Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrochemical property of Si-O-C composite anode materials prepared by pyrolyzing polysiloxane containing phenyl under different atmospheres

Liu Xiang Xie Kai Zheng Chun-Man Wang Jun

Electrochemical property of Si-O-C composite anode materials prepared by pyrolyzing polysiloxane containing phenyl under different atmospheres

Liu Xiang, Xie Kai, Zheng Chun-Man, Wang Jun
PDF
Get Citation
  • Silicon Oxycarbide (Si-O-C) composite anode materials are prepared by pyrolysis of polysiloxane containing phenyl under argon and hydrogen atmospheres, separately. They are characterized by element analysis, wide-angle powder X-ray diffraction, Raman spectroscopy for comparison with each other. It is found that the silicon oxycarbide composite anode pyrolyzed under a hydrogen atmosphere demonstrates lower irreversible capacity and larger reversible capacity which increases with temperature rising. The one pyrolyzed at 1000 ℃ shows a reversible capacity of 622 mAh/g, and first coulombic efficiency of 59%.The magnitude of the irreversible capacity is correlated with the content of oxygen, and the reversible capacity is related to the content and structure of free carbon, and also the structure of Si-O-C. It is believed that Si-O-C composite materials pyrolyzed under a hydrogen atmosphere could be promising anode materials for lithium ion batteries.
    [1]

    Hou Z F, Liu H Y, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 952(in Chinese)[侯柱锋、刘慧英、朱梓忠、黄美纯、杨 勇 2003 物理学报 52 952]

    [2]

    Hou X H, Hu S J, Li W S, Zhao L Z, Yu H W, Tan C L 2008 Acta Phys. Sin. 57 2375(in Chinese)[侯贤华、胡社军、李伟善、赵灵智、余洪文、谭春林 2008 物理学报 57 2375]

    [3]
    [4]
    [5]

    Lee H Y, Lee S M 2004 Electrochem. Commun. 6 465

    [6]

    Zhang X W, Patil P K, Wang C, Appleby A J, Little F 2004 J. Power Sources 125 206

    [7]
    [8]

    Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y 2007 Nat.Nanotechnol. 3 31

    [9]
    [10]

    Kasavajjula U, Wang C, Appleby A J 2007 J. Power Sources 163 1003

    [11]
    [12]
    [13]

    Maranchi J P, Hepp A F, Kumta P N 2003 Electrochem. Solid-State Lett. 6 A198

    [14]

    Lee K L, Jung J Y, Lee S W, Moon H S, Park J W 2004 J. Power Sources 129 270

    [15]
    [16]
    [17]

    Ohara S, Suzuki J, Sekine K, Takamura T 2004 J. Power Sources 136 303

    [18]
    [19]

    Uehara M, Suzuki J, Tamura K, Sekine K, Takamura T 2005 J. Power Sources 146 441

    [20]

    Chen L, Wang K, Xie X, Xie J 2006 Electrochem. Solid-State Lett. 9 A512

    [21]
    [22]

    Chen L B, Yu H C, Xu C M, Wang T H 2009 Acta Phys. Sin. 58 5029 (in Chinese)[陈立宝、虞红春、许春梅、王太宏 2009 物理学报 58 5029]

    [23]
    [24]

    Dimov N, Kugino S, Yoshio M 2003 Electrochim. Acta 48 1579

    [25]
    [26]
    [27]

    Wen Z S, Yang J, Wang B F, Wang K, Liu Y 2003 Electrochem. Commun. 5 165

    [28]

    Wang G X, Ahn J H, Yao J, Bewlay S, Liu H K 2004 Electrochem. Commun. 6 689

    [29]
    [30]
    [31]

    Wang G X, Yao J, Liu H K 2004 Electrochem. Solid-State Lett. 7 A250

    [32]

    Datta M K, Kumta P N 2006 J. Power Sources 158 557

    [33]
    [34]

    Xing W, Wilson A M, Zank G, Dahn J R 1997 Solid State Ionics 93 239

    [35]
    [36]
    [37]

    Wilson A M, Xing W, Zank G, Yates B, Dahn J R 1997 Solid State Ionics 100 259

    [38]
    [39]

