Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation and evolution of vacancy-type defects in nano-Cu films during plastic deformation by means molecular dynamics

Xu Shuang Guo Ya-Fang

Generation and evolution of vacancy-type defects in nano-Cu films during plastic deformation by means molecular dynamics

Xu Shuang, Guo Ya-Fang
PDF
Get Citation
  • Molecular dynamics simulations were performed to study the plastic deformation of Cu films under uniaxial tension. The generation and evolution mechanisms of vacancy-type defects were carefully studied. In the simulations, embedded atom method (EAM) was selected as the interatomic potential function. Simulation results indicate that the plastic deformation is due to the dislocation nucleation near free surfaces. Both the generation and evolution of vacancy-type defects are related to dislocation activities. Vacancy-type defects prefer to nucleate at the position of dislocation jogs and the intersection of stacking faults initially, and finally exist in the form of single vacancy, vacancy clusters and stacking-fault tetrahedrons.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11072026).
    [1]

    Arzt E 1998 Acta Mater. 46 5611

    [2]

    Arzt E, Dehm G, Gumbsch P, Kraft O, Weiss D 2001 Prog. Mater. Sci. 46 283

    [3]

    Greer J R, De Hosson J T M 2011 Prog. Mater. Sci. 56 654

    [4]

    Uchic M D, Shade P A, Dimiduk D M 2009 Ann. Rev. Mater. Res. 39 361

    [5]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [6]

    Su J F, Song H Y, An M R 2013 Acta Phys. Sin. 62 63103 (in Chinese) [苏锦芳, 宋海洋, 安敏荣 2013 物理学报 62 63103]

    [7]

    Jia M, Lai Y Q, Tian Z L, Liu Y X 2009 Acta Phys. Sin. 58 1139 (in Chinese) [贾明, 赖延清, 田忠良, 刘业翔 2009 物理学报 58 1139]

    [8]

    Kiritani M, Satoh Y, Kizuka Y, Arakawa K, Ogasawara Y, Arai S, Shimomura Y 1999 Phil. Mag. Lett. 79 797

    [9]

    Kolluri K, Gungor M R, Maroudas D 2007 Appl. Phys. Lett. 90 221907

    [10]

    Kolluri K, Gungor M R, Maroudas D 2009 Appl. Phys. Lett. 94 101911

    [11]

    Maroudas D, Kolluri K, Gungor M R 2009 J. Appl. Phys. 105 093515

    [12]

    Schiotz J, Leffers T, Singh B 2001 Phil. Mag. Lett. 81 301

    [13]

    Schiotz J, Leffers T, Singh B 2002 Radiat. Eff. Defect. S. 157 193

    [14]

    Shimomura Y, Kiritani M, Mukouda I 2003 Mater. Sci. Eng. A 350 238

    [15]

    Yuan L, Shan D, Guo B 2007 J. Mater. Process. Tech 184 1

    [16]

    Guo Q N, Yue X D, Yang S E, Huo Y P 2010 Comp. Mater. Sci. 50 319

    [17]

    Niewczas M, Hoagland R G 2009 Phil. Mag. Lett. 89 623

    [18]

    Fang B Q, Lu G, Zhang G C, Xu A G, Li Y J 2009 Acta Phys. Sin. 58 4862 (in Chinese) [方步青, 卢果, 张广财, 许爱国, 李英骏 2009 物理学报 58 4862]

    [19]

    Xu Z, Wang X X, Liang H Y, Wu H A 2004 Acta Phys. Sin. 53 3637 (in Chinese) [徐洲, 王秀喜, 梁海弋, 吴恒安 2004 物理学报 53 3637]

    [20]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [21]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [22]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [23]

    Silcox J, Hirsch P 1959 Phil. Mag. Lett. 4 72

  • [1]

    Arzt E 1998 Acta Mater. 46 5611

    [2]

    Arzt E, Dehm G, Gumbsch P, Kraft O, Weiss D 2001 Prog. Mater. Sci. 46 283

    [3]

    Greer J R, De Hosson J T M 2011 Prog. Mater. Sci. 56 654

    [4]

    Uchic M D, Shade P A, Dimiduk D M 2009 Ann. Rev. Mater. Res. 39 361

    [5]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [6]

    Su J F, Song H Y, An M R 2013 Acta Phys. Sin. 62 63103 (in Chinese) [苏锦芳, 宋海洋, 安敏荣 2013 物理学报 62 63103]

    [7]

    Jia M, Lai Y Q, Tian Z L, Liu Y X 2009 Acta Phys. Sin. 58 1139 (in Chinese) [贾明, 赖延清, 田忠良, 刘业翔 2009 物理学报 58 1139]

    [8]

    Kiritani M, Satoh Y, Kizuka Y, Arakawa K, Ogasawara Y, Arai S, Shimomura Y 1999 Phil. Mag. Lett. 79 797

    [9]

    Kolluri K, Gungor M R, Maroudas D 2007 Appl. Phys. Lett. 90 221907

    [10]

