Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental and theoretical investigations of the effect of “Brazil Nut” segregation in vibrating granular matters

Peng Ya-Jing Zhang Zhuo Wang Yong Liu Xiao-Song

Experimental and theoretical investigations of the effect of “Brazil Nut” segregation in vibrating granular matters

Peng Ya-Jing, Zhang Zhuo, Wang Yong, Liu Xiao-Song
PDF
Get Citation
  • Size segregation is one of important properties of vibrating granular matters. It is significant to understand and study the segregation mechanisms and parameter range of controlling factors of mixed granular matters for the development of industry, agriculture and pharmaceutical. In this paper, we investigate the influence factors and physical mechanisms of "Brazil Nut" segregation experimentally and theoretically. The influences of vibrating acceleration, sizes and densities of large and small granules on the segregation time are analyzed. The hydro-model is used to evaluate segregation time and explain the experimental results qualitatively. Results show that the vibration acceleration is a main controlling factor for "Brazil Nut" segregation in the case of fixed frequency. There is a critical acceleration. When the acceleration is larger then its critical value the main physical mechanism changes from convection to filling voids, and the effect of acceleration on segregation decreases, while the effect of size of large granule on it increases. Furthermore, "Brazil Nut" segregation still arises when the density ratio is equal to 1. The increase of the size or density of small granular may enhance "Brazil Nut" segregation.
    [1]

    Sun Q C, Jin F, Wang G Q, Zhang G H 2010 Acta Phys. Sin. 59 0030 (in Chinese) [孙其诚, 金峰, 王光谦, 张国华 2010 物理学报 59 0030]

    [2]

    HuY, Hu L 2009 Journal of Shandong University 44 25 (in Chinese) [胡云, 胡林 2009 山东大学学报 44 25]

    [3]

    Rong L W, Zhan J M 2010 Acta Phys. Sin. 59 5572 (in Chinese) [容亮湾, 詹杰民 2010 物理学报 59 5572]

    [4]

    Hong D C, Quinn P V, Stefan L 2001 Phys. Rev. Lett. 86 3423

    [5]

    Zhao, Y Z, Jiang M Q, Zheng J Y 2009 Acta Phys. Sin. 58 1812 (in Chinese) [赵永志, 姜茂强, 郑津洋 2009 物理学报 58 1812]

    [6]

    Metzger M J, Remy B, Glasser B J 2011 Powder Technology 205 42

    [7]

    Mobius M E, Lauderdale B E, Nagel S R, Jaeger H M 2001 Nature 414 270

    [8]

    Yan X Q, Shi Q F, Hou M Y, Lu K Q 2003 Physics 32 748 (in Chinese) [阎学群, 史庆藩, 厚美瑛, 陆坤权 2003 物理 32 748]

    [9]

    Yan X Q, Shi Q F, Hou M Y, Lu K Q 2003 Phys. Rev. Lett. 91 014302

    [10]

    Jiang Z H, Wang Y Y, Wu J 2006 Acta Phys. Sin. 55 4748 [姜泽辉, 王运鹰, 吴晶 2006 物理学报 55 4748]

    [11]

    Duran J, Mazozi J, Clement E, Rajchenbach J 1994 Phys. Rev. E 50 5138

    [12]

    Tai C H, Hsiau S S, Kruelle C A 2010 Powder Technology 204 255

    [13]

    Rosato A, Strandburg K J, Prinz F, Swendsen R H 1987 Phys. Rev. Lett. 58 1038

    [14]

    Knight J B 1997 Phys. Rev. E 55 6016

    [15]

    Barker G C, Metha A 1993 Nature 364 486

    [16]

    Hsiau S S, Yu H Y 1997 Powder Technology 93 83

    [17]

    Mehta A, Barker G C 1991 Phys. Rev. Lett. 67 394

    [18]

    Vanel L, Rosato A D, Dave R N 1997 Phys. Rev. Lett. 78 1255

    [19]