    Wilson A M, Reimers J N, Fuller E W, Dahn J R 1994 Solid State Ionics 74 249

    [40]

    Wilson A M, Zank G, Eguchi K, Xing W, Dahn J R 1997 J. Power Sources 68 195

    [41]
    [42]
    [43]

    Ning L, Wu Y, Wang L, Fang S, Holze R 2005 J. Solid State Electrochem. 9 520

    [44]

    Shen J, Ahn D, Raj R 2010 J. Power Sources 196 2875

    [45]
    [46]

    Ahn D, Raj R 2011 J. Power Sources 196 2179

    [47]
    [48]
    [49]

    Ahn D, Raj R 2010 J. Power Sources 195 3900

    [50]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2009 Chem. Lett. 38 86

    [51]
    [52]

    Konno H, Morishita T, Wan C, Kasashima T, Habazaki H, Inagaki M 2007 Carbon 45 477

    [53]
    [54]
    [55]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2010 ACS Appl. Mater. Interfaces 2 998

    [56]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [57]
    [58]

    Soraru G D, DAndrea G, Campostrini R, Babonneau F, Mariotto G 1995 J. Am. Ceram. Soc. 78 379

    [59]
    [60]
    [61]

    Wilson A M 1994 Ph. D. Dissertation (Ottawa:Simon Fraser University)

    [62]

    Wang S, Matsumura Y, Maeda T 1995 Synth. Met. 71 1759

    [63]
    [64]

    Buiel E, George A E, Dahn J R 1998 J. Electrochem. Soc. 145 2252

    [65]
  • [1]

    Hou Z F, Liu H Y, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 952(in Chinese)[侯柱锋、刘慧英、朱梓忠、黄美纯、杨 勇 2003 物理学报 52 952]

    [2]

    Hou X H, Hu S J, Li W S, Zhao L Z, Yu H W, Tan C L 2008 Acta Phys. Sin. 57 2375(in Chinese)[侯贤华、胡社军、李伟善、赵灵智、余洪文、谭春林 2008 物理学报 57 2375]

    [3]
    [4]
    [5]

    Lee H Y, Lee S M 2004 Electrochem. Commun. 6 465

    [6]

    Zhang X W, Patil P K, Wang C, Appleby A J, Little F 2004 J. Power Sources 125 206

    [7]
    [8]

    Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y 2007 Nat.Nanotechnol. 3 31

    [9]
    [10]

    Kasavajjula U, Wang C, Appleby A J 2007 J. Power Sources 163 1003

    [11]
    [12]
    [13]

    Maranchi J P, Hepp A F, Kumta P N 2003 Electrochem. Solid-State Lett. 6 A198

    [14]

    Lee K L, Jung J Y, Lee S W, Moon H S, Park J W 2004 J. Power Sources 129 270

    [15]
    [16]
    [17]

    Ohara S, Suzuki J, Sekine K, Takamura T 2004 J. Power Sources 136 303

    [18]
    [19]

    Uehara M, Suzuki J, Tamura K, Sekine K, Takamura T 2005 J. Power Sources 146 441

    [20]

    Chen L, Wang K, Xie X, Xie J 2006 Electrochem. Solid-State Lett. 9 A512

    [21]
    [22]

    Chen L B, Yu H C, Xu C M, Wang T H 2009 Acta Phys. Sin. 58 5029 (in Chinese)[陈立宝、虞红春、许春梅、王太宏 2009 物理学报 58 5029]

    [23]
    [24]

    Dimov N, Kugino S, Yoshio M 2003 Electrochim. Acta 48 1579

    [25]
    [26]
    [27]

    Wen Z S, Yang J, Wang B F, Wang K, Liu Y 2003 Electrochem. Commun. 5 165

    [28]

    Wang G X, Ahn J H, Yao J, Bewlay S, Liu H K 2004 Electrochem. Commun. 6 689

    [29]
    [30]
    [31]

    Wang G X, Yao J, Liu H K 2004 Electrochem. Solid-State Lett. 7 A250

    [32]

    Datta M K, Kumta P N 2006 J. Power Sources 158 557

    [33]
    [34]

