Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling

Tang Jian Liu Ai-Ping Li Pei-Gang Shen Jing-Qin Tang Wei-Hua

Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling

Tang Jian, Liu Ai-Ping, Li Pei-Gang, Shen Jing-Qin, Tang Wei-Hua
PDF
Get Citation
  • The colloidal gold nanoparticles (AuNP) are synthesized by the classic Frens' method, and the sandwich-structured AuNP/graphene oxide/AuNP (AuNP/GO/AuNP) composite materials are constructed on the phosphorus doped diamond-like carbon film by the interface self-assembling. The surface enhanced Raman scattering behaviors of the AuNP/GO/AuNP composites are investigated by using the rhodamine B (RhB) as the probe molecules. Our results indicate that the Raman intensity of RhB obtained from the AuNP/GO/AuNP composites shows a 16.5-fold increase over that from the AuNP monolayer due to the coupled effect of chemical enhancement of GO and localized electromagnetic field enhancement of plasmonic gold. The designed composite materials with metal/GO/metal sandwich configuration exhibit great potential applications in biochemical analysis, environmental monitoring, disease controlling, and food safety.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 61274017, 51172208), the 521 Talents Training Program of Zhejiang Sci-Tech University, China (Grant No. 20132), the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, China (Grant No. 2013693), and the Selected Scientific Research Program for Overseas Chinese Scholar of Zhejiang Province, China (Grant No. 2012323).
    [1]

    Ling X, Xie L M, Fang Y, Xu H, Zhang H L, Kong J, Dresselhaus M S, Zhang J, Liu Z F 2010 Nano Lett. 10 553

    [2]

    He S J, Liu K K, Su S, Yan J, Mao X H, Wang D F, He Y, Li L J, Song S P, Fan C H 2012 Anal. Chem. 84 4622

    [3]

    Chon H, Lee S, Yoon S Y, Chang S I, Lim D W, Choo J 2011 Chem. Commun. 47 12515

    [4]

    Fang C, Wu G Z 2011 Acta Phys. Sin. 60 033301 (in Chinese) [房超, 吴国祯 2011 物理学报 60 033301]

    [5]

    Huang Q, Xiong S Z, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 157801 (in Chinese) [黄茜, 熊绍珍, 赵颖, 张晓丹 2012 物理学报 61 157801]

    [6]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357

    [7]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318

    [8]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [9]

    Wei H, Xu H X 2013 Nanoscale 5 10794

    [10]

    Chen L, Wei H, Chen K Q, Xu H X 2014 Chin. Phys. B 23 027303

    [11]

    Zhou X, Fang J S, Yang D W, Liao X P 2012 Chin. Phys. B 21 084202

    [12]

    Deng C Y, Zhang G L, Zou B, Shi H L, Liang Y J, Li Y C, Fu J X, Wang W Z 2013 Chin. Phys. B 22 106102

    [13]

    Yu X X, Cai H B, Zhang W H, Li X J, Pan N, Luo Y, Wang X P, Hou J G 2011 ACS Nano 5 952

    [14]

    Zhang R, Xiao X Z, L C, Luo Y, Xu Y 2014 Acta Phys. Sin. 63 014206 (in Chinese) [张然, 肖鑫泽, 吕超, 骆杨, 徐颖 2014 物理学报 63 014206]

    [15]

    Zhang L, Lang X Y, Hirata A, Chen M W 2011 ACS Nano 5 4407

    [16]

    Ren W, Fang Y X, Wang E K 2011 ACS Nano 5 6425

    [17]

    Xie H N, Larmour I A, Smith W E, Faulds K, Graham D 2012 J. Phys. Chem. 116 8338

    [18]

    Chandra M, Dowgiallo A M, Knappenberger K L 2010 J. Am. Chem. Soc. 132 15782

    [19]

    Sun Z H, Wang H Y, Wang H, Zhang Z D, Zhang Z Y 2012 Acta Phys. Sin. 61 125202 (in Chinese) [孙中华, 王红艳, 王辉, 张志东, 张中月 2012 物理学报 61 125202]

    [20]

    Wu M C, Yi C, Chuang C M, Hsu C P, Lin J F, Chen Y F, Su Y F 2009 ACS Appl. Mater. Interfaces 1 2848

    [21]

    Wu Q S, Zhao Y, Zhang C B, Li F 2005 Acta Phys. Sin. 54 1452 (in Chinese) [吴青松, 赵岩, 张彩碚, 李峰 2005 物理学报 54 1452]

    [22]

    Ramon A P, Cui B, Pablo J B V, Teodor V, Fenniri H 2007 J. Phys. Chem. 111 6720

    [23]

    Li Z Y, William M T, William F S, David L N, Williams R S 2007 Langmuir 23 5315

    [24]

