Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigations on structures of supersonic laminar/turbulent flow over a compression ramp

Wu Yu Yi Shi-He Chen Zhi Zhang Qing-Hu Gang Dun-Dian

Experimental investigations on structures of supersonic laminar/turbulent flow over a compression ramp

Wu Yu, Yi Shi-He, Chen Zhi, Zhang Qing-Hu, Gang Dun-Dian
PDF
Get Citation
  • Experimental investigations of supersonic laminar/turbulent flow over a compression ramp are carried out in a Mach 3.0 wind tunnel, the angles of ramp are 25 degrees and 28 degrees. Fine structures of holistic flow field and local regions are visualized via nanoparticle-tracer based planar laser scattering (NPLS) technique, some typical flow structures such as boundary layer, shear layer, separation shock, recirculation zone and reattachment shock are visible clearly, and the wall pressure coefficient of laminar flow is measured. The angle of separation shock and reattachment shock, the development of boundary layer after reattachment are measured by time-averaged flow field structures. The analyses of time-relevant NPLS images reveal the spatio temporal evolution characteristics of flow field. The experimental results indicate that when the ramp angle is 25 degrees, a typical separation appearing in the supersonic laminar flow with boundary layer increases and is converted into turbulence quickly, at the same time, a shock is induced by developing boundary layer; K-H vortexes, shear layer and compression waves arise in the flow field. But the supersonic turbulent flow does not show separation, and the turbulent boundary layer always adhers to the wall. When the ramp angle is 28 degrees, the range of recirculation zone expanded obviously in supersonic laminar flow which is separated further, induces shock and separation shock moves upstream, reattachment shock moves downstream. Therefore the structures of separated region is complicated. By comparison with laminar flow, the range of recirculation zone in supersonic turbulent flow is obviously small, boundary layer increases slowly, and there are not any induced shock, K-H vortexes, compression waves in the flow field. The structures of separated region is simple, but the strength of separation shock is much stronger.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2009CB724100), the National Natural Science Foundation of China (Grant No. 11172326), the Scientific Research Program of National University of Defense Technology, China (Grant No. 0100010112001) and the Innovation Fund Program for Standout Graduate Students of NUDT, China (Grant No. B120103).
    [1]

    Pan H L, Ma H D, Wang Q 2008 Chin. J. Computat. Phys. 25 549 (in Chinese) [潘宏禄, 马汉东, 王强 2008 计算物理 25 549]

    [2]

    Wang S F, Xu Z Y 1997 Exp. Meas. Fluid Mech. 11 23 (in Chinese) [王世芬, 徐朝仪 1997 流体力学实验与测量 11 23]

    [3]

    Li S X, Chen Y K 2001 Proceedings of the 4th National Symposium on Flow Visualization 2001 p127

    [4]

    Cassel K W, Ruban A I, Walker J D A 1995 J. Fluid Mech. 300 265

    [5]

    Loginov M S, Adams N A, Zheltovodov A A 2006 J. Fluid Mech. 565 135

    [6]

    Gieseking D A, Edwards J R, Choi J I 2011 AIAA Paper 2011-5541

    [7]

    Settles G S, Fitzpatrick T J, Bogdonoff S M 1979 AIAA J. 17 579

    [8]

    Verma S B 2003 Meas. Sci. Technol. 14 989

    [9]

    Chan S C, Clemens N T, Dolling D S 1995 AIAA Paper 1995-2195

    [10]

    Zheltovodov A A 2006 AIAA paper 2006-0496

    [11]

    Yi S H, He L, Tian L F, Zhao Y X 2010 Proceedings of the 14th Chinese National Symposium on Shock Waves Huangshan, July 2010 p29

    [12]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E: Tech. Sci. 52 3640

    [13]

    Yi S H, Tian L F, Zhao Y X, He L 2011 Adv. Mech. 41 379 (in Chinese) [易仕和, 田立丰, 赵玉新, 何霖 2011 力学进展 41 379]

    [14]

    Zhao Y X, Yi S H, He L, Cheng Z Y 2007 Chin. Sci. Bull. 52 1297

    [15]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489

    [16]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 57 584

    [17]

    Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702

    [18]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 物理学报 62 084219]

    [19]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [20]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 24704

  • [1]

    Pan H L, Ma H D, Wang Q 2008 Chin. J. Computat. Phys. 25 549 (in Chinese) [潘宏禄, 马汉东, 王强 2008 计算物理 25 549]

    [2]

    Wang S F, Xu Z Y 1997 Exp. Meas. Fluid Mech. 11 23 (in Chinese) [王世芬, 徐朝仪 1997 流体力学实验与测量 11 23]

    [3]

    Li S X, Chen Y K 2001 Proceedings of the 4th National Symposium on Flow Visualization 2001 p127

    [4]

    Cassel K W, Ruban A I, Walker J D A 1995 J. Fluid Mech. 300 265

    [5]

    Loginov M S, Adams N A, Zheltovodov A A 2006 J. Fluid Mech. 565 135

    [6]

    Gieseking D A, Edwards J R, Choi J I 2011 AIAA Paper 2011-5541

    [7]

    Settles G S, Fitzpatrick T J, Bogdonoff S M 1979 AIAA J. 17 579

    [8]

    Verma S B 2003 Meas. Sci. Technol. 14 989

    [9]

