Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The influences of air heat storage, plant photosynthesis and soil water movement on surface energy balance over the loess plateau

Li Hong-Yu Zhang Qiang Wang Chun-Ling Yang Fu-Lin Zhao Jian-Hua

The influences of air heat storage, plant photosynthesis and soil water movement on surface energy balance over the loess plateau

Li Hong-Yu, Zhang Qiang, Wang Chun-Ling, Yang Fu-Lin, Zhao Jian-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The surface energy imbalance problem has become a challenge in the study of surface land process since it was found in the late 1980s. By using data provided by the program the Loess Plateau Land-surface Process Experiment (LOPEX) and introducing the vertical sensible heat flux into the surface energy balance equation, in the paper, we estimate the heat storage associated with change of air temperature and humidity as well as the energy stored in plants due to the photosynthesis, determine the water vertical flux in the shadow soil layer both by water conservation principle and two-level soil temperature, and investigate the influences of air and plant photosynthesis energy storages and heat transferred by the soil water movement on the surface energy budget. It is found that the diurnal variation peaks of averaged energy storages of air and plant photosynthesis reach 1.5 and 2.0 Wm-2 respectively. Additionally, the diurnal variation peak of mean heat transferred by vertical water movement is close to 8.0 Wm-2. The closure of energy balance is improved from 88.1% to 89.6% by adding the three additional energy terms to the energy balance equation. As a whole, the energy storage related to air and the plant photosynthesis, and the heat transferred by the soil water movement both promote the surface energy balance to some extent. Furthermore, the semi-arid climate and the vegetation condition of Loess Plateau essentially lead to significant differences of energy storage be tween this area and other climatic districts.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 40830957), the Public Welfare Research Project of China (Grant No. GYHY200806021), and the Research Program of Lanzhou Institute of Arid Meteorology, CMA (Grant No. KYS2011BSKY02).
    [1]

    Li Z Q, Yu G R, Wen X F, Zhang L M, Ren C Y, Fu Y L 2004 Sci. Chin. Ser. D 34 46(in Chinese) [李正泉, 于贵瑞, 温学发, 张雷明, 任传友, 伏玉玲 2004 中国科学(D) 34 46]

    [2]

    Wilson K, Goldstein A, Falge E, Aubinet M 2002 Agric. For. Meteorol. 113 223

    [3]

    Li H Q, Guo W D, Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 物理学报 60 019201]

    [4]

    Wang S, Zhang Qiang 2011 Acta Phys. Sin. 60 059203 (in Chinese) [王胜, 张强 2011 物理学报 60 059203]

    [5]

    Ma J Y, Liang H, Luo Y, Li S K 2011 Acta Phys. Sin. 60 069601 (in Chinese) [马金玉, 梁宏, 罗勇, 李世奎 2011 物理学报 60 069601]

    [6]

    Halldin S, Gottschalk L, Griend A A, Gryning S E 1998 J. Hydrol 212 172

    [7]

    Kanemasu E T, Verma S B, Smith E A, Fritschen L Y, Wesely M, Fild R T, Kustas W P, Weaver H, Steawart Y B, Geney R, Panin G N, Moncrieff J B 1992 J. Geophys. Res. 97 18547

    [8]

    Oncley S P 2007 Bound.-Layer Meteor. 123 1

    [9]

    Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C 2006 Atmos. Chem. Phys. 6 4395

    [10]

    Bai J, Liu S M, Ding X P 2010 Adv. Earth Sci. 25 1187 (in Chinese) [白洁, 刘绍民, 丁晓萍 2010 地球科学进展 25 1187]

    [11]

    Mauder M, Jegede O O, Okogbue E C, Wimmer F, Foken T 2007 Theor. Appl. Clim. 89 171

    [12]

    Mauder M, Desjardins R L, Pattey E, Gao Z, Haarlem R 2008 Bound.-Layer Meteor. 128 151

    [13]

    Lee X H 1998 Agric. For. Meteor. 91 39

    [14]

    Hu Y Q, Zuo H C 2004 Plateau Meteor. 23 132 (in Chinese) [胡隐樵, 左洪超 2004 高原气象 23 132]

    [15]

    Zhang Q, Li H Y, Zhao J H 2011 Sci. Chin. Ser. D DOI:10.1007 /s11430 -011 -4220-3

    [16]