    Schroter M, Ulrich S, Kreft J, Swift J B, Swinney H L 2006 Phys. Rev. E: Statistical, Nonlinear, and Soft Matter Physics 74 011307

    [20]

    Cooke W, Warr S, Huntley J M, Ball R C 1996 Phys. Rev. E 53 2812

    [21]

    Duran J, Rajchenbach J, Clement E 1993 Phys. Rev. Lett. 70 2431

    [22]

    Kudrolli A 2004 Rep. Prog. Phys. 67 236

    [23]

    Chen W Z, Wei R J, Wang B R 1997 Phys. Lett. A 228 321

    [24]

    Clement C P, Pacheco-Martinez H A, Swift M R, King P J 2010 Europhysics Letters 91 54001

    [25]

    Knight J B, Jaeger H M, Nagel S R 1993 Phys. Rev. Lett. 70 3730

    [26]

    Falcon E, Fauve S, Laroche C 1999 Eur. Phys. J. B 9 183

    [27]

    Liffman K, Muniandy K, Rhodes M, Gutteridge D, Metcalfe G 2001 Granular Matter 3 205

    [28]

    Ahmad K, Smalley I J 1973 Powder Technology 8 69

    [29]

    Shinbrot T, Muzzio F J 1998 Phys. Rev. Lett. 81 4365

    [30]

    Zhang H, Guo Y B, Chen X, Wang D, Cheng P J 2007 Acta Phys. Sin. 56 2030 (in Chinese) [张航, 郭蕴博, 陈骁, 王端, 程鹏俊 2007 物理学报 56 2030]

    [31]

    Tan G S 1979 Shape and Flow: Talking about Resistance to Fluid Dynamics (Beijing, China: Science Publishers) [谈镐声 1979 形与流: 漫谈阻力流体动力学 (北京: 科学出版社)]

  • [1]

    Sun Q C, Jin F, Wang G Q, Zhang G H 2010 Acta Phys. Sin. 59 0030 (in Chinese) [孙其诚, 金峰, 王光谦, 张国华 2010 物理学报 59 0030]

    [2]

    HuY, Hu L 2009 Journal of Shandong University 44 25 (in Chinese) [胡云, 胡林 2009 山东大学学报 44 25]

    [3]

    Rong L W, Zhan J M 2010 Acta Phys. Sin. 59 5572 (in Chinese) [容亮湾, 詹杰民 2010 物理学报 59 5572]

    [4]

    Hong D C, Quinn P V, Stefan L 2001 Phys. Rev. Lett. 86 3423

    [5]

    Zhao, Y Z, Jiang M Q, Zheng J Y 2009 Acta Phys. Sin. 58 1812 (in Chinese) [赵永志, 姜茂强, 郑津洋 2009 物理学报 58 1812]

    [6]

    Metzger M J, Remy B, Glasser B J 2011 Powder Technology 205 42

    [7]

    Mobius M E, Lauderdale B E, Nagel S R, Jaeger H M 2001 Nature 414 270

    [8]

    Yan X Q, Shi Q F, Hou M Y, Lu K Q 2003 Physics 32 748 (in Chinese) [阎学群, 史庆藩, 厚美瑛, 陆坤权 2003 物理 32 748]

    [9]

    Yan X Q, Shi Q F, Hou M Y, Lu K Q 2003 Phys. Rev. Lett. 91 014302

    [10]

    Jiang Z H, Wang Y Y, Wu J 2006 Acta Phys. Sin. 55 4748 [姜泽辉, 王运鹰, 吴晶 2006 物理学报 55 4748]

    [11]

    Duran J, Mazozi J, Clement E, Rajchenbach J 1994 Phys. Rev. E 50 5138

    [12]

    Tai C H, Hsiau S S, Kruelle C A 2010 Powder Technology 204 255

    [13]

    Rosato A, Strandburg K J, Prinz F, Swendsen R H 1987 Phys. Rev. Lett. 58 1038

    [14]

