 Phys. Rev. E 52 5425

    [6]

    [6]Hartemann F V, Baldis H A, Kerman A K, Foll A L, Luhmann N C, Jr., Rupp B 2001 Phys. Rev. E 64 016501

    [7]

    [7]Fujiwafl M 2003 Progress in Particle and Nuclear Physics 50 487

    [8]

    [8]Pan Q Y, Xu W, Chen J Y, Guo W, Fan G T, Yan Z, Xu Y, Wang H W, Wang C B, Lu G C, Xu J Q, Xu B J, Ma Y G, Cai X Z, Shen W Q 2008 Nuclear Physics Review. 25 129(in Chinese)[潘强岩、徐望、陈金根、郭威、范功涛、阎喆、徐毅、王宏伟、王呈斌、陆广成、徐加强、徐本基、马余刚、蔡翔舟、沈文庆 2008原子核物理评论 25 129]

    [9]

    [9]Ge Y C 2009 Acta Phys. Sin. 58 3094(in Chinese)[葛愉成 2009 物理学报58 3094]

    [10]

    ]Zheng J, Sheng Z M, Zhang J, Wei Z Y, Yu W 2005 Acta Phys. Sin. 54 1018(in Chinese)[郑君、盛政明、张杰、魏志义、余玮 2005 物理学报54 1018]

    [11]

    ]Meng X Z, Ren Z M, Wang M H 2009 Chinese Journal of Lasers, 36 2300 (in Chinese)[孟现柱、任忠民、王明红 2009 中国激光 36 2300]

    [12]

    ]Fujita M, Moon A, Yasuda E, Asakuma T, Minamiguchi T, Asakawa M, Chen J, Imasaki K, Yamanaka C, Roy P K, Mima K, Nakai S, Nakao N, Ishida T, Watanabe T, Ohigashi N, Tsunawaki Y, Yamazaki Y, Sakuma M 1996 Nucl. Instr. and Meth A 375 ABS14

    [13]

    ]Zhao Y 2001 The High-Energy Physics Institute, Chinese Academy of Sciences, Beijing 10(in Chinese)[赵宇2001中国科学院高能物理研究所,北京10]

    [14]

    ]Meng X Z, Ren Z M 2006 College Physics 25 14(in Chinese)[孟现柱、任忠民 2006 大学物理 25 14]

    [15]

    ]Meng X Z 2004 Acta Sinica Quantum Optica 10 11(in Chinese)[孟现柱. 2004量子光学学报 10 11]

    [16]

    ]Meng X Z 2003 Acta Sinica Quantum Optica 9 102(in Chinese)[孟现柱2003量子光学学报9 102]

    [17]

    ]Zheng J, Sheng Z M, Zhang J 2005 Acta Phys. Sin. 54 2638[郑君、盛政明、张杰 2005 物理学报54 2638]