    Gao Z 2005 Bound.-Layer Meteor. 114 165

    [17]

    Wang G Y, Huang J P, Guo W D, Zuo J Q, Wang J M, Bi J R, Huang Z W, Shi J S 2010 J. Geophys. Res. 115 D00K17

    [18]

    Huang J P, Zhang W, Zuo J Q, Bi J R 2008 Adv. Atmos. Sci. 25 906

    [19]

    Li H Y, Zhang Q, Wang S 2010 Adv. Earth Sci. 25 1070 (in Chinese) [李宏宇, 张强, 王胜 2010 地球科学进展 25 1070]

    [20]

    Zhang Q, Li H Y 2010 Acta Phys. Sin. 59 716 (in Chinese) [张强, 李宏宇 2010 物理学报 59 716]

    [21]

    Stull R B (Translated by Xu J Q, Yang D R) 1991 Introduction to Boundary Layer Meteorology (Qingdao: Ocean University Press) (in Chinese) pp61-62 [Stull R B著 徐静琦, 杨殿荣译 1991 边界层气象导论 (青岛: 海洋大学出版社) 第61—62页]

    [22]

    Bi X Y, Gao Z, Deng X J, Wu D, Liang J Y, Zhang H S, Sparrow M, Du J L, Li F, Tan H B 2007 J. Geophys. Res. 112 D10106

    [23]

    Jacobs A F G, Heusinkveld B G, Holtslag A A M 2008 Bound.-Layer Meteor. 126 125

    [24]

    Meyers T P, Hollinger S E 2004 Agric. For. Meteor. 125 105

    [25]

    Wang R Y, Zhang Q 2011 Adv. Atmos. Sci. 28 691

    [26]

    Gao Z, Chen G T J, Hu Y B 2007 Int. J. Biometeor. 51 565

    [27]

    Li Z K, Wu B Y, Zhu W J, Xin Y F 2011 Clim. Environ. Res. 16 137 (in Chinese) [李震坤, 武炳义, 朱伟军, 辛羽飞 2011 气候与环境研究 16 137]

    [28]

    Shi G Y, Liu Y Z 2006 Adv. Earth Sci. 21 278 (in Chinese) [石广玉, 刘玉芝 2006 地球科学进展 21 278]

    [29]

    Cess R D, Zhang M H, Potter G L 1993 Science 262 1252

    [30]

    Shen Y B, Zhao Z C, Shi G Y 2008 Adv. Earth Sci. 23 915 (in Chinese) [申彦波, 赵宗慈, 石广玉 2008 地球科学进展 23 915]

    [31]

    Feng G L, Gong Z Q, Zhi Rong, Zhang D Q 2008 Chin. Phys. B 17 2745

    [32]

    Yang P, Hou W, Feng G L 2012 Chin. Phys. B 21 019201

    [33]

    Michiles A A S, Gielow R 2008 Agric. For. Meteor. 148 917

    [34]

    Zhang G X, Zhao R F, Zhang Y C, Zhao P T 2008 Acta Phys. Sin. 57 7390 (in Chinese) [张改霞, 赵日峰, 张寅超, 赵培涛 2008 物理学报 57 7390]

    [35]

    Cui X P 2008 Chin. Phys. B 17 2304

    [36]

    Chen J Y, Chen S G, Wang G R 2005 Acta Phys. Sin. 54 3123 (in Chinese) [陈京元, 陈式刚, 王光瑞 2005 物理学报 54 3123]

    [37]

    Cui X P, Li X F 2011 Chin. Phys. B 20 109201

  • [1]

    Li Z Q, Yu G R, Wen X F, Zhang L M, Ren C Y, Fu Y L 2004 Sci. Chin. Ser. D 34 46(in Chinese) [李正泉, 于贵瑞, 温学发, 张雷明, 任传友, 伏玉玲 2004 中国科学(D) 34 46]

    [2]

    Wilson K, Goldstein A, Falge E, Aubinet M 2002 Agric. For. Meteorol. 113 223

    [3]

    Li H Q, Guo W D, Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 物理学报 60 019201]

    [4]

    Wang S, Zhang Qiang 2011 Acta Phys. Sin. 60 059203 (in Chinese) [王胜, 张强 2011 物理学报 60 059203]

    [5]