    Knight J B 1997 Phys. Rev. E 55 6016

    [15]

    Barker G C, Metha A 1993 Nature 364 486

    [16]

    Hsiau S S, Yu H Y 1997 Powder Technology 93 83

    [17]

    Mehta A, Barker G C 1991 Phys. Rev. Lett. 67 394

    [18]

    Vanel L, Rosato A D, Dave R N 1997 Phys. Rev. Lett. 78 1255

    [19]

    Schroter M, Ulrich S, Kreft J, Swift J B, Swinney H L 2006 Phys. Rev. E: Statistical, Nonlinear, and Soft Matter Physics 74 011307

    [20]

    Cooke W, Warr S, Huntley J M, Ball R C 1996 Phys. Rev. E 53 2812

    [21]

    Duran J, Rajchenbach J, Clement E 1993 Phys. Rev. Lett. 70 2431

    [22]

    Kudrolli A 2004 Rep. Prog. Phys. 67 236

    [23]

    Chen W Z, Wei R J, Wang B R 1997 Phys. Lett. A 228 321

    [24]

    Clement C P, Pacheco-Martinez H A, Swift M R, King P J 2010 Europhysics Letters 91 54001

    [25]

    Knight J B, Jaeger H M, Nagel S R 1993 Phys. Rev. Lett. 70 3730

    [26]

    Falcon E, Fauve S, Laroche C 1999 Eur. Phys. J. B 9 183

    [27]

    Liffman K, Muniandy K, Rhodes M, Gutteridge D, Metcalfe G 2001 Granular Matter 3 205

    [28]

    Ahmad K, Smalley I J 1973 Powder Technology 8 69

    [29]

    Shinbrot T, Muzzio F J 1998 Phys. Rev. Lett. 81 4365

    [30]

    Zhang H, Guo Y B, Chen X, Wang D, Cheng P J 2007 Acta Phys. Sin. 56 2030 (in Chinese) [张航, 郭蕴博, 陈骁, 王端, 程鹏俊 2007 物理学报 56 2030]

    [31]

    Tan G S 1979 Shape and Flow: Talking about Resistance to Fluid Dynamics (Beijing, China: Science Publishers) [谈镐声 1979 形与流: 漫谈阻力流体动力学 (北京: 科学出版社)]

  • [1] Yang Jian-Gang, Hu Chun-Bo, Zhu Xiao-Fei, Li Yue, Hu Xu, Deng Zhe. Experiment Study of Characteristics of Powder Pneumatic Filling. Acta Physica Sinica, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [2] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [4] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
  • Citation:
Metrics
  • Abstract views:  1988
  • PDF Downloads:  1358
  • Cited By: 0
Publishing process
  • Received Date:  01 July 2011
  • Accepted Date:  24 November 2011
  • Published Online:  05 July 2012

Experimental and theoretical investigations of the effect of “Brazil Nut” segregation in vibrating granular matters

  • 1. Department of Physics, Bohai University, Jinzhou 121000, China

Abstract: Size segregation is one of important properties of vibrating granular matters. It is significant to understand and study the segregation mechanisms and parameter range of controlling factors of mixed granular matters for the development of industry, agriculture and pharmaceutical. In this paper, we investigate the influence factors and physical mechanisms of "Brazil Nut" segregation experimentally and theoretically. The influences of vibrating acceleration, sizes and densities of large and small granules on the segregation time are analyzed. The hydro-model is used to evaluate segregation time and explain the experimental results qualitatively. Results show that the vibration acceleration is a main controlling factor for "Brazil Nut" segregation in the case of fixed frequency. There is a critical acceleration. When the acceleration is larger then its critical value the main physical mechanism changes from convection to filling voids, and the effect of acceleration on segregation decreases, while the effect of size of large granule on it increases. Furthermore, "Brazil Nut" segregation still arises when the density ratio is equal to 1. The increase of the size or density of small granular may enhance "Brazil Nut" segregation.

Reference (31)

Catalog

    /

    返回文章
    返回