Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Current reflearch and future development of organic laser materials and devices

Zhang Qi Zeng Wen-Jin Xia Rui-Dong

Current reflearch and future development of organic laser materials and devices

Zhang Qi, Zeng Wen-Jin, Xia Rui-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Laser has been widely applied in the scientific and industrial areas, including materials, medicine, military and telecommunications, due to its extreflely well-defined frequency, narrow divergence and high intensity. In reflent fifty years, various laser sources have been developed. The laser output power, pulse duration, and attainable wavelengths have been greatly improved. To date, further optimization on laser is mainly focused on the three aspects: an effective gain medium capable of amplifying light, a convenient pump source, and a high efficient resonator (or cavity). Among these aspects, the gain medium plays a very important role in the generation of efficient and high-quality laser. Lots of laser materials have been explored and developed, among them, organic laser materials, small molecules or polymers based on -conjugated structure, have been attracting more and more attention in the current reflearch of high efficiency laser. Organic laser have advantages such as simple fabrication, low cost, easy integration, and so on. Although the organic lasers with optical pump source have been extensively reflearched, the issues how to achieve electrically pumped organic lasers, or the so-called organic laser diodes, still remain unsolved. Nevertheless, the prospects of organic laser are very promising, such as its application in spectroscopy, chemical sensor (e.g. trinitrotoluene or DNA sequences) and short-haul data communication. In this review, we try to draw a picture of the organic laser reflearch form its first appearence till the end of 2014, with emphasis on the latest progress and variation trends, instead of providing a complete survey of organic laser reflearch. In the first part of this paper, different types of organic materials used for lasers are briefly reviewed. First, basic rules for the selection of suitable materials for organic lasing are summaried as: 1) the appropriate energy level distribution for creating four-level systems; 2) a high-stimulated emission cross-section e, which should affect the gain and threshold; 3) an appropriate radius for host-guest blend if energy transfer system is applied; 4) the low stokes shift to reduce the pump energy converted into heat; 5) a low excited-state absorption to reduce the self-absorbance loss; 6) a low intersystem crossing rate and a low triplet-triplet absorption cross-section to eventually lower the triplet lifetime; 7) a high photoluminescence efficiency in solid-state, i.e. a low - packing; 8) the good stability against oxygen and moisture and photo stability against pump light. Such organic gain media are classified into dyes, semiconductors, and new-concept materials. The active host-guest system is also discussed, which is different from the dispersion chromophore in the inert matrix (e.g. PMMA). This energy transfer strategy has been well proved to be effective to improve the absorption of pump energy and move the absorption band away from the emission band. It is possible, therefore, to reduce the self-absorbance loss to lower the threshold of lasing. In the second part, different geometries and features of the most commonly used cavity are discussed to investigate the dynamic balance between the gain and loss inside the lasing operating system. We divide the resonator structures into the catalogs of planar waveguides, curved surface cavities, and vertical external cavity solid organic larers (VECSOL). The widely used types of planar waveguides are DFB and DBR. The lasing thresholds of these structures areflextreflely low and their emission wavelength can be tuned by changing the thickness of the organic layer or the period of the modulation. In the third part, current progress and future reflearch direction of the organic lasers are summarized. The challenge of electrically pumped organic laser (or organic laser diode) remains to be the major driving force for the scientific community to be devoted to the reflearch of organic lasers. Estimation of operating current based on the optical-pumped laser data is only 100 Acm-2. Actually, very high current densities of the order of kA cm-2 (even higher) have been realized both in pulsed OLEDs and light-emitting field-effect transistor (LEFET) devices. But lasing is still not observed. The extra losses brought about by electrical driving can be summarized as follows: 1) the electrodes used for electrical injection; 2) the charge carriers with broad absorption bands overlapping the emission; 3) the triplet excitons with longer lifetime and higher creation probability ratio. LEFET is now the most promising device structure of organic laser diodes. Unfortunately, LEFET is not applicable for dealing with the triplet trouble which is inherent in the organic materials. The proposition of new concept on directly pumped organic lasers seems to be an alternative way to solve this problem. Finally, we would like to describe the reflent progress in optically pumped organic lasers briefly. Efforts which have been made can be summarized as follows: lowering the lasing threshold, increasing the wavelength coverage (to the deep red or infrared and to the ultraviolet), improving the wavelength sensitivity, enhancing the lifetime of the devices, or improving the conversion efficiency, output power and beam quality. Although these progresses are realized under the condition of optical pumping, all these achievements are meaningful since they constitute the bases of future organic laser diodes.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376023, 61136003), the National Basic Resesarch program of China(Grant No. 2015CB932203), the Program for Changjiang Scholars and Innovative Research Teams in the Universities of Jiangsu Province, China (Grant No. IRT1148), the Priority Academic Program Development Fund of Jiangsu Higher Education Institutions (PAPD) and the Natural Science Foundation of Nanjing University of Posts and Telecommunications, China (Grant Nos. NY212013, NY212034).
    [1]

    Maiman T H 1960 Nature 187 493

    [2]

    Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687

    [3]

    Schafer F P, Schmidt W, Volze J 1966 Appl. Phys. Lett. 9 306

    [4]

