Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TDDFT studies on CO in a linear polarized femtosecond laser field

Wang Zhi-Ping Zhu Yun Wu Xin Wu Ya-Min

TDDFT studies on CO in a linear polarized femtosecond laser field

Wang Zhi-Ping, Zhu Yun, Wu Xin, Wu Ya-Min
PDF
Get Citation
  • We present a theoretical study on the ionization and excitation dynamics of CO in various linear-polarized laser fields with in the frame work of the time-dependent density functional theory (TDDFT), applied to valence electrons, coupled non-adiabatically with molecular dynamics of the ions. It is found that the stronger the laser intensity, the more the energies are absorbed by CO and the earlier the ionization takes place with more electrons emitted. Moreover, the bond length of CO is stretched associated with more violent contraction vibration. The dipole moment along the laser polarization is enlarged when the laser intensity is enhanced. This study on the influence of the polarization of laser pulse on the excitation of CO indicates that the ionization of CO is maximized and the contraction vibration becomes most violent when the laser is polarized along the molecular axis. Ionization is restrained when the polarization angle is increased and the dipole vibration shows a strong dependence on the laser polarization. Furthermore, it is found that the electron density surrounding the carbon atom is distributed along the molecular axis particularly when the dispersion of the electrons around the oxygen atom is greatly influenced by the laser polarization.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178032), the Fundamental Research Funds for the Central Universities (Grant No. 11A21), and the "Eleven Five" planning issues for higher education of Jiangsu province (Grant No. JS053).
    [1]

    Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408

    [2]

    Paulus G G, Lindner F, Walther H, Baltuska A, Goulielmakis E, Lezius M, Krausz F 2003 Phys. Rev. Lett. 91 253004

    [3]

    Fu Y Z, Zhao S F, Zhou X X 2012 China. Phys. B 21 113101

    [4]

    Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P Y 2010 Opt. Express 18 632

    [5]

    Saugout S, Cornaggia C 2006 Phys. Rev. A 73 041406

    [6]

    Lan P F, Lu P X, Li F, Li Y H, Yang Z Y 2008 Opt. Express 16 5868

    [7]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [8]

    Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M, Corkum P B 2003 Phys. Rev. Lett. 90 233003

    [9]

    Seideman T 1995 J. Chem. Phys. 103 887

    [10]

    Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883

    [11]

    Natan A, Lev U, Prabhudesai V S, Bruner B D, Strasser D, Schwalm D, Ben-Itzhak I, Heber O, Zajfman D, Silberberg Y 2012 Phys. Rev. A 86 043418

    [12]

    Stapelfeldt H, Seideman T 2003 Rev. Mod. Phys. 75 543

    [13]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [14]

    Jia X Y, Fan D H, Li W D, Chen J 2013 China. Phys. B 22 013303

    [15]

    Blokland J H, Riedel J, Putzke S 2011 J. Chem. Phys. 135 114201

    [16]

    De S, Znakovskaya I, Ray D, Anis F, JohnSon N G, Bocharova I A, Magrakvelidze M, Esry B D, Cocke C L, Litvinyuk I V, Kling M F 2009 Phys. Rev. Lett. 103 153002

    [17]

    Li H, Ray D, De S, Znakovskaya I, Cao W, Laurent G, Wang Z, Kling M F, Le A T, Cocke C L 2011 Phys. Rev. A 84 043429

    [18]

    Wu J, Schmidt L P H, Kunitski M, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Czasch A, Dörner R 2012 Phys. Rev. Lett. 108 183001

    [19]

    Liu Y Q, Liu X R, D Y K, Wu C Y, Jiang H B, Gong Q H 2011 Phys. Rev. Lett. 106 073004

    [20]

    Huang Y X, Xu S W, Yang X H 2012 Acta Phys. Sin. 61 243701 (in Chinese) [黄云霞, 徐淑武, 杨晓华 2012 物理学报 61 243701]

    [21]

    Gross E K U, Kohn W 1990 Adv. Quant. Chem. 21 255

    [22]

    Calvayrac F, Reinhard P G, Suraud E, Ullrich C A 2000 Phys. Rep. 337 493

    [23]

    Fennel T, Meiwes-Broer K H, Tiggesbáumker J, Reinhard P G, Dinh P M, Suraud E 2003 Rev. Mod. Phys. 82 1793

    [24]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [25]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703

    [26]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [27]

    Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115

    [28]

    Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum)

    [29]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

    [30]

    Bilalbegovié G 2008 Eur. Phys. J. D 49 43

    [31]

    Burnus T, Marques M A L, Gross E K U 2005 Phys. Rev. A 71 010501(R)

  • [1]

    Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408

    [2]

    Paulus G G, Lindner F, Walther H, Baltuska A, Goulielmakis E, Lezius M, Krausz F 2003 Phys. Rev. Lett. 91 253004

    [3]

    Fu Y Z, Zhao S F, Zhou X X 2012 China. Phys. B 21 113101

    [4]

    Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P Y 2010 Opt. Express 18 632

    [5]

    Saugout S, Cornaggia C 2006 Phys. Rev. A 73 041406

    [6]

    Lan P F, Lu P X, Li F, Li Y H, Yang Z Y 2008 Opt. Express 16 5868

    [7]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [8]

    Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M, Corkum P B 2003 Phys. Rev. Lett. 90 233003

    [9]

    Seideman T 1995 J. Chem. Phys. 103 887

    [10]

    Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883

    [11]

    Natan A, Lev U, Prabhudesai V S, Bruner B D, Strasser D, Schwalm D, Ben-Itzhak I, Heber O, Zajfman D, Silberberg Y 2012 Phys. Rev. A 86 043418

    [12]

    Stapelfeldt H, Seideman T 2003 Rev. Mod. Phys. 75 543

    [13]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [14]