    Chan S C, Clemens N T, Dolling D S 1995 AIAA Paper 1995-2195

    [10]

    Zheltovodov A A 2006 AIAA paper 2006-0496

    [11]

    Yi S H, He L, Tian L F, Zhao Y X 2010 Proceedings of the 14th Chinese National Symposium on Shock Waves Huangshan, July 2010 p29

    [12]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E: Tech. Sci. 52 3640

    [13]

    Yi S H, Tian L F, Zhao Y X, He L 2011 Adv. Mech. 41 379 (in Chinese) [易仕和, 田立丰, 赵玉新, 何霖 2011 力学进展 41 379]

    [14]

    Zhao Y X, Yi S H, He L, Cheng Z Y 2007 Chin. Sci. Bull. 52 1297

    [15]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489

    [16]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 57 584

    [17]

    Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702

    [18]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 物理学报 62 084219]

    [19]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [20]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 24704

  • [1] Quan Peng-Cheng, Yi Shi-He, Wu Yu, Zhu Yang-Zhu, Chen Zhi. Experimental investigation of interactions between laminar or turbulent boundary layer and shock wave. Acta Physica Sinica, 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [2] Lian Qi-Xiang, Guo Hui. The sweep down flow and “contra-hairpin vortex” in a turbulent boundary layer. Acta Physica Sinica, 2004, 53(7): 2226-2232. doi: 10.7498/aps.53.2226
    [3] Zhang Yu, Guan Yu-Ping, Chen Zhao-Hui, Liu Hai-Long, Huang Rui-Xin. Intercomparison of one-dimensional detecting methods of unveiling the global ocean striations. Acta Physica Sinica, 2015, 64(14): 149201. doi: 10.7498/aps.64.149201
    [4] Yi Ming, Jin Wu-Yin, Ma Jun, Li Yan-Long. Control of spiral wave and turbulence in the time-varied reaction-diffusion system. Acta Physica Sinica, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [5] Lu He-Lin, Wang Shun-Jin. Zonal flow dynamics in background of ion-temperature-gradient mode turbulence based on minimal freedom model. Acta Physica Sinica, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [6] Mei Dong-Jie, Fan Bao-Chun, Huang Le-Ping, Dong Gang. Drag reduction in turbulent channel flow by spanwise oscillating Lorentz force. Acta Physica Sinica, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [7] Mei Dong-Jie, Fan Bao-Chun, Chen Yao-Hui, Ye Jing-Fang. Experimental investigation on turbulent channel flow utilizing spanwise oscillating Lorentz force. Acta Physica Sinica, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [8] Huang Mao-Jing, Bao Yun. Characteristics of flow and thermal boundary layer in turbulent Rayleigh-Bénard convection. Acta Physica Sinica, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [9] ZHANG XU, SHEN KE. THE TRANSVERSE PATTERN OF LASER OSCILLATION OUTPUT IN A RING CAVITY AND THE TRANSITION TO OPTICAL TURBULENCE. Acta Physica Sinica, 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
    [10] Ji Xiao-Ling. Effective radius of curvature of partially coherent flat-topped beam propagating through atmospheric turbulence. Acta Physica Sinica, 2010, 59(6): 3953-3958. doi: 10.7498/aps.59.3953
  • Citation:
Metrics
  • Abstract views:  631
  • PDF Downloads:  17561
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2013
  • Accepted Date:  16 May 2013
  • Published Online:  20 September 2013

Experimental investigations on structures of supersonic laminar/turbulent flow over a compression ramp

  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2009CB724100), the National Natural Science Foundation of China (Grant No. 11172326), the Scientific Research Program of National University of Defense Technology, China (Grant No. 0100010112001) and the Innovation Fund Program for Standout Graduate Students of NUDT, China (Grant No. B120103).

Abstract: Experimental investigations of supersonic laminar/turbulent flow over a compression ramp are carried out in a Mach 3.0 wind tunnel, the angles of ramp are 25 degrees and 28 degrees. Fine structures of holistic flow field and local regions are visualized via nanoparticle-tracer based planar laser scattering (NPLS) technique, some typical flow structures such as boundary layer, shear layer, separation shock, recirculation zone and reattachment shock are visible clearly, and the wall pressure coefficient of laminar flow is measured. The angle of separation shock and reattachment shock, the development of boundary layer after reattachment are measured by time-averaged flow field structures. The analyses of time-relevant NPLS images reveal the spatio temporal evolution characteristics of flow field. The experimental results indicate that when the ramp angle is 25 degrees, a typical separation appearing in the supersonic laminar flow with boundary layer increases and is converted into turbulence quickly, at the same time, a shock is induced by developing boundary layer; K-H vortexes, shear layer and compression waves arise in the flow field. But the supersonic turbulent flow does not show separation, and the turbulent boundary layer always adhers to the wall. When the ramp angle is 28 degrees, the range of recirculation zone expanded obviously in supersonic laminar flow which is separated further, induces shock and separation shock moves upstream, reattachment shock moves downstream. Therefore the structures of separated region is complicated. By comparison with laminar flow, the range of recirculation zone in supersonic turbulent flow is obviously small, boundary layer increases slowly, and there are not any induced shock, K-H vortexes, compression waves in the flow field. The structures of separated region is simple, but the strength of separation shock is much stronger.

Reference (20)

Catalog

    /

    返回文章
    返回