    Soffer B H, McFarlan.Bb 1967 Appl. Phys. Lett. 10 266

    [5]

    Tang C W, Vanslyke S A 1987 Appl. Phys. Lett. 51 913

    [6]

    Yang J S, Swager T M 1998 JACS 120 11864

    [7]

    Rose A, Zhu Z G, Madigan C F, Swager T M, Bulovic V 2005 Nature 434 876

    [8]

    Gaylord B S, Heeger A J, Bazan G C 2003 JACS 125 896

    [9]

    Tang Y L, He F, Yu M H, Feng F D, An L L, Sun H, Wang S, Li Y L, Zhu D B 2006 Macromol. Rapid Commun. 27 389

    [10]

    Vannahme C, Klinkhammer S, Lemmer U, Mappes T 2011 Opt. Express 19 8179

    [11]

    Amarasinghe D, Ruseckas A, Turnbull G A, Samuel I D W 2009 Proc. IEEE 97 1637

    [12]

    Hide F, DiazGarcia M A, Schwartz B J, Andersson M R, Pei Q B, Heeger A J 1996 Science 273 1833

    [13]

    Tessler N, Denton G J, Friend R H 1996 Nature 382 695

    [14]

    Rauscher U, Bassler H, Bradley D D C, Hennecke M 1990 Physical Review B 42 9830

    [15]

    Rudenko A I, Bassler H 1991 Chem. Phys. Lett. 182 581

    [16]

    Kersting R, Lemmer U, Mahrt R F, Leo K, Kurz H, Bassler H, Gobel E O 1993 Phys. Rev. Lett. 70 3820

    [17]

    Samuel I D W, Crystall B, Rumbles G, Burn P L, Holmes A B, Friend R H 1993 Synth. Met. 54 281

    [18]

    Kozlov V G, Bulovic V, Burrows P E, Forrest S R 1997 Nature 389 362

    [19]

    Gupta R, Stevenson M, Heeger A J 2002 J. Appl. Phys. 92 4874

    [20]

    Dogariu A, Gupta R, Heeger A J, Wang H 1999 Synth. Met. 100 95

    [21]

    Kozlov V G, Bulovic V, Burrows P E, Baldo M, Khalfin V B, Parthasarathy G, Forrest S R, You Y, Thompson M E 1998 J. Appl. Phys. 84 4096

    [22]

    Sheridan A K, Buckley A R, Fox A M, Bacher A, Bradley D D C, Samuel I D W 2002 J. Appl. Phys. 92 6367

    [23]

    Brouwer H J, Krasnikov V V, Hilberer A, Wildeman J, Hadziioannou G 1995 Appl. Phys. Lett. 66 3404

    [24]

    Rabe T, Hoping M, Schneider D, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P, Nehls B S, Scherf U, Farrell T, Riedl T 2005 Adv. Funct. Mater. 15 1188

    [25]

    Peterson O G, Webb J P, McColgin W C, Eberly J H 1971 J. Appl. Phys. 42 1917

    [26]

    Lehnhardt M, Riedl T, Weimann T, Kowalsky W 2010 Physical Review B 81 165206

    [27]

    Giebink N C, Forrest S R 2009 Physical Review B 79 073302

    [28]

    Gritsai Y, Sakhno O, Goldenberg L M, Stumpe J 2014 J. Opt. 16 035103

    [29]

    Ahmad M, King T A, Ko D K, Cha B H, Lee J 2002 Journal of Physics D-Applied Physics 35 1473

    [30]

    Faloss M, Canva M, Georges P, Brun A, Chaput F, Boilot J P 1997 Appl. Opt. 36 6760

    [31]

    Rahn M D, King T A 1995 Appl. Opt. 34 8260

    [32]

    Yariv E, Reisfeld R 1999 Opt. Mater. 13 49

    [33]

    Liu L, Huang W, Diao Z, Peng Z, Mu Q Q, Liu Y, Yang C, Hu L, Xuan L 2014 Liq. Cryst. 41 145

    [34]

    Kozlov V G, Bulovic V, Forrest S R 1997 Appl. Phys. Lett. 71 2575

    [35]

    Bernanose A, Comte M, Vouaux P 1953 J. Chim. Phys. Phys.-Chim. Biol. 50 64

    [36]

    Pope M, Magnante P, Kallmann H P 1963 J. Chem. Phys. 38 2042

    [37]

    Tang C W, Vanslyke S A, Chen C H 1989 J. Appl. Phys. 65 3610

    [38]

    Forget S, Chenais S, Tondelier D, Geffroy B, Gozhyk I, Lebental M, Ishow E 2010 J. Appl. Phys. 108 064509

    [39]

    Ishow E, Brosseau A, Clavier G, Nakatani K, Tauc P, Fiorini-Debuisschert C, Neveu S, Sandre O, Leaustic A 2008 Chem. Mater. 20 6597

    [40]

    Rabbani-Haghighi H, Forget S, Chenais S, Siove A, Castex M-C, Ishow E 2009 Appl. Phys. Lett. 95 033305

    [41]

    Jordan G, Flammich M, Ruther M, Kobayashi T, Blau W J, Suzuki Y, Kaino T 2006 Appl. Phys. Lett. 88 161114