    Kolluri K, Gungor M R, Maroudas D 2009 Appl. Phys. Lett. 94 101911

    [11]

    Maroudas D, Kolluri K, Gungor M R 2009 J. Appl. Phys. 105 093515

    [12]

    Schiotz J, Leffers T, Singh B 2001 Phil. Mag. Lett. 81 301

    [13]

    Schiotz J, Leffers T, Singh B 2002 Radiat. Eff. Defect. S. 157 193

    [14]

    Shimomura Y, Kiritani M, Mukouda I 2003 Mater. Sci. Eng. A 350 238

    [15]

    Yuan L, Shan D, Guo B 2007 J. Mater. Process. Tech 184 1

    [16]

    Guo Q N, Yue X D, Yang S E, Huo Y P 2010 Comp. Mater. Sci. 50 319

    [17]

    Niewczas M, Hoagland R G 2009 Phil. Mag. Lett. 89 623

    [18]

    Fang B Q, Lu G, Zhang G C, Xu A G, Li Y J 2009 Acta Phys. Sin. 58 4862 (in Chinese) [方步青, 卢果, 张广财, 许爱国, 李英骏 2009 物理学报 58 4862]

    [19]

    Xu Z, Wang X X, Liang H Y, Wu H A 2004 Acta Phys. Sin. 53 3637 (in Chinese) [徐洲, 王秀喜, 梁海弋, 吴恒安 2004 物理学报 53 3637]

    [20]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [21]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [22]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [23]

    Silcox J, Hirsch P 1959 Phil. Mag. Lett. 4 72

  • [1] Zhang Yang, Zhang Jian-Hua, Wen Yu-Hua, Zhu Zi-Zhong. The deformation mechanism of nanofilm with void under tensile loading: An atomistic simulation study. Acta Physica Sinica, 2008, 57(11): 7094-7099. doi: 10.7498/aps.57.7094
    [2] Zhu Qi, Wang Sheng-Tao, Zhao Fu-Qi, Pan Hao. Effect of stacking fault tetrahedron on spallation of irradiated Cu via molecular dynamics study. Acta Physica Sinica, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [3] Lu Guo, Zhang Guang-Cai, Xu Ai-Guo, Fang Bu-Qing, Li Ying-Jun. Evolution of stacking-fault-tetrahedron-like structures in copper crystal. Acta Physica Sinica, 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [4] Wu Yan-Qing, Li Jin-Fu, Zhou Yao-He, Yan Zhi-Jie. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [5] Chen Xian-Miao, Song Shen-Hua. Non-equilibrium grain boundary segregation of phosphorous during high temperature plastic deformation. Acta Physica Sinica, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [6] Song Xu, Lu Yong-Jun, Shi Ming-Liang, Zhao Xiang, Wang Feng-Hui. Effects of plastic deformation in current collector on lithium diffusion and stress in bilayer lithium-ion battery electrode. Acta Physica Sinica, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [7] Zhang Jian-Min, Liu Ming-Xia, Huang Ping, Xu Ke-Wei. Characterization of Hall-Petch relation on microstructural parameter of softer sublayer and the hardness in nanomultilayers. Acta Physica Sinica, 2008, 57(4): 2363-2367. doi: 10.7498/aps.57.2363
    [8] Zhang Guang-Cai, Xu Ai-Guo, Zhao Yan-Hong, Yang Qi-Li, Li Ying-Jun. Molecular dynamics simulation of shock-induced collapse in single crystal copper with nano-void inclusion. Acta Physica Sinica, 2008, 57(2): 940-946. doi: 10.7498/aps.57.940
    [9] Ma Wen, Lu Yan-Wen. Molecular dynamics investigation of shock front in nanocrystalline copper. Acta Physica Sinica, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [10] Yang Jian-Qun, Ma Guo-Liang, Li Xing-Ji, Liu Chao-Ming, Liu Hai. Compressive behavior of nanocrystalline nickel at various temperatures and strain rates. Acta Physica Sinica, 2015, 64(13): 137103. doi: 10.7498/aps.64.137103
  • Citation:
Metrics
  • Abstract views:  589
  • PDF Downloads:  1615
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2013
  • Accepted Date:  26 June 2013
  • Published Online:  05 October 2013

Generation and evolution of vacancy-type defects in nano-Cu films during plastic deformation by means molecular dynamics

  • 1. Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11072026).

Abstract: Molecular dynamics simulations were performed to study the plastic deformation of Cu films under uniaxial tension. The generation and evolution mechanisms of vacancy-type defects were carefully studied. In the simulations, embedded atom method (EAM) was selected as the interatomic potential function. Simulation results indicate that the plastic deformation is due to the dislocation nucleation near free surfaces. Both the generation and evolution of vacancy-type defects are related to dislocation activities. Vacancy-type defects prefer to nucleate at the position of dislocation jogs and the intersection of stacking faults initially, and finally exist in the form of single vacancy, vacancy clusters and stacking-fault tetrahedrons.

Reference (23)

Catalog

    /

    返回文章
    返回