Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure evolution model of zirconia solid electrolyte based on AC impedance model analysis

Hu Yong-Gang Xia Feng Xiao Jian-Zhong Lei Chao Li Xiang-Dong

Microstructure evolution model of zirconia solid electrolyte based on AC impedance model analysis

Hu Yong-Gang, Xia Feng, Xiao Jian-Zhong, Lei Chao, Li Xiang-Dong
PDF
Get Citation
  • The effect of grain boundary on conductivity in multicomponent polycrystalline solid electrolyte has become a bottleneck for the development of high temperature solid electrolyte materials. The corresponding relationship between the microstructure and conductivity at high temperature is difficult to obtain based on the traditional methods of grain boundaries observation. In view of this, the variable temperature AC impedance characteristics of partially stabilized zirconia (PSZ) solid electrolyte material are investigated, and their fitting to AC impedance spectrum is analyzed. It is found that the fitting equivalent circuits varies with temperature increasing. By analyzing the physical meanings of different equivalent circuits, the microstructure evolution model of PSZ electrolyte material at elevated temperature is obtained. A microstructure model of 'short-range ordered ' with the structure of 'boundary bridge' is deduced after further analysis, which could provide the reference for improving the grain boundary conductivity in PSZ electrolyte materials.
    [1]

    Guo X, Waser R 2006 Prog. Mater. Sci. 51 151

    [2]

    Guo X 1998 Acta. Phys. Sin. 47 1331 (in Chinese) [郭新 1998 物理学报 47 1331]

    [3]

    Kilner J A, Steele B C H 1981 Non stoichiometric Oxides (New York: Academic Press) p233---269

    [4]

    Abraham M M, Weeks R A, Clark G W, Finch C B 1966 Phys. Rev. 148 350

    [5]

    Nakamura A, Wagner J B 1986 J. Electrochem. Soc. 133 1542

    [6]

    Mackrodt W C, Woodrow P W 1986 J. Am. Ceram. Soc. 69 277

    [7]

    Butler V, Catlow C R A, Fender B E F 1981 Solid State Ionics 5 539

    [8]

    Murch G E, Nowick A S 1984 Diffusion in crystalline solids (Orlando: Academic) p143---188

    [9]

    Orliukas A, Bohac P, Sasaki K, Gauckler L J 1994 Solid State Ionics 72 35

    [10]

    Maier J 1995 Prog. Solid St. Chem. 23 171

    [11]

    Etsell T H, Flengas S N 1970 Chem. Rev. 70 339

    [12]

    Cui W Q, Shen Z Q, Zhou D B l991 Acta Phys. Sin. 40 1101 (in Chinese) [崔万秋, 沈志奇, 周德保 l991 物理学报 40 1101]

    [13]

    Tsubakino H, Sonoda K, Nozato R 1993 J. Mater. Sci. Lett. 12 196

    [14]

    Van Dijk T, Burggraaf A J 1981 Phys. Status Solidi A 63 229

    [15]

    Schouler E, Giroud G, Kleitz M 1973 J. Chem. Phys. 70 1309

    [16]

    Bauerle J E 1969 J. Phys. Chem. Solids 30 2657

    [17]

    Fleig J, Maier J 1999 J. Eur. Ceram. Soc. 19 693

    [18]

    Muccillo E N S, Kleitz M 1996 J. Eur. Ceram. Soc. 16 453

    [19]

    Jonscher A K 1977 Nature 267 673

    [20]

    Li Y, Gong J H, Xie Y S, Tang Z L, Chen Y F, Zhang Z T 2002 J. Inorg. Mater. 17 811 (in Chinese) [李英, 龚江宏, 谢裕生, 唐子龙, 陈运法, 张中太 2002 无机材料学报 17 811]

    [21]

    Bauerle J E, Hrizo J 1969 J. Phys. Chem. Solids 30 565

    [22]

    Hu Y G, Xiao J Z, Xia F, Wu X W, Yan S Z 2010 Acta Phys. Sin. 59 7447 (in Chinese) [胡永刚, 肖建中, 夏风, 武玺旺, 闫双志 2010 物理学报 59 7447]

    [23]

    Zhang T S, Ma J, Chen Y Z, Luo L H, Kong L B, Chan S H 2006 Solid State Ionics 177 1227

    [24]

    Hsieh G, Ford S J, Mason T O, Pederson L R 1997 Solid State Ionics 100 297

  • [1]

    Guo X, Waser R 2006 Prog. Mater. Sci. 51 151

    [2]

    Guo X 1998 Acta. Phys. Sin. 47 1331 (in Chinese) [郭新 1998 物理学报 47 1331]

    [3]

    Kilner J A, Steele B C H 1981 Non stoichiometric Oxides (New York: Academic Press) p233---269

    [4]

    Abraham M M, Weeks R A, Clark G W, Finch C B 1966 Phys. Rev. 148 350

    [5]

    Nakamura A, Wagner J B 1986 J. Electrochem. Soc. 133 1542

    [6]

    Mackrodt W C, Woodrow P W 1986 J. Am. Ceram. Soc. 69 277

    [7]

    Butler V, Catlow C R A, Fender B E F 1981 Solid State Ionics 5 539

    [8]

    Murch G E, Nowick A S 1984 Diffusion in crystalline solids (Orlando: Academic) p143---188

    [9]

    Orliukas A, Bohac P, Sasaki K, Gauckler L J 1994 Solid State Ionics 72 35

    [10]

    Maier J 1995 Prog. Solid St. Chem. 23 171

    [11]

    Etsell T H, Flengas S N 1970 Chem. Rev. 70 339

    [12]