    [42]

    Ribierre J C, Tsiminis G, Richardson S, Turnbull G A, Samuel I D W, Barcena H S, Burn P L 2007 Appl. Phys. Lett. 91 081108

    [43]

    Xia R, Lai W-Y, Levermore P A, Huang W, Bradley D D C 2009 Adv. Funct. Mater. 19 2844

    [44]

    Nakanotani H, Akiyama S, Ohnishi D, Moriwake M, Yahiro M, Yoshihara T, Tobita S, Adachi C 2007 Adv. Funct. Mater. 17 2328

    [45]

    Schneider D, Rabe T, Riedl T, Dobbertin T, Kroger M, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P 2004 Appl. Phys. Lett. 85 1659

    [46]

    Johansson N, Salbeck J, Bauer J, Weissortel F, Broms P, Andersson A, Salaneck W R 1998 Adv. Mater. 10 1136

    [47]

    Berggren M, Dodabalapur A, Slusher R E 1997 Appl. Phys. Lett. 71 2230

    [48]

    Heeger A J 2001 Rev. Mod. Phys. 73 681

    [49]

    Chen Y, Herrnsdorf J, Guilhabert B, Kanibolotsky A L, Mackintosh A R, Wang Y, Pethrick R A, Gu E, Turnbull G A, Skabara P J, Samuel I D W, Laurand N, Dawson M D 2011 Org. Electron. 12 62

    [50]

    Holzer W, Penzkofer A, Pertsch T, Danz N, Brauer A, Kley E B, Tillmann H, Bader C, Horhold H H 2002 Applied Physics B-Lasers and Optics 74 333

    [51]

    Scherf U, Riechel S, Lemmer U, Mahrt R F 2001 Current Opinion in Solid State & Materials Science 5 143

    [52]

    Heliotis G, Xia R, Bradley D D C, Turnbull G A, Samuel I D W, Andrew P, Barnes W L 2003 Appl. Phys. Lett. 83 2118

    [53]

    Leclerc M 2001 Journal of Polymer Science Part a-Polymer Chemistry 39 2867

    [54]

    Yap B K, Xia R, Campoy-Quiles M, Stavrinou P N, Bradley D D C 2008 Nat. Mater. 7 376

    [55]

    Xia R, Stavrinou P N, Bradley D D C, Kim Y 2012 J. Appl. Phys. 111 123107

    [56]

    Xia R D, Campoy-Quiles M, Heliotis G, Stavrinou P, Whitehead K S, Bradley D D C 2005 Synth. Met. 155 274

    [57]

    Lin J-Y, Zhu W-S, Liu F, Xie L-H, Zhang L, Xia R, Xing G-C, Huang W 2014 Macromolecules 47 1001

    [58]

    Coles H, Morris S 2010 Nat. Photonics 4 676

    [59]

    Munoz A, Palffy-Muhoray P, Taheri B 2001 Opt. Lett. 26 804

    [60]

    Gather M C, Yun S H 2011 Nat. Photonics 5 406

    [61]

    Meech S 2011 Nat. Photonics 5 387

    [62]

    Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin M K, Graetzel M 2013 Nature 499 316

    [63]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [64]

    Service R F 2014 Science 344 458

    [65]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Graetzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [66]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476

    [67]

    Gwinner M C, Khodabakhsh S, Song M H, Schweizer H, Giessen H, Sirringhaus H 2009 Adv. Funct. Mater. 19 1360

    [68]

    Deshpande A V, Rane J R, Jathar L V 2009 Journal of Fluorescence 19 1083

    [69]

    Chang C C, Pai C L, Chen W C, Jenekhe S A 2005 Thin Solid Films 479 254

    [70]

    Ding I K, Melas-Kyriazi J, Cevey-Ha N-L, Chittibabu K G, Zakeeruddin S M, Graetzel M, McGehee M D 2010 Org. Electron. 11 1217

    [71]

    Yoshioka Y, Jabbour G E 2006 Synth. Met. 156 779

    [72]

    Gaertner C, Karnutsch C, Lemmer U, Pflumm C 2007 J. Appl. Phys. 101 023107

    [73]

    List E J W, Kim C H, Naik A K, Scherf U, Leising G, Graupner W, Shinar J 2001 Physical Review B 64 155204

    [74]

    List E J W, Scherf U, Mullen K, Graupner W, Kim C H, Shinar J 2002 Physical Review B 66 235203

    [75]

    Osterbacka R, Wohlgenannt M, Shkunov M, Chinn D, Vardeny Z V 2003 J. Chem. Phys. 118 8905

    [76]

    Kraabel B, Klimov V I, Kohlman R, Xu S, Wang H L, McBranch D W 2000 Physical Review B 61 8501

    [77]

    Koschorreck M, Gehlhaar R, Lyssenko V G, Swoboda M, Hoffmann M, Leo K 2005 Appl. Phys. Lett. 87 181108

    [78]

    Samuel I D W, Turnbull G A 2007 Chem. Rev. 107 1272

    [79]

    McGehee M D, Diaz-Garcia M A, Hide F, Gupta R, Miller E K, Moses D, Heeger A J 1998 Appl. Phys. Lett. 72 1536