    Ma J Y, Liang H, Luo Y, Li S K 2011 Acta Phys. Sin. 60 069601 (in Chinese) [马金玉, 梁宏, 罗勇, 李世奎 2011 物理学报 60 069601]

    [6]

    Halldin S, Gottschalk L, Griend A A, Gryning S E 1998 J. Hydrol 212 172

    [7]

    Kanemasu E T, Verma S B, Smith E A, Fritschen L Y, Wesely M, Fild R T, Kustas W P, Weaver H, Steawart Y B, Geney R, Panin G N, Moncrieff J B 1992 J. Geophys. Res. 97 18547

    [8]

    Oncley S P 2007 Bound.-Layer Meteor. 123 1

    [9]

    Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C 2006 Atmos. Chem. Phys. 6 4395

    [10]

    Bai J, Liu S M, Ding X P 2010 Adv. Earth Sci. 25 1187 (in Chinese) [白洁, 刘绍民, 丁晓萍 2010 地球科学进展 25 1187]

    [11]

    Mauder M, Jegede O O, Okogbue E C, Wimmer F, Foken T 2007 Theor. Appl. Clim. 89 171

    [12]

    Mauder M, Desjardins R L, Pattey E, Gao Z, Haarlem R 2008 Bound.-Layer Meteor. 128 151

    [13]

    Lee X H 1998 Agric. For. Meteor. 91 39

    [14]

    Hu Y Q, Zuo H C 2004 Plateau Meteor. 23 132 (in Chinese) [胡隐樵, 左洪超 2004 高原气象 23 132]

    [15]

    Zhang Q, Li H Y, Zhao J H 2011 Sci. Chin. Ser. D DOI:10.1007 /s11430 -011 -4220-3

    [16]

    Gao Z 2005 Bound.-Layer Meteor. 114 165

    [17]

    Wang G Y, Huang J P, Guo W D, Zuo J Q, Wang J M, Bi J R, Huang Z W, Shi J S 2010 J. Geophys. Res. 115 D00K17

    [18]

    Huang J P, Zhang W, Zuo J Q, Bi J R 2008 Adv. Atmos. Sci. 25 906

    [19]

    Li H Y, Zhang Q, Wang S 2010 Adv. Earth Sci. 25 1070 (in Chinese) [李宏宇, 张强, 王胜 2010 地球科学进展 25 1070]

    [20]

    Zhang Q, Li H Y 2010 Acta Phys. Sin. 59 716 (in Chinese) [张强, 李宏宇 2010 物理学报 59 716]

    [21]

    Stull R B (Translated by Xu J Q, Yang D R) 1991 Introduction to Boundary Layer Meteorology (Qingdao: Ocean University Press) (in Chinese) pp61-62 [Stull R B著 徐静琦, 杨殿荣译 1991 边界层气象导论 (青岛: 海洋大学出版社) 第61—62页]

    [22]

    Bi X Y, Gao Z, Deng X J, Wu D, Liang J Y, Zhang H S, Sparrow M, Du J L, Li F, Tan H B 2007 J. Geophys. Res. 112 D10106

    [23]

    Jacobs A F G, Heusinkveld B G, Holtslag A A M 2008 Bound.-Layer Meteor. 126 125

    [24]

    Meyers T P, Hollinger S E 2004 Agric. For. Meteor. 125 105

    [25]

    Wang R Y, Zhang Q 2011 Adv. Atmos. Sci. 28 691

    [26]

    Gao Z, Chen G T J, Hu Y B 2007 Int. J. Biometeor. 51 565

    [27]

    Li Z K, Wu B Y, Zhu W J, Xin Y F 2011 Clim. Environ. Res. 16 137 (in Chinese) [李震坤, 武炳义, 朱伟军, 辛羽飞 2011 气候与环境研究 16 137]

    [28]

    Shi G Y, Liu Y Z 2006 Adv. Earth Sci. 21 278 (in Chinese) [石广玉, 刘玉芝 2006 地球科学进展 21 278]

    [29]

    Cess R D, Zhang M H, Potter G L 1993 Science 262 1252

    [30]

    Shen Y B, Zhao Z C, Shi G Y 2008 Adv. Earth Sci. 23 915 (in Chinese) [申彦波, 赵宗慈, 石广玉 2008 地球科学进展 23 915]

    [31]

    Feng G L, Gong Z Q, Zhi Rong, Zhang D Q 2008 Chin. Phys. B 17 2745

    [32]