    Jia X Y, Fan D H, Li W D, Chen J 2013 China. Phys. B 22 013303

    [15]

    Blokland J H, Riedel J, Putzke S 2011 J. Chem. Phys. 135 114201

    [16]

    De S, Znakovskaya I, Ray D, Anis F, JohnSon N G, Bocharova I A, Magrakvelidze M, Esry B D, Cocke C L, Litvinyuk I V, Kling M F 2009 Phys. Rev. Lett. 103 153002

    [17]

    Li H, Ray D, De S, Znakovskaya I, Cao W, Laurent G, Wang Z, Kling M F, Le A T, Cocke C L 2011 Phys. Rev. A 84 043429

    [18]

    Wu J, Schmidt L P H, Kunitski M, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Czasch A, Dörner R 2012 Phys. Rev. Lett. 108 183001

    [19]

    Liu Y Q, Liu X R, D Y K, Wu C Y, Jiang H B, Gong Q H 2011 Phys. Rev. Lett. 106 073004

    [20]

    Huang Y X, Xu S W, Yang X H 2012 Acta Phys. Sin. 61 243701 (in Chinese) [黄云霞, 徐淑武, 杨晓华 2012 物理学报 61 243701]

    [21]

    Gross E K U, Kohn W 1990 Adv. Quant. Chem. 21 255

    [22]

    Calvayrac F, Reinhard P G, Suraud E, Ullrich C A 2000 Phys. Rep. 337 493

    [23]

    Fennel T, Meiwes-Broer K H, Tiggesbáumker J, Reinhard P G, Dinh P M, Suraud E 2003 Rev. Mod. Phys. 82 1793

    [24]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [25]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703

    [26]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [27]

    Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115

    [28]

    Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum)

    [29]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

    [30]

    Bilalbegovié G 2008 Eur. Phys. J. D 49 43

    [31]

    Burnus T, Marques M A L, Gross E K U 2005 Phys. Rev. A 71 010501(R)

  • [1] Wang Zhi-Ping, Chen Jian, Wu Shou-Yu, Wu Ya-Min. Study of carbon atomic wire C5 in the laser field by time-dependent density functional theory. Acta Physica Sinica, 2013, 62(12): 123302. doi: 10.7498/aps.62.123302
    [2] Gu Bin, Cui Lei, Teng Yu-Yong, Hu Yong-Jin, Zhao Jiang, Zeng Xiang-Hua. Effect of different laser polarization direction on high order harmonic generation of nitrogen molecule——A simulation via TDDFT. Acta Physica Sinica, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [3] Wang Zhi-Ping, Zhu Yun, Wu Ya-Min, Zhang Xiu-Mei. Time-dependent density functional theory studies of dynamics of hydroxy by proton impact. Acta Physica Sinica, 2014, 63(2): 023401. doi: 10.7498/aps.63.023401
    [4] Wang Zhi-Ping, Wu Ya-Min, Lu Chao, Zhang Xiu-Mei, He Yue-Juan. Irradiation of the water molecule by the femtosecond laser field. Acta Physica Sinica, 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [5] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [6] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [7] Zhang Hong, Yin Hai-Feng, Zhang Kai-Biao, Lin Jia-He. Progress of surface plasmon research based on time-dependent density functional theory. Acta Physica Sinica, 2015, 64(7): 077303. doi: 10.7498/aps.64.077303
    [8] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [9] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [10] Dong Qi-Qi, Hu Hai-Bao, Chen Shao-Qiang, He Qiang, Bao Lu-Yao. Molecular dynamics simulation of freezing process of water droplets impinging on cold surface. Acta Physica Sinica, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [11] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [12] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [13] Ma Ying. Variable charge molecular dynamics simulation of vitreous silica. Acta Physica Sinica, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [14] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [15] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [16] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [17] Zhou Nai-Gen, Zhou Lang. Conditions for formation of misfit dislocation in epitaxial films — a molecular dynamics study. Acta Physica Sinica, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [18] Lin Li-Bin, Luo Jin, He Hong-Liang, Zhu Wen-Jun, Jing Fu-Qian. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting. Acta Physica Sinica, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
    [19] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [20] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
  • Citation:
Metrics
  • Abstract views:  354
  • PDF Downloads:  284
  • Cited By: 0
Publishing process
  • Received Date:  30 July 2013
  • Accepted Date:  10 September 2013
  • Published Online:  05 December 2013

TDDFT studies on CO in a linear polarized femtosecond laser field

  • 1. School of Science, JiangNan University, Wuxi 214122, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61178032), the Fundamental Research Funds for the Central Universities (Grant No. 11A21), and the "Eleven Five" planning issues for higher education of Jiangsu province (Grant No. JS053).

Abstract: We present a theoretical study on the ionization and excitation dynamics of CO in various linear-polarized laser fields with in the frame work of the time-dependent density functional theory (TDDFT), applied to valence electrons, coupled non-adiabatically with molecular dynamics of the ions. It is found that the stronger the laser intensity, the more the energies are absorbed by CO and the earlier the ionization takes place with more electrons emitted. Moreover, the bond length of CO is stretched associated with more violent contraction vibration. The dipole moment along the laser polarization is enlarged when the laser intensity is enhanced. This study on the influence of the polarization of laser pulse on the excitation of CO indicates that the ionization of CO is maximized and the contraction vibration becomes most violent when the laser is polarized along the molecular axis. Ionization is restrained when the polarization angle is increased and the dipole vibration shows a strong dependence on the laser polarization. Furthermore, it is found that the electron density surrounding the carbon atom is distributed along the molecular axis particularly when the dispersion of the electrons around the oxygen atom is greatly influenced by the laser polarization.

Reference (31)

Catalog

    /

    返回文章
    返回