    [80]

    Coulson C A 1948 Proc. Phys. Soc. London 60 257

    [81]

    Ruseckas A, Theander M, Valkunas L, Andersson M R, Inganas O, Sundstrom V 1998 J. Lumin. 76-7 474

    [82]

    Denton G J, Tessler N, Harrison N T, Friend R H 1997 Phys. Rev. Lett. 78 733

    [83]

    Frolov S V, Vardeny Z V, Yoshino K 1998 Physical Review B 57 9141

    [84]

    Shaklee K L, Leheny R F 1971 Appl. Phys. Lett. 18 475

    [85]

    McGehee M D, Gupta R, Veenstra S, Miller E K, Diaz-Garcia M A, Heeger A J 1998 Physical Review B 58 7035

    [86]

    Xia R D, Heliotis G, Bradley D D C 2003 Appl. Phys. Lett. 82 3599

    [87]

    Berggren M, Dodabalapur A, Slusher R E, Bao Z 1997 Nature 389 466

    [88]

    Moses D 1992 Appl. Phys. Lett. 60 3215

    [89]

    Xia R D, Heliotis G, Hou Y B, Bradley D D C 2003 Org. Electron. 4 165

    [90]

    Kogelnik H, Shank C V 1972 J. Appl. Phys. 43 2327

    [91]

    Rabe T, Gerlach K, Riedl T, Johannes H H, Kowalsky W, Niederhofer J, Gries W, Wang J, Weimann T, Hinze P, Galbrecht F, Scherf U 2006 Appl. Phys. Lett. 89 081115

    [92]

    Riedl T, Rabe T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P, Nehls B, Farrell T, Scherf U 2006 Appl. Phys. Lett. 88 241116

    [93]

    Pisignano D, Anni M, Gigli G, Cingolani R, Barbarella G, Favaretto L, Sotgiu G B V 2003 Synth. Met. 137 1057

    [94]

    Pisignano D, Persano L, Visconti P, Cingolani R, Gigli G, Barbarella G, Favaretto L 2003 Appl. Phys. Lett. 83 2545

    [95]

    Riechel S, Lemmer U, Feldmann J, Berleb S, Muckl A G, Brutting W, Gombert A, Wittwer V 2001 Opt. Lett. 26 593

    [96]

    Schneider D, Rabe T, Riedl T, Dobbertin T, Kroger M, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P 2005 J. Appl. Phys. 98 043104

    [97]

    Baumann K, Stoeferle T, Moll N, Raino G, Mahrt R F, Wahlbrink T, Bolten J, Scherf U 2010 J. Opt. 12 065003

    [98]

    Baumann K, Stoferle T, Moll N, Mahrt R F, Wahlbrink T, Bolten J, Mollenhauer T, Moormann C, Scherf U 2007 Appl. Phys. Lett. 91 171108

    [99]

    Heliotis G, Xia R D, Turnbull G A, Andrew P, Barnes W L, Samuel I D W, Bradley D D C 2004 Adv. Funct. Mater. 14 91

    [100]

    Turnbull G A, Andrew P, Barnes W L, Samuel I D W 2003 Appl. Phys. Lett. 82 313

    [101]

    Huang W, Chen L, Xuan L 2014 Rsc Advances 4 38606

    [102]

    Tsutsumi N, Ishibashi T 2009 Opt. Express 17 21698

    [103]

    Vasdekis A E, Tsiminis G, Ribierre J C, O'Faolain L, Krauss T F, Turnbull G A, Samuel I D W 2006 Opt. Express 14 9211

    [104]

    Bulovic V, Kozlov V G, Khalfin V B, Forrest S R 1998 Science 279 553

    [105]

    Schulzgen A, Spiegelberg C, Morrell M M, Mendes S B, Kippelen B, Peyghambarian N, Nabor M F, Mash E A, Allemand P M 1998 Appl. Phys. Lett. 72 269

    [106]

    Persano L, Camposeo A, Del Carro P, Mele E, Cingolani R, Pisignano D 2006 Appl. Phys. Lett. 89 121111

    [107]

    Sakata H, Takeuchi H 2008 Appl. Phys. Lett. 92 113310

    [108]

    Canazza G, Scotognella F, Lanzani G, De Silvestri S, Zavelani-Rossi M, Comoretto D 2014 Laser Phys. Lett. 11 035804

    [109]

    Liao Z, Zhou Y, Cui Y, Yang Y, Wang Z, Qian G 2014 Applied Physics B-Lasers and Optics 115 583

    [110]

    Frolov S V, Vardeny Z V, Yoshino K 1998 Appl. Phys. Lett. 72 1802

    [111]

    Scholten K, Fan X, Zellers E T 2014 Lab. Chip 14 3873

    [112]

    Ramos-Ortiz G, Spiegelberg C, Peyghambarian N, Kippelen B 2000 Appl. Phys. Lett. 77 2783

    [113]

    Baktur R, Pearson L W, Ballato J 2007 J. Appl. Phys. 101 043102

    [114]

    Wang X, Liao Q, Kong Q, Zhang Y, Xu Z, Lu X, Fu H 2014 Angewandte Chemie-International Edition 53 5863

    [115]