    Xing W, Wilson A M, Zank G, Dahn J R 1997 Solid State Ionics 93 239

    [35]
    [36]
    [37]

    Wilson A M, Xing W, Zank G, Yates B, Dahn J R 1997 Solid State Ionics 100 259

    [38]
    [39]

    Wilson A M, Reimers J N, Fuller E W, Dahn J R 1994 Solid State Ionics 74 249

    [40]

    Wilson A M, Zank G, Eguchi K, Xing W, Dahn J R 1997 J. Power Sources 68 195

    [41]
    [42]
    [43]

    Ning L, Wu Y, Wang L, Fang S, Holze R 2005 J. Solid State Electrochem. 9 520

    [44]

    Shen J, Ahn D, Raj R 2010 J. Power Sources 196 2875

    [45]
    [46]

    Ahn D, Raj R 2011 J. Power Sources 196 2179

    [47]
    [48]
    [49]

    Ahn D, Raj R 2010 J. Power Sources 195 3900

    [50]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2009 Chem. Lett. 38 86

    [51]
    [52]

    Konno H, Morishita T, Wan C, Kasashima T, Habazaki H, Inagaki M 2007 Carbon 45 477

    [53]
    [54]
    [55]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2010 ACS Appl. Mater. Interfaces 2 998

    [56]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [57]
    [58]

    Soraru G D, DAndrea G, Campostrini R, Babonneau F, Mariotto G 1995 J. Am. Ceram. Soc. 78 379

    [59]
    [60]
    [61]

    Wilson A M 1994 Ph. D. Dissertation (Ottawa:Simon Fraser University)

    [62]

    Wang S, Matsumura Y, Maeda T 1995 Synth. Met. 71 1759

    [63]
    [64]

    Buiel E, George A E, Dahn J R 1998 J. Electrochem. Soc. 145 2252

    [65]
  • [1] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [2] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [3] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
    [4] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [5] Yang Jin, Chen Jun, Wang Fu-Di, Li Ying-Ying, Lü Bo, Xiang Dong, Yin Xiang-Hui, Zhang Hong-Ming, Fu Jia, Liu Hai-Qing, Zang Qing, Chu Yu-Qi, Liu Jian-Wen, Wang Xun-Yu, Bin Bin, He Liang, Wan Shun-Kuan, Gong Xue-Yu, Ye Min-You. Experimental investigation of lower hybrid current drive induced plasma rotation on the experimental advanced superconducting tokamak. Acta Physica Sinica, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [6] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [7] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [8] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
  • Citation:
Metrics
  • Abstract views:  4110
  • PDF Downloads:  582
  • Cited By: 0
Publishing process
  • Received Date:  07 December 2010
  • Accepted Date:  13 February 2011
  • Published Online:  15 November 2011

Electrochemical property of Si-O-C composite anode materials prepared by pyrolyzing polysiloxane containing phenyl under different atmospheres

  • 1. Department of Material Science and Applied Chemistry, National University of Defence Technology, Changsha 410073, China;
  • 2. Key Laboratory of New Ceramic Fibers and Composites, National University of Defence Technology, Changsha 410073, China

Abstract: Silicon Oxycarbide (Si-O-C) composite anode materials are prepared by pyrolysis of polysiloxane containing phenyl under argon and hydrogen atmospheres, separately. They are characterized by element analysis, wide-angle powder X-ray diffraction, Raman spectroscopy for comparison with each other. It is found that the silicon oxycarbide composite anode pyrolyzed under a hydrogen atmosphere demonstrates lower irreversible capacity and larger reversible capacity which increases with temperature rising. The one pyrolyzed at 1000 ℃ shows a reversible capacity of 622 mAh/g, and first coulombic efficiency of 59%.The magnitude of the irreversible capacity is correlated with the content of oxygen, and the reversible capacity is related to the content and structure of free carbon, and also the structure of Si-O-C. It is believed that Si-O-C composite materials pyrolyzed under a hydrogen atmosphere could be promising anode materials for lithium ion batteries.

Reference (65)

Catalog

    /

    返回文章
    返回