    Yang P, Hou W, Feng G L 2012 Chin. Phys. B 21 019201

    [33]

    Michiles A A S, Gielow R 2008 Agric. For. Meteor. 148 917

    [34]

    Zhang G X, Zhao R F, Zhang Y C, Zhao P T 2008 Acta Phys. Sin. 57 7390 (in Chinese) [张改霞, 赵日峰, 张寅超, 赵培涛 2008 物理学报 57 7390]

    [35]

    Cui X P 2008 Chin. Phys. B 17 2304

    [36]

    Chen J Y, Chen S G, Wang G R 2005 Acta Phys. Sin. 54 3123 (in Chinese) [陈京元, 陈式刚, 王光瑞 2005 物理学报 54 3123]

    [37]

    Cui X P, Li X F 2011 Chin. Phys. B 20 109201

  • [1] Li Hong-Yu, Zhang Qiang. The relationship between surface energy balance unclosure and vertical sensible heat advection over the loess plateau. Acta Physica Sinica, 2010, 59(8): 5888-5895. doi: 10.7498/aps.59.5888
    [2] Zhang Qiang, Huang Jing, Zhang Liang, Zhang Li-Yang. Warming and drying climate over Loess plateau area in China and its effect on land surface energy exchange. Acta Physica Sinica, 2013, 62(13): 139202. doi: 10.7498/aps.62.139202
    [3] Liang Jie-Ning, Zhang Lei, Zhang Wu, Shi Jin-Sen. Energy balance analysis over Loess Plateau and the consequences for carbon dioxide flux. Acta Physica Sinica, 2013, 62(9): 099203. doi: 10.7498/aps.62.099203
    [4] Xia Lu, Zhang Qiang. Plateau surface energy balance components and interannual variability in response to climate fluctuations. Acta Physica Sinica, 2014, 63(11): 119201. doi: 10.7498/aps.63.119201
    [5] Yue Ping, Zhang Qiang, Zhao Wen, Wang Jin-Song, Wang Run-Yuan, Yao Yu-Bi, Wang Sheng, Hao Xiao-Cui, Yang Fu-Lin, Wang Ruo-An. Effects of clouds and precipitation disturbance on the surface radiation budget and energy balance over loess plateau semi-arid grassland in China. Acta Physica Sinica, 2013, 62(20): 209201. doi: 10.7498/aps.62.209201
    [6] Wang Sheng, Zhang Qiang. Atmospheric physical characteristics of dew formation in semi-arid in loess plateau. Acta Physica Sinica, 2011, 60(5): 059203. doi: 10.7498/aps.60.059203
    [7] Zhang Qiang, Li Hong-Yu, Zhang Li-Yang, Yue Ping, Shi Jin-Sen. Responses of the land-surface process and its parameters over the natural vegetation underlying surface of the middle of Gansu in loess plateau to precipitation fluctuation. Acta Physica Sinica, 2013, 62(1): 019201. doi: 10.7498/aps.62.019201
    [8] Liu Xiao-Yun, Wang Jing-Song, Li Dong-Liang, Yue Ping, Li Yao-Hui, Yao Yu-Bi. Interannual and interdecadal atmospheric circulation anomalies of autumn dry/wet over the loess plateau and its multi-scalar correlation to SST. Acta Physica Sinica, 2013, 62(21): 219202. doi: 10.7498/aps.62.219202
    [9] Li Lin-Li,  Xue Chun-Xia. Chaotic motion of piezoelectric material hyperbolic shell under thermoelastic coupling. Acta Physica Sinica, 2019, 68(1): 010501. doi: 10.7498/aps.68.20181714
    [10] Ji Zhong-Bao, Xia Zhong-Fu, Shen Li-Li, An Zhen-Lian. The charge storage and its stability in corona charged polypropylene non-woven fabrics used as air filters. Acta Physica Sinica, 2005, 54(8): 3799-3804. doi: 10.7498/aps.54.3799
    [11] YANG ZHEN-HUA, WU YU-PU. ELECTRON BEAM ENERGY MODULATION IN SR-FREE ELECTRON LASER. Acta Physica Sinica, 1997, 46(2): 279-286. doi: 10.7498/aps.46.279
    [12] Huang Jin, Zhong Zhong, Guo Wei-Dong, Lu Wei. Statistical features of aerodynamic effective roughness length over heterogeneous terrain. Acta Physica Sinica, 2013, 62(5): 054204. doi: 10.7498/aps.62.054204
    [13] Zhong Shi, Yang Xiu-Qun, Guo Wei-Dong. Influence of local zero-plane displacement on effective aerodynamic parameters over heterogeneous terrain. Acta Physica Sinica, 2013, 62(14): 144212. doi: 10.7498/aps.62.144212
    [14] MENG XU-JUN, SUN YONG-SHENG, LONG YAN-QIN. STUDY OF IONIC ABUNDANCE FOR LTE PLASMAS. Acta Physica Sinica, 1998, 47(4): 625-631. doi: 10.7498/aps.47.625
    [15] Wang Wei-Zong, Wu Yi, Rong Ming-Zhe, Yang Fei. Theoretical computation studies for transport properties of air plasmas. Acta Physica Sinica, 2012, 61(10): 105201. doi: 10.7498/aps.61.105201
    [16] CHEN BAO-ZHEN. SIMULTANEOUS PHOTON-ELECTRON EXCITATIONS OF HYDROGEN. Acta Physica Sinica, 1988, 37(4): 566-572. doi: 10.7498/aps.37.566
    [17] ZHU JIA-LIN. COUPLING EFFECT BETWEEN A SHALLOW-IMPURITY POTENTIAL AND A NARROW QUANTUM-WELL. Acta Physica Sinica, 1989, 38(7): 1093-1102. doi: 10.7498/aps.38.1093
    [18] LIU JUN-MIN, ZHANG JIN-XIU. A NON EQUILIBRIUM MEAN FIELD THEORY ABOUT THERMALLY INDUCED FIRST ORDER PHASE TRANSITION. Acta Physica Sinica, 1997, 46(2): 345-352. doi: 10.7498/aps.46.345
    [19] Hao Zhi-Biao, Li He-Jun, Yan Gui-Shen. . Acta Physica Sinica, 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [20] FU YU-SHOU, XIA SHENG-JIE, WANG CHUN-KUI, WU BAO-GEN. INTERACTION OF HIGH INTENSITY CO2 PULSED LASER WITH TARGET IN AIR. Acta Physica Sinica, 1980, 29(4): 500-507. doi: 10.7498/aps.29.500
  • Citation:
Metrics
  • Abstract views:  1939
  • PDF Downloads:  566
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2011
  • Accepted Date:  28 December 2011
  • Published Online:  05 August 2012