    Frolov S V, Fujii A, Chinn D, Vardeny Z V, Yoshino K, Gregory R V 1998 Appl. Phys. Lett. 72 2811

    [116]

    Dou S X, Toussaere E, Ben-Messaoud T, Potter A, Josse D, Kranzelbinder G, Zyss J 2002 Appl. Phys. Lett. 80 165

    [117]

    Lebental M, Lauret J S, Zyss J, Schmit C, Bogomolny E 2007 Phys. Rev. A 75 033806

    [118]

    Lebental M, Djellali N, Arnaud C, Lauret J S, Zyss J, Dubertrand R, Schmit C, Bogomolny E 2007 Phys. Rev. A 76 023830

    [119]

    Lu S-Y, Fang H-H, Feng J, Xia H, Zhang T-Q, Chen Q-D, Sun H-B 2014 J. Lightwave Technol. 32 2415

    [120]

    Berggren M, Dodabalapur A, Bao Z N, Slusher R E 1997 Adv. Mater. 9 968

    [121]

    Rabbani-Haghighi H, Forget S, Chenais S, Siove A 2010 Opt. Lett. 35 1968

    [122]

    Kuznetsov M, Hakimi F, Sprague R, Mooradian A 1997 IEEE Photonics Technol. Lett. 9 1063

    [123]

    Rabbani-Haghighi H, Forget S, Siove A, Chenais S 2011 European Physical Journal-Applied Physics 56 34108

    [124]

    Schon J H, Kloc C, Dodabalapur A, Batlogg B 2000 Science 289 599

    [125]

    Bao Z, Batlogg B, Berg S, Dodabalapur A, Haddon R C, Hwang H, Kloc C, Meng H, Schon J H 2002 Science (New York, N.Y.) 298 961

    [126]

    Yokoyama D, Moriwake M, Adachi C 2008 J. Appl. Phys. 103 123104

    [127]

    Tian Y, Gan Z, Zhou Z, Lynch D W, Shinar J, Kang J-h, Park Q H 2007 Appl. Phys. Lett. 91 143504

    [128]

    Liu X, Li H, Song C, Liao Y, Tian M 2009 Opt. Lett. 34 503

    [129]

    Samuel I D W, Namdas E B, Turnbull G A 2009 Nat. Photonics 3 546

    [130]

    Nakanotani H, Adachi C, Watanabe S, Katoh R 2007 Appl. Phys. Lett. 90 231109

    [131]

    Baldo M A, Holmes R J, Forrest S R 2002 Physical Review B 66 035321

    [132]

    Tessler N, Pinner D J, Cleave V, Ho P K H, Friend R H, Yahioglu G, Barny P L, Gray J, de Souza M, Rumbles G 2000 Synth. Met. 115 57

    [133]

    Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503

    [134]

    Holzer W, Penzkofer A, Tsuboi T 2005 Chem. Phys. 308 93

    [135]

    Kozlov V G, Parthasarathy G, Burrows P E, Khalfin V B, Wang J, Chou S Y, Forrest S R 2000 IEEE J. Quantum Electron. 36 18

    [136]

    McGehee M D, Heeger A J 2000 Adv. Mater. 12 1655

    [137]

    Tessler N, Harrison N T, Friend R H 1998 Adv. Mater. 10 64

    [138]

    Namdas E B, Ledochowitsch P, Yuen J D, Moses D, Heeger A J 2008 Appl. Phys. Lett. 92 183304

    [139]

    Andrew P, Turnbull G A, Samuel I D W, Barnes W L 2002 Appl. Phys. Lett. 81 954

    [140]

    Reufer M, Riechel S, Lupton J M, Feldmann J, Lemmer U, Schneider D, Benstem T, Dobbertin T, Kowalsky W, Gombert A, Forberich K, Wittwer V, Scherf U 2004 Appl. Phys. Lett. 84 3262

    [141]

    Goerrn P, Rabe T, Riedl T, Kowalsky W 2007 Appl. Phys. Lett. 91 041113

    [142]

    Wallikewitz B H, de la Rosa M, Kremer J H W M, Hertel D, Meerholz K 2010 Adv. Mater. 22 531

    [143]

    Lattante S, Romano F, Caricato A P, Martino M, Anni M 2006 Appl. Phys. Lett. 89 031108

    [144]

    Yamamoto H, Oyamada T, Sasabe H, Adachi C 2004 Appl. Phys. Lett. 84 1401

    [145]

    Rabe T, Goerrn P, Lehnhardt M, Tilgner M, Riedl T, Kowalsky W 2009 Phys. Rev. Lett. 102 137401

    [146]

    Muccini M 2006 Nat. Mater. 5 605

    [147]

    Tanase C, Meijer E J, Blom P W M, de Leeuw D M 2003 Phys. Rev. Lett. 91 216601

    [148]

    Takenobu T, Bisri S Z, Takahashi T, Yahiro M, Adachi C, Iwasa Y 2008 Phys. Rev. Lett. 100 066601

    [149]

    Capelli R, Toffanin S, Generali G, Usta H, Facchetti A, Muccini M 2010 Nat. Mater. 9 496

    [150]

    Lehnhardt M, Riedl T, Rabe T, Kowalsky W 2011 Org. Electron. 12 486

    [151]

