Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VO2 low temperature deposition and terahertz transmission modulation

Sun Dan-Dan Chen Zhi Wen Qi-Ye Qiu Dong-Hong Lai Wei-En Dong Kai Zhao Bi-Hui Zhang Huai-Wu

VO2 low temperature deposition and terahertz transmission modulation

Sun Dan-Dan, Chen Zhi, Wen Qi-Ye, Qiu Dong-Hong, Lai Wei-En, Dong Kai, Zhao Bi-Hui, Zhang Huai-Wu
PDF
Get Citation
  • Recently, the applications of vanadium dioxide film (VO2) in terahertz functional devices have attracted much attention because VO2 has a remarkable response to THz wave, In this work BK7 glass a material highly transparent to both THz and optical band is adopted as a substrate. High-quality VO2 film is deposited on a BK7 substrate using low temperature magnetron sputtering technology. The crystallinity and microstructure of the thin film are investigated by X-ray diffraction and atomic force microscopy. The results indicate that the as-deposited film crystallizes directly into single-phase VO2 with (011) preferred orientation and compact nanostructure. Under a heating-cooling cycle, the film undergos a metal-insulator transition with an abrupt resistivity change reaching more than 4 orders of magnitude. Terahertz transmission modulation is characterized by terahertz time domain spectrum, and a giant modulation depth of 89% is obtained. Due to the high transparence and the huge modulation effect, the VO2/BK7 can be widely used for THz devices such as modulators and switches.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61131005, 61021061), the Key Grant Project of Chinese Ministry of Education (Grant No. 313013), the "New Century Excellent Talent Foundation", China (Grant No. NCET-11-0068), Sichuan Youth S & T Foundation, China (Grant No. 2011JQ0001), Sichuan International S & T Cooperation Program, China (Grant No. 2010HH0026), and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2010J034).
    [1]

    Agrawal A, Nahata A 2007 Opt. Express 15 9022

    [2]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M 2007 IEEE Antennas Propag. 49 24

    [3]

    O'Hara J F, Taylor A J, Averitt R D, Zide J M, Gossard A C 2006 Appl. Phys. Lett. 88 251119

    [4]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [5]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [6]

    Chain E E 1991 Appl. Opt. 30 2782

    [7]

    Lopez R, Boatner L A, Haynes T E, Haglund Jr R F, Feldman L C 2004 Appl. Phys. Lett. 85 1410

    [8]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [9]

    Cui J Z, Da D A, Jiang W S 1998 Acta Phys. Sin. 47 454 (in Chinese) [崔敬忠, 达道安, 姜万顺 1998 物理学报 47 454]

    [10]

    Ben-Messaoud T, Landry G, Gariépy J P, Ramamoorthy B, Ashrit P V, Haché A 2008 Opt. Commun. 281 6024

    [11]

    Seo M, Kyoung J, Park H, Koo S, Kim H S, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K, Kim D S 2010 Nano Lett. 10 2064

    [12]

    Kyoung J, Seo M, Park H, Koo S, Kim H S, Park Y, Kim B J, Ahn K, Park N, Kim H T, Kim D S 2010 Opt. Express 18 16452

    [13]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [14]

    Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J, Kim D S 2011 Appl. Phys. Lett. 98 071105

    [15]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106

    [16]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518

    [17]

    Goldflam M D, Driscoll T, Chapler B, Khatib O, Marie Jokerst N, Palit S, Smith D R, Kim B J, Seo G, Kim H T, Ventra M D, Basov D N 2011 Appl. Phys. Lett. 99 044103

    [18]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [19]

    Nakajima M, Takubo N, Hiroi Z, Ueda Y, Suemoto T 2008 Appl. Phys. Lett. 92 011907

    [20]

    Shi Q W, Huang W X, Zhang Y X, Yan J Z, Zhang Y B, Mao M, Zhang Y, Tu M J 2011 Acs. Appl. Mater. 3 3523

    [21]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [22]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 物理学报 59 7857]

    [23]

    Li J, Dho J 2011 Appl. Phys. Lett. 99 231909

    [24]

    Gupta A, Aggarwal R, Gupta P, Dutta T, Narayan R J, Narayan J 2009 Appl. Phys. Lett. 95 111915

    [25]

    Brassard D, Fourmaux S, Jean-Jacques M, Kieffer J C, El Khakani M A 2005 Appl. Phys. Lett. 87 051910

    [26]

    Jiang L J, Carr W N 2004 J. Micromech. Microeng. 14 833

    [27]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902

    [28]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750

    [29]

    Jepsen P U, Fischer Bernd M, Thoman A, Helm H, Suh J Y, Lopez R, Haglund R F 2006 Phys. Rev. B 74 205103

  • [1]

    Agrawal A, Nahata A 2007 Opt. Express 15 9022

    [2]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M 2007 IEEE Antennas Propag. 49 24

    [3]

    O'Hara J F, Taylor A J, Averitt R D, Zide J M, Gossard A C 2006 Appl. Phys. Lett. 88 251119

    [4]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [5]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [6]

    Chain E E 1991 Appl. Opt. 30 2782

    [7]

    Lopez R, Boatner L A, Haynes T E, Haglund Jr R F, Feldman L C 2004 Appl. Phys. Lett. 85 1410