    Huh S, Park J, Kim Y S, Kim K S, Hong B H, Nam J M 2011 ACS Nano 5 9799

    [25]

    Xu W G, Ling X, Xiao J Q, Dresselhaus M S, Kong J, Xu H X, Liu Z F, Zhang J 2012 PNAS 109 9281

    [26]

    Kim Y K, Han S W, Min D H 2012 ACS Appl. Mater. Interfaces 4 6545

    [27]

    Liu A P, Xu T, Ren Q H, Yuan M, Dong W J, Tang W H 2012 Electrochem. Commun. 25 74

    [28]

    Lin S T, Franklin M T, Kenneth J K 1986 Langmuir 2 259

    [29]

    Liu A P, Ren Q H, Xu T, Yuan M, Tang W H 2012 Sens. Actuators. B 162 135

    [30]

    Hummers W S, Offema R E 1958 J. Am. Chem. Soc. 80 1339

    [31]

    Wang Z L, Mohamed M B, Link S, El-Sayed M A 1999 Surf. Sci. 440 L809

    [32]

    Uosaki K, Shen Y, Kondo T 1995 J. Phys. Chem. 99 14117

    [33]

    Shigeru W, Hideki S, Katsuhira Y, Kouichi K, Tsugio T, Hisayoshi S 2005 Tetra. Lett. 46 8827

    [34]

    Zhang J T, Li X L, Sun X M, Li Y D 2005 J. Phys. Chem. B 109 12544

  • [1]

    Ling X, Xie L M, Fang Y, Xu H, Zhang H L, Kong J, Dresselhaus M S, Zhang J, Liu Z F 2010 Nano Lett. 10 553

    [2]

    He S J, Liu K K, Su S, Yan J, Mao X H, Wang D F, He Y, Li L J, Song S P, Fan C H 2012 Anal. Chem. 84 4622

    [3]

    Chon H, Lee S, Yoon S Y, Chang S I, Lim D W, Choo J 2011 Chem. Commun. 47 12515

    [4]

    Fang C, Wu G Z 2011 Acta Phys. Sin. 60 033301 (in Chinese) [房超, 吴国祯 2011 物理学报 60 033301]

    [5]

    Huang Q, Xiong S Z, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 157801 (in Chinese) [黄茜, 熊绍珍, 赵颖, 张晓丹 2012 物理学报 61 157801]

    [6]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357

    [7]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318

    [8]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [9]

    Wei H, Xu H X 2013 Nanoscale 5 10794

    [10]

    Chen L, Wei H, Chen K Q, Xu H X 2014 Chin. Phys. B 23 027303

    [11]

    Zhou X, Fang J S, Yang D W, Liao X P 2012 Chin. Phys. B 21 084202

    [12]

    Deng C Y, Zhang G L, Zou B, Shi H L, Liang Y J, Li Y C, Fu J X, Wang W Z 2013 Chin. Phys. B 22 106102

    [13]

    Yu X X, Cai H B, Zhang W H, Li X J, Pan N, Luo Y, Wang X P, Hou J G 2011 ACS Nano 5 952

    [14]

    Zhang R, Xiao X Z, L C, Luo Y, Xu Y 2014 Acta Phys. Sin. 63 014206 (in Chinese) [张然, 肖鑫泽, 吕超, 骆杨, 徐颖 2014 物理学报 63 014206]

    [15]

    Zhang L, Lang X Y, Hirata A, Chen M W 2011 ACS Nano 5 4407

    [16]

    Ren W, Fang Y X, Wang E K 2011 ACS Nano 5 6425

    [17]

    Xie H N, Larmour I A, Smith W E, Faulds K, Graham D 2012 J. Phys. Chem. 116 8338

    [18]

    Chandra M, Dowgiallo A M, Knappenberger K L 2010 J. Am. Chem. Soc. 132 15782

    [19]

    Sun Z H, Wang H Y, Wang H, Zhang Z D, Zhang Z Y 2012 Acta Phys. Sin. 61 125202 (in Chinese) [孙中华, 王红艳, 王辉, 张志东, 张中月 2012 物理学报 61 125202]

    [20]

    Wu M C, Yi C, Chuang C M, Hsu C P, Lin J F, Chen Y F, Su Y F 2009 ACS Appl. Mater. Interfaces 1 2848

    [21]

    Wu Q S, Zhao Y, Zhang C B, Li F 2005 Acta Phys. Sin. 54 1452 (in Chinese) [吴青松, 赵岩, 张彩碚, 李峰 2005 物理学报 54 1452]

    [22]

    Ramon A P, Cui B, Pablo J B V, Teodor V, Fenniri H 2007 J. Phys. Chem. 111 6720

    [23]