    Bisri S Z, Takenobu T, Iwasa Y 2014 Journal of Materials Chemistry C 2 2827

    [152]

    Yang Y, Turnbull G A, Samuel I D W 2008 Appl. Phys. Lett. 92 163306

    [153]

    Tsiminis G, Wang Y, Kanibolotsky A L, Inigo A R, Skabara P J, Samuel I D W, Turnbull G A 2013 Adv. Mater. 25 2826

    [154]

    Tsiminis G, Wang Y, Shaw P E, Kanibolotsky A L, Perepichka I F, Dawson M D, Skabara P J, Turnbull G A, Samuel I D W 2009 Appl. Phys. Lett. 94 243304

    [155]

    Pisignano D, Persano L, Mele E, Visconti P, Cingolani R, Gigli G, Barbarella G, Favaretto L 2005 Opt. Lett. 30 260

    [156]

    Karnutsch C, Pflumm C, Heliotis G, deMello J C, Bradley D D C, Wang J, Weimann T, Haug V, Gaertner C, Lemmer U 2007 Appl. Phys. Lett. 90 131104

    [157]

    Tsiminis G, Ruseckas A, Samuel I D W, Turnbull G A 2009 Appl. Phys. Lett. 94 253304

    [158]

    Mo Y Q, Tian R Y, Shi W, Cao Y 2005 Chem. Commun. 4925

    [159]

    Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J, Rabe T, Riedl T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P 2005 Appl. Phys. Lett. 87 161103

    [160]

    Del Carro P, Camposeo A, Stabile R, Mele E, Persano L, Cingolani R, Pisignano D 2006 Appl. Phys. Lett. 89 201105

    [161]

    Yuyama S, Nakajima T, Yamashita K, Oe K 2008 Appl. Phys. Lett. 93 023306

    [162]

    Casalboni M, De Matteis F, Merlo V, Prosposito P, Russo R, Schutzmann S 2003 Appl. Phys. Lett. 83 416

    [163]

    Chandra S, Allik T H, Hutchinson J A, Fox J, Swim C 1997 Opt. Lett. 22 209

    [164]

    Forget S, Rabbani-Haghighi H, Diffalah N, Siove A, Chenais S 2011 Appl. Phys. Lett. 98 131102

    [165]

    Schuette B, Gothe H, Hintschich S I, Sudzius M, Froeb H, Lyssenko V G, Leo K 2008 Appl. Phys. Lett. 92 163309

    [166]

    Mhibik O, Leang T, Siove A, Forget S, S C 2013 Appl. Phys. Lett. 102 041112

    [167]

    Schneider D, Rabe T, Riedl T, Dobbertin T, Kroger M, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P 2004 Appl. Phys. Lett. 85 1886

    [168]

    Wenger B, Tetreault N, Welland M E, Friend R H 2010 Appl. Phys. Lett. 97 193303

    [169]

    Goerrn P, Lehnhardt M, Kowalsky W, Riedl T, Wagner S 2011 Adv. Mater. 23 869

    [170]

    Klinkhammer S, Woggon T, Geyer U, Vannahme C, Dehm S, Mappes T, Lemmer U 2009 Applied Physics B-Lasers and Optics 97 787

    [171]

    Stroisch M, Woggon T, Teiwes-Morin C, Klinkhammer S, Forberich K, Gombert A, Gerken M, Lemmer U 2010 Opt. Express 18 5890

    [172]

    Diao Z, Xuan L, Liu L, Xia M, Hu L, Liu Y, Ma J 2014 Journal of Materials Chemistry C 2 6177

    [173]

    Riechel S, Kallinger C, Lemmer U, Feldmann J, Gombert A, Wittwer V, Scherf U 2000 Appl. Phys. Lett. 77 2310

    [174]

    Heliotis G, Xia R, Bradley D D C, Turnbull G A, Samuel I D W, Andrew P, Barnes W L 2004 J. Appl. Phys. 96 6959

    [175]

    Meerheim R, Walzer K, Pfeiffer M, Leo K 2006 Appl. Phys. Lett. 89 061111

    [176]

    Richardson S, Gaudin O P M, Turnbull G A, Samuel I D W 2007 Appl. Phys. Lett. 91 261104

    [177]

    Guilhabert B, Laurand N, Herrnsdorf J, Chen Y, Mackintosh A R, Kanibolotsky A L, Gu E, Skabara P J, Pethrick R A, Dawson M D 2010 J. Opt. 12 035503

  • [1]

    Maiman T H 1960 Nature 187 493

    [2]

    Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687

    [3]

    Schafer F P, Schmidt W, Volze J 1966 Appl. Phys. Lett. 9 306

    [4]

    Soffer B H, McFarlan.Bb 1967 Appl. Phys. Lett. 10 266

    [5]

    Tang C W, Vanslyke S A 1987 Appl. Phys. Lett. 51 913

    [6]

    Yang J S, Swager T M 1998 JACS 120 11864

    [7]

    Rose A, Zhu Z G, Madigan C F, Swager T M, Bulovic V 2005 Nature 434 876

    [8]

    Gaylord B S, Heeger A J, Bazan G C 2003 JACS 125 896

    [9]

    Tang Y L, He F, Yu M H, Feng F D, An L L, Sun H, Wang S, Li Y L, Zhu D B 2006 Macromol. Rapid Commun. 27 389

    [10]

    Vannahme C, Klinkhammer S, Lemmer U, Mappes T 2011 Opt. Express 19 8179

    [11]

    Amarasinghe D, Ruseckas A, Turnbull G A, Samuel I D W 2009 Proc. IEEE 97 1637

    [12]

    Hide F, DiazGarcia M A, Schwartz B J, Andersson M R, Pei Q B, Heeger A J 1996 Science 273 1833

    [13]

    Tessler N, Denton G J, Friend R H 1996 Nature 382 695

    [14]

    Rauscher U, Bassler H, Bradley D D C, Hennecke M 1990 Physical Review B 42 9830

    [15]

    Rudenko A I, Bassler H 1991 Chem. Phys. Lett. 182 581

    [16]

    Kersting R, Lemmer U, Mahrt R F, Leo K, Kurz H, Bassler H, Gobel E O 1993 Phys. Rev. Lett. 70 3820

    [17]

    Samuel I D W, Crystall B, Rumbles G, Burn P L, Holmes A B, Friend R H 1993 Synth. Met. 54 281

    [18]

    Kozlov V G, Bulovic V, Burrows P E, Forrest S R 1997 Nature 389 362

    [19]

    Gupta R, Stevenson M, Heeger A J 2002 J. Appl. Phys. 92 4874

    [20]

    Dogariu A, Gupta R, Heeger A J, Wang H 1999 Synth. Met. 100 95

    [21]

    Kozlov V G, Bulovic V, Burrows P E, Baldo M, Khalfin V B, Parthasarathy G, Forrest S R, You Y, Thompson M E 1998 J. Appl. Phys. 84 4096

    [22]

    Sheridan A K, Buckley A R, Fox A M, Bacher A, Bradley D D C, Samuel I D W 2002 J. Appl. Phys. 92 6367

    [23]

    Brouwer H J, Krasnikov V V, Hilberer A, Wildeman J, Hadziioannou G 1995 Appl. Phys. Lett. 66 3404

    [24]

    Rabe T, Hoping M, Schneider D, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P, Nehls B S, Scherf U, Farrell T, Riedl T 2005 Adv. Funct. Mater. 15 1188

    [25]

    Peterson O G, Webb J P, McColgin W C, Eberly J H 1971 J. Appl. Phys. 42 1917

    [26]

    Lehnhardt M, Riedl T, Weimann T, Kowalsky W 2010 Physical Review B 81 165206

    [27]

    Giebink N C, Forrest S R 2009 Physical Review B 79 073302

    [28]

    Gritsai Y, Sakhno O, Goldenberg L M, Stumpe J 2014 J. Opt. 16 035103

    [29]

    Ahmad M, King T A, Ko D K, Cha B H, Lee J 2002 Journal of Physics D-Applied Physics 35 1473

    [30]

    Faloss M, Canva M, Georges P, Brun A, Chaput F, Boilot J P 1997 Appl. Opt. 36 6760

    [31]

    Rahn M D, King T A 1995 Appl. Opt. 34 8260

    [32]

    Yariv E, Reisfeld R 1999 Opt. Mater. 13 49

    [33]

    Liu L, Huang W, Diao Z, Peng Z, Mu Q Q, Liu Y, Yang C, Hu L, Xuan L 2014 Liq. Cryst. 41 145

    [34]

    Kozlov V G, Bulovic V, Forrest S R 1997 Appl. Phys. Lett. 71 2575

    [35]

    Bernanose A, Comte M, Vouaux P 1953 J. Chim. Phys. Phys.-Chim. Biol. 50 64

    [36]

    Pope M, Magnante P, Kallmann H P 1963 J. Chem. Phys. 38 2042

    [37]

    Tang C W, Vanslyke S A, Chen C H 1989 J. Appl. Phys. 65 3610

    [38]

    Forget S, Chenais S, Tondelier D, Geffroy B, Gozhyk I, Lebental M, Ishow E 2010 J. Appl. Phys. 108 064509

    [39]

    Ishow E, Brosseau A, Clavier G, Nakatani K, Tauc P, Fiorini-Debuisschert C, Neveu S, Sandre O, Leaustic A 2008 Chem. Mater. 20 6597

    [40]

    Rabbani-Haghighi H, Forget S, Chenais S, Siove A, Castex M-C, Ishow E 2009 Appl. Phys. Lett. 95 033305

    [41]

    Jordan G, Flammich M, Ruther M, Kobayashi T, Blau W J, Suzuki Y, Kaino T 2006 Appl. Phys. Lett. 88 161114

    [42]

    Ribierre J C, Tsiminis G, Richardson S, Turnbull G A, Samuel I D W, Barcena H S, Burn P L 2007 Appl. Phys. Lett. 91 081108

    [43]

    Xia R, Lai W-Y, Levermore P A, Huang W, Bradley D D C 2009 Adv. Funct. Mater. 19 2844

    [44]

    Nakanotani H, Akiyama S, Ohnishi D, Moriwake M, Yahiro M, Yoshihara T, Tobita S, Adachi C 2007 Adv. Funct. Mater. 17 2328

    [45]

    Schneider D, Rabe T, Riedl T, Dobbertin T, Kroger M, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P 2004 Appl. Phys. Lett. 85 1659

    [46]

    Johansson N, Salbeck J, Bauer J, Weissortel F, Broms P, Andersson A, Salaneck W R 1998 Adv. Mater. 10 1136

    [47]

    Berggren M, Dodabalapur A, Slusher R E 1997 Appl. Phys. Lett. 71 2230

    [48]

    Heeger A J 2001 Rev. Mod. Phys. 73 681

    [49]

    Chen Y, Herrnsdorf J, Guilhabert B, Kanibolotsky A L, Mackintosh A R, Wang Y, Pethrick R A, Gu E, Turnbull G A, Skabara P J, Samuel I D W, Laurand N, Dawson M D 2011 Org. Electron. 12 62

    [50]

    Holzer W, Penzkofer A, Pertsch T, Danz N, Brauer A, Kley E B, Tillmann H, Bader C, Horhold H H 2002 Applied Physics B-Lasers and Optics 74 333

    [51]

    Scherf U, Riechel S, Lemmer U, Mahrt R F 2001 Current Opinion in Solid State & Materials Science 5 143

    [52]

    Heliotis G, Xia R, Bradley D D C, Turnbull G A, Samuel I D W, Andrew P, Barnes W L 2003 Appl. Phys. Lett. 83 2118

    [53]

    Leclerc M 2001 Journal of Polymer Science Part a-Polymer Chemistry 39 2867

    [54]

    Yap B K, Xia R, Campoy-Quiles M, Stavrinou P N, Bradley D D C 2008 Nat. Mater. 7 376

    [55]

    Xia R, Stavrinou P N, Bradley D D C, Kim Y 2012 J. Appl. Phys. 111 123107

    [56]

    Xia R D, Campoy-Quiles M, Heliotis G, Stavrinou P, Whitehead K S, Bradley D D C 2005 Synth. Met. 155 274

    [57]

    Lin J-Y, Zhu W-S, Liu F, Xie L-H, Zhang L, Xia R, Xing G-C, Huang W 2014 Macromolecules 47 1001

    [58]

    Coles H, Morris S 2010 Nat. Photonics 4 676

    [59]

    Munoz A, Palffy-Muhoray P, Taheri B 2001 Opt. Lett. 26 804

    [60]

    Gather M C, Yun S H 2011 Nat. Photonics 5 406

    [61]

    Meech S 2011 Nat. Photonics 5 387

    [62]

    Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin M K, Graetzel M 2013 Nature 499 316

    [63]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [64]

    Service R F 2014 Science 344 458

    [65]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Graetzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [66]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476

    [67]

    Gwinner M C, Khodabakhsh S, Song M H, Schweizer H, Giessen H, Sirringhaus H 2009 Adv. Funct. Mater. 19 1360

    [68]

    Deshpande A V, Rane J R, Jathar L V 2009 Journal of Fluorescence 19 1083

    [69]

    Chang C C, Pai C L, Chen W C, Jenekhe S A 2005 Thin Solid Films 479 254

    [70]

    Ding I K, Melas-Kyriazi J, Cevey-Ha N-L, Chittibabu K G, Zakeeruddin S M, Graetzel M, McGehee M D 2010 Org. Electron. 11 1217

    [71]

    Yoshioka Y, Jabbour G E 2006 Synth. Met. 156 779

    [72]

    Gaertner C, Karnutsch C, Lemmer U, Pflumm C 2007 J. Appl. Phys. 101 023107

    [73]

    List E J W, Kim C H, Naik A K, Scherf U, Leising G, Graupner W, Shinar J 2001 Physical Review B 64 155204

    [74]

    List E J W, Scherf U, Mullen K, Graupner W, Kim C H, Shinar J 2002 Physical Review B 66 235203

    [75]

    Osterbacka R, Wohlgenannt M, Shkunov M, Chinn D, Vardeny Z V 2003 J. Chem. Phys. 118 8905

    [76]

    Kraabel B, Klimov V I, Kohlman R, Xu S, Wang H L, McBranch D W 2000 Physical Review B 61 8501

    [77]

    Koschorreck M, Gehlhaar R, Lyssenko V G, Swoboda M, Hoffmann M, Leo K 2005 Appl. Phys. Lett. 87 181108

    [78]

    Samuel I D W, Turnbull G A 2007 Chem. Rev. 107 1272

    [79]

    McGehee M D, Diaz-Garcia M A, Hide F, Gupta R, Miller E K, Moses D, Heeger A J 1998 Appl. Phys. Lett. 72 1536

    [80]

    Coulson C A 1948 Proc. Phys. Soc. London 60 257

    [81]

    Ruseckas A, Theander M, Valkunas L, Andersson M R, Inganas O, Sundstrom V 1998 J. Lumin. 76-7 474

    [82]

    Denton G J, Tessler N, Harrison N T, Friend R H 1997 Phys. Rev. Lett. 78 733

    [83]

    Frolov S V, Vardeny Z V, Yoshino K 1