    Cui W Q, Shen Z Q, Zhou D B l991 Acta Phys. Sin. 40 1101 (in Chinese) [崔万秋, 沈志奇, 周德保 l991 物理学报 40 1101]

    [13]

    Tsubakino H, Sonoda K, Nozato R 1993 J. Mater. Sci. Lett. 12 196

    [14]

    Van Dijk T, Burggraaf A J 1981 Phys. Status Solidi A 63 229

    [15]

    Schouler E, Giroud G, Kleitz M 1973 J. Chem. Phys. 70 1309

    [16]

    Bauerle J E 1969 J. Phys. Chem. Solids 30 2657

    [17]

    Fleig J, Maier J 1999 J. Eur. Ceram. Soc. 19 693

    [18]

    Muccillo E N S, Kleitz M 1996 J. Eur. Ceram. Soc. 16 453

    [19]

    Jonscher A K 1977 Nature 267 673

    [20]

    Li Y, Gong J H, Xie Y S, Tang Z L, Chen Y F, Zhang Z T 2002 J. Inorg. Mater. 17 811 (in Chinese) [李英, 龚江宏, 谢裕生, 唐子龙, 陈运法, 张中太 2002 无机材料学报 17 811]

    [21]

    Bauerle J E, Hrizo J 1969 J. Phys. Chem. Solids 30 565

    [22]

    Hu Y G, Xiao J Z, Xia F, Wu X W, Yan S Z 2010 Acta Phys. Sin. 59 7447 (in Chinese) [胡永刚, 肖建中, 夏风, 武玺旺, 闫双志 2010 物理学报 59 7447]

    [23]

    Zhang T S, Ma J, Chen Y Z, Luo L H, Kong L B, Chan S H 2006 Solid State Ionics 177 1227

    [24]

    Hsieh G, Ford S J, Mason T O, Pederson L R 1997 Solid State Ionics 100 297

  • [1] Wu Chao, Lü Xu-Liang, Zeng Zhao-Yang, Jia Qi. Investigation of effective EM parameter based on impedance simulation. Acta Physica Sinica, 2013, 62(5): 054101. doi: 10.7498/aps.62.054101
    [2] Xin Hong-Liang, Yuan Wang-Zhi, Cheng Jin-Ke, Lin Hong, Ruan Jian-Zhong, Zhao Zhen-Jie. The giant magneto-impedance effect and frequency dependence of magnetization processes in NiFeCoP/BeCu composite wire. Acta Physica Sinica, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [3] Zhou Jing, Liu Cun-Jin, Li Ru, Chen Wen. Effects of heterogeneous interfaces on microstructure and dielectric properties of Ca(Mg1/3Nb2/3)O3/CaTiO3 multilayered thin films. Acta Physica Sinica, 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [4] Hu Feng-Wei, Bao Bo-Cheng, Wu Hua-Gan, Wang Chun-Li. Equivalent circuit analysis model of charge-controlled memristor and its circuit characteristics. Acta Physica Sinica, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [5] Li Hong-Qi. Quantization of mesoscopic quartz piezoelectric crystal equivalent circuit. Acta Physica Sinica, 2005, 54(3): 1361-1365. doi: 10.7498/aps.54.1361
    [6] Bai Chun-Jiang, Li Jian-Qing, Hu Yu-Lu, Yang Zhong-Hai, Li Bin. Calculation of beam-wave interaction of coupled-cavity TWT using equivalent circuit model. Acta Physica Sinica, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [7] Zhang Xiao-Li, Lin Shu-Yu, Fu Zhi-Qiang, Wang Yong. Study on resonance frequency and equivalent circuit parameters of a thin disk in flexural vibration. Acta Physica Sinica, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [8] Chen Shu-Yuan, Ruan Cun-Jun, Wang Yong. Research on equivalent circuit of multi-gap output cavity for sheet beam extended-interaction klystron. Acta Physica Sinica, 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [9] WANG JUN-HONG. ANALYSIS OF THE PROPAGATING PROPERTIES OF PULSE VOLTAGE AND CURRENT ON DIPOLE AN TENNAS BY EQUIVALENT CIRCUIT METHOD. Acta Physica Sinica, 2000, 49(9): 1696-1701. doi: 10.7498/aps.49.1696
    [10] Li Yu-Han, Deng Lian-Wen, Luo Heng, He Long-Hui, He Jun, Xu Yun-Chao, Huang Sheng-Xiang. Equivalent circuit model and microwave reflection loss mechanism of double-layer spiral-ring metasurface embedded composite microwave absorber. Acta Physica Sinica, 2019, 68(9): 095201. doi: 10.7498/aps.68.20181960
  • Citation:
Metrics
  • Abstract views:  2001
  • PDF Downloads:  755
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2011
  • Accepted Date:  10 May 2012
  • Published Online:  05 May 2012

Microstructure evolution model of zirconia solid electrolyte based on AC impedance model analysis

  • 1. Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract: The effect of grain boundary on conductivity in multicomponent polycrystalline solid electrolyte has become a bottleneck for the development of high temperature solid electrolyte materials. The corresponding relationship between the microstructure and conductivity at high temperature is difficult to obtain based on the traditional methods of grain boundaries observation. In view of this, the variable temperature AC impedance characteristics of partially stabilized zirconia (PSZ) solid electrolyte material are investigated, and their fitting to AC impedance spectrum is analyzed. It is found that the fitting equivalent circuits varies with temperature increasing. By analyzing the physical meanings of different equivalent circuits, the microstructure evolution model of PSZ electrolyte material at elevated temperature is obtained. A microstructure model of 'short-range ordered ' with the structure of 'boundary bridge' is deduced after further analysis, which could provide the reference for improving the grain boundary conductivity in PSZ electrolyte materials.

Reference (24)

Catalog

    /

    返回文章
    返回