    Li Z Y, William M T, William F S, David L N, Williams R S 2007 Langmuir 23 5315

    [24]

    Huh S, Park J, Kim Y S, Kim K S, Hong B H, Nam J M 2011 ACS Nano 5 9799

    [25]

    Xu W G, Ling X, Xiao J Q, Dresselhaus M S, Kong J, Xu H X, Liu Z F, Zhang J 2012 PNAS 109 9281

    [26]

    Kim Y K, Han S W, Min D H 2012 ACS Appl. Mater. Interfaces 4 6545

    [27]

    Liu A P, Xu T, Ren Q H, Yuan M, Dong W J, Tang W H 2012 Electrochem. Commun. 25 74

    [28]

    Lin S T, Franklin M T, Kenneth J K 1986 Langmuir 2 259

    [29]

    Liu A P, Ren Q H, Xu T, Yuan M, Tang W H 2012 Sens. Actuators. B 162 135

    [30]

    Hummers W S, Offema R E 1958 J. Am. Chem. Soc. 80 1339

    [31]

    Wang Z L, Mohamed M B, Link S, El-Sayed M A 1999 Surf. Sci. 440 L809

    [32]

    Uosaki K, Shen Y, Kondo T 1995 J. Phys. Chem. 99 14117

    [33]

    Shigeru W, Hideki S, Katsuhira Y, Kouichi K, Tsugio T, Hisayoshi S 2005 Tetra. Lett. 46 8827

    [34]

    Zhang J T, Li X L, Sun X M, Li Y D 2005 J. Phys. Chem. B 109 12544

  • [1] Li Jin-Hua, Zhang Si-Nan, Zhai Ying-Jiao, Ma Jian-Gang, Fang Wen-Hui, Zhang Yu. Development and application of MoS2 and its metal composite surface enhanced Raman scattering substrates. Acta Physica Sinica, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [2] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [3] Huang Qian, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying, Wang Jing. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [4] Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film. Acta Physica Sinica, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [5] Qin Kang, Yuan Lie-Rong, Tan Jun, Peng Sheng, Wang Qian-Jin, Zhang Xue-Jin, Lu Yan-Qing, Zhu Yong-Yuan. Surface-enhanced Raman scattering of subwavelength metallic structures. Acta Physica Sinica, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [6] Huang Qian, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon. Acta Physica Sinica, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [7] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [8] Guo Xu-Dong, Tang Jun, Liu Wen-Yao, Guo Hao, Fang Guo-Cheng, Zhao Miao-Miao, Wang Lei, Xia Mei-Jing, Liu Jun. Application of cone-cylinder combined fiber probe to surface enhanced Raman scattering. Acta Physica Sinica, 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [9] Zhang Ran, Xiao Xin-Ze, Lü Chao, Luo Yang, Xu Ying. Assembling of gold nanorods by femtosecond laser fabrication. Acta Physica Sinica, 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
    [10] Yang Xiao-Xia, Kong Xiang-Tian, Dai Qing. Optical properties of graphene plasmons and their potential applications. Acta Physica Sinica, 2015, 64(10): 106801. doi: 10.7498/aps.64.106801
  • Citation:
Metrics
  • Abstract views:  974
  • PDF Downloads:  949
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2013
  • Accepted Date:  08 February 2014
  • Published Online:  20 May 2014

Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling

  • 1. Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
  • 2. State Key Laboratory of Information Photonics and Optical Communication, School of Science, Beijing University Posts and Telecommunications, Beijing 100876, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 61274017, 51172208), the 521 Talents Training Program of Zhejiang Sci-Tech University, China (Grant No. 20132), the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, China (Grant No. 2013693), and the Selected Scientific Research Program for Overseas Chinese Scholar of Zhejiang Province, China (Grant No. 2012323).

Abstract: The colloidal gold nanoparticles (AuNP) are synthesized by the classic Frens' method, and the sandwich-structured AuNP/graphene oxide/AuNP (AuNP/GO/AuNP) composite materials are constructed on the phosphorus doped diamond-like carbon film by the interface self-assembling. The surface enhanced Raman scattering behaviors of the AuNP/GO/AuNP composites are investigated by using the rhodamine B (RhB) as the probe molecules. Our results indicate that the Raman intensity of RhB obtained from the AuNP/GO/AuNP composites shows a 16.5-fold increase over that from the AuNP monolayer due to the coupled effect of chemical enhancement of GO and localized electromagnetic field enhancement of plasmonic gold. The designed composite materials with metal/GO/metal sandwich configuration exhibit great potential applications in biochemical analysis, environmental monitoring, disease controlling, and food safety.

Reference (34)

Catalog

    /

    返回文章
    返回