  • [1] Ge Yu-Cheng. Physical properties of laser-electron Compton scattering. Acta Physica Sinica, 2009, 58(5): 3094-3103. doi: 10.7498/aps.58.3094
    [2] Xu Qiu-Mei, Yang Zhi-Hu, Guo Yi-Pan, Liu Hui-Ping, Chen Yan-Hong, Zhao Hong-Yun. Visible light emission from surface of nickel bombarded by slow Xeq+ (4 q 20) ion. Acta Physica Sinica, 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [3] Ma Yong-Peng, Zhao Xiao-Li, Liu Ya-Wei, Xu Long-Quan, Kang Xu, Yang Ke, Yan Shuai, Zhu Lin-Fan. Investigation of Compton profiles of NO and C2H2. Acta Physica Sinica, 2015, 64(15): 153302. doi: 10.7498/aps.64.153302
    [4] Meng Qing-Miao, Jiang Ji-Jian, Wang Shuai. Thermal particles model and radiation power of static spherically symmetric black holes. Acta Physica Sinica, 2009, 58(11): 7486-7490. doi: 10.7498/aps.58.7486
    [5] Hong Qing-Quan, Zhong Wei-Bo, Yu Yan-Zhong, Cai Zhi-Shan, Chen Mu-Sheng, Lin Shun-Da. Radiation power of electric diople in magnetic anisotropic medium. Acta Physica Sinica, 2012, 61(16): 160302. doi: 10.7498/aps.61.160302
    [6] Hong Qing-Quan, Yu Yan-Zhong, Cai Zhi-Shan, Chen Mu-Sheng, Lin Shun-Da. Radiation powers of magnetic dipole and electric quadrupole in magnetic anisotropic medium. Acta Physica Sinica, 2010, 59(8): 5235-5240. doi: 10.7498/aps.59.5235
    [7] Jia Bo-Lun, Deng Ling-Ling, Chen Ruo-Xi, Zhang Ya-Nan, Fang Xu-Min. Numerical research of emission properties of localized surface plasmon resonance enhanced light-emitting diodes based on Ag@SiO2 nanoparticles. Acta Physica Sinica, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [8] He Xi-Ping. Calculation method of the radiation impedance of stepped circular plate. Acta Physica Sinica, 2010, 59(5): 3290-3293. doi: 10.7498/aps.59.3290
    [9] HSU YUNG-CHANG, CHENG LIN-SHENG. COINCIDENCES CAUSED BY COMPTON BACKSCATTERING OF GAMMA-RAYS. Acta Physica Sinica, 1958, 14(2): 114-120. doi: 10.7498/aps.14.114
    [10] . Acta Physica Sinica, 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
    [11] Gu Yu-Fei, Yan Bin, Li Lei, Wei Feng, Han Yu, Chen Jian. Image reconstruction based on total variation minimization and alternating direction method for Compton scatter tomography. Acta Physica Sinica, 2014, 63(1): 018701. doi: 10.7498/aps.63.018701
    [12] Song Zhang-Yong, Yu De-Yang, Cai Xiao-Hong. Analysis and simultion for Compton camera′s imaging resolution. Acta Physica Sinica, 2019, 68(11): 118701. doi: 10.7498/aps.68.20182245
    [13] GAN DE-CHANG. . Acta Physica Sinica, 1995, 44(1): 137-141. doi: 10.7498/aps.44.137
    [14] V.A. Khodyrev, V.S. Kulikauskas, Yang Chao-Wen. Measurement of the backscattering yields for protons of H+2, H+3 cluster ions in channeling condition. Acta Physica Sinica, 2003, 52(8): 1895-1900. doi: 10.7498/aps.52.1895
    [15] Li Fu-Li, Sun Yu-Hang. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [16] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [17] Xu Rong- Kun, Li Zheng -Hong, Guo Cun, Yang Jian -Lun, Li Lin-Bo, Song Feng -Jun, Ning Jia-Min, Xia Guang -Xin, Xu Ze-Ping. Onedimensional imaging system for the diagnosis of the Zpinch xray radiation. Acta Physica Sinica, 2003, 52(5): 1203-1206. doi: 10.7498/aps.52.1203
    [18] Meng Qing-Miao, Jiang Ji-Jian, Li Chuan-An. Instantaneous radiation energy flux and instantaneous radiation power of dynamic spherically symmetric black holes. Acta Physica Sinica, 2010, 59(3): 1481-1486. doi: 10.7498/aps.59.1481
    [19] Wen Xian-Lun, Jiao Chun-Ye, He Ying-Ling, Zhang Shuang-Gen, Huang Wen-Zhong, Gu Yu-Qiu, Wang Guang-Chang, Wang Xiang-Xian, Li Yu-Tong, Xu Miao-Hua, Yu Quan-Zhi, Wang Shou-Jun, Zhang Jie, Yuan Xiao-Hui, Zhao Wei. Observation of the rear-side coherent transition radiation generated by hot electrons. Acta Physica Sinica, 2006, 55(10): 5362-5367. doi: 10.7498/aps.55.5362
    [20] Sun Yu-Hang, Xi Xiao-Qiang. Photon emission of a two-level atom passing through double single-mode cavity fields. Acta Physica Sinica, 2008, 57(9): 5584-5588. doi: 10.7498/aps.57.5584
  • Citation:
Metrics
  • Abstract views:  3681
  • PDF Downloads:  508
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2009
  • Accepted Date:  03 June 2009
  • Published Online:  15 March 2010

Analysis of high brightness laser synchrotron source based on the technique of oval supercavity

  • 1. 聊城大学物理科学与信息工程学院,聊城 252059

Abstract: The novel technical scheme of oval supercavity is presented. The light intensity in focus of oval supercavity are computed. By using the Compton scattering theory, the high brightness laser synchrotron source based on the technique of oval supercavity, including photon yield and radiant power, are calculated and discussed. The results show that when the reflectivity of oval supercavity mirror is equal to 99.99%, the light intensity in focus of oval supercavity is about 5000 times higher than that of the incident intensity (I0). the γ-ray with energy up to 10975 MeV are expected to be produced by Compton vertical scattering of laser photons on the 3.5 GeV electron bunches, the photon yield and the radiant power of Compton vertical scattering between electron bunches and laser beam in focus of oval supercavity is about 25×107 times higher than that of Compton vertical scattering between electron bunches and single laser beam.

Reference (17)

Catalog

    /

    返回文章
    返回