    [8]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [9]

    Cui J Z, Da D A, Jiang W S 1998 Acta Phys. Sin. 47 454 (in Chinese) [崔敬忠, 达道安, 姜万顺 1998 物理学报 47 454]

    [10]

    Ben-Messaoud T, Landry G, Gariépy J P, Ramamoorthy B, Ashrit P V, Haché A 2008 Opt. Commun. 281 6024

    [11]

    Seo M, Kyoung J, Park H, Koo S, Kim H S, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K, Kim D S 2010 Nano Lett. 10 2064

    [12]

    Kyoung J, Seo M, Park H, Koo S, Kim H S, Park Y, Kim B J, Ahn K, Park N, Kim H T, Kim D S 2010 Opt. Express 18 16452

    [13]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [14]

    Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J, Kim D S 2011 Appl. Phys. Lett. 98 071105

    [15]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106

    [16]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518

    [17]

    Goldflam M D, Driscoll T, Chapler B, Khatib O, Marie Jokerst N, Palit S, Smith D R, Kim B J, Seo G, Kim H T, Ventra M D, Basov D N 2011 Appl. Phys. Lett. 99 044103

    [18]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [19]

    Nakajima M, Takubo N, Hiroi Z, Ueda Y, Suemoto T 2008 Appl. Phys. Lett. 92 011907

    [20]

    Shi Q W, Huang W X, Zhang Y X, Yan J Z, Zhang Y B, Mao M, Zhang Y, Tu M J 2011 Acs. Appl. Mater. 3 3523

    [21]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [22]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 物理学报 59 7857]

    [23]

    Li J, Dho J 2011 Appl. Phys. Lett. 99 231909

    [24]

    Gupta A, Aggarwal R, Gupta P, Dutta T, Narayan R J, Narayan J 2009 Appl. Phys. Lett. 95 111915

    [25]

    Brassard D, Fourmaux S, Jean-Jacques M, Kieffer J C, El Khakani M A 2005 Appl. Phys. Lett. 87 051910

    [26]

    Jiang L J, Carr W N 2004 J. Micromech. Microeng. 14 833

    [27]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902

    [28]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750

    [29]

    Jepsen P U, Fischer Bernd M, Thoman A, Helm H, Suh J Y, Lopez R, Haglund R F 2006 Phys. Rev. B 74 205103

  • [1] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a thickness-graded silver-plated strip probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [2] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
    [3] Control of spiral waves in excitable media under polarized electric fields. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191934
    [4] Zhang Song-Ran, He Dai-Hua, Tu Hua-Yao, Sun yan, Kang Ting-Ting, Dai Ning, Chu Jun-Hao, Yu Guo-Lin. Magnetotransport properties and stress control of HgCdTe thin film. Acta Physica Sinica, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [5] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [6] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [7] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [8] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [9] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [10] Anisotropic Dissipation in a Dipolar Bose-Einstein Condensate. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200025
    [11] Yang Jin, Chen Jun, Wang Fu-Di, Li Ying-Ying, Lü Bo, Xiang Dong, Yin Xiang-Hui, Zhang Hong-Ming, Fu Jia, Liu Hai-Qing, Zang Qing, Chu Yu-Qi, Liu Jian-Wen, Wang Xun-Yu, Bin Bin, He Liang, Wan Shun-Kuan, Gong Xue-Yu, Ye Min-You. Experimental investigation of lower hybrid current drive induced plasma rotation on the experimental advanced superconducting tokamak. Acta Physica Sinica, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [12] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [13] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [14] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
  • Citation:
Metrics
  • Abstract views:  1546
  • PDF Downloads:  1172
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2012
  • Accepted Date:  24 July 2012
  • Published Online:  05 January 2013

VO2 low temperature deposition and terahertz transmission modulation

  • 1. State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
  • 2. National Key Laboratory of Science and Technology on Communication, University of Electronic Science and Technology of China,Chengdu 610054, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61131005, 61021061), the Key Grant Project of Chinese Ministry of Education (Grant No. 313013), the "New Century Excellent Talent Foundation", China (Grant No. NCET-11-0068), Sichuan Youth S & T Foundation, China (Grant No. 2011JQ0001), Sichuan International S & T Cooperation Program, China (Grant No. 2010HH0026), and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2010J034).

Abstract: Recently, the applications of vanadium dioxide film (VO2) in terahertz functional devices have attracted much attention because VO2 has a remarkable response to THz wave, In this work BK7 glass a material highly transparent to both THz and optical band is adopted as a substrate. High-quality VO2 film is deposited on a BK7 substrate using low temperature magnetron sputtering technology. The crystallinity and microstructure of the thin film are investigated by X-ray diffraction and atomic force microscopy. The results indicate that the as-deposited film crystallizes directly into single-phase VO2 with (011) preferred orientation and compact nanostructure. Under a heating-cooling cycle, the film undergos a metal-insulator transition with an abrupt resistivity change reaching more than 4 orders of magnitude. Terahertz transmission modulation is characterized by terahertz time domain spectrum, and a giant modulation depth of 89% is obtained. Due to the high transparence and the huge modulation effect, the VO2/BK7 can be widely used for THz devices such as modulators and switches.

Reference (29)

Catalog

    /

    返回文章
    返回