The influences of air heat storage, plant photosynthesis and soil water movement on surface energy balance over the loess plateau

  • 1. Institute of Arid Meteorology, CMA; Key laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province; Key Open Laboratory of Arid Climatic Change and Disaster Reduction of CMA, Lanzhou 730020, China;
  • 2. College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Fund Project:  Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 40830957), the Public Welfare Research Project of China (Grant No. GYHY200806021), and the Research Program of Lanzhou Institute of Arid Meteorology, CMA (Grant No. KYS2011BSKY02).

Abstract: The surface energy imbalance problem has become a challenge in the study of surface land process since it was found in the late 1980s. By using data provided by the program the Loess Plateau Land-surface Process Experiment (LOPEX) and introducing the vertical sensible heat flux into the surface energy balance equation, in the paper, we estimate the heat storage associated with change of air temperature and humidity as well as the energy stored in plants due to the photosynthesis, determine the water vertical flux in the shadow soil layer both by water conservation principle and two-level soil temperature, and investigate the influences of air and plant photosynthesis energy storages and heat transferred by the soil water movement on the surface energy budget. It is found that the diurnal variation peaks of averaged energy storages of air and plant photosynthesis reach 1.5 and 2.0 Wm-2 respectively. Additionally, the diurnal variation peak of mean heat transferred by vertical water movement is close to 8.0 Wm-2. The closure of energy balance is improved from 88.1% to 89.6% by adding the three additional energy terms to the energy balance equation. As a whole, the energy storage related to air and the plant photosynthesis, and the heat transferred by the soil water movement both promote the surface energy balance to some extent. Furthermore, the semi-arid climate and the vegetation condition of Loess Plateau essentially lead to significant differences of energy storage be tween this area and other climatic districts.

Reference (37)

Catalog

    /

    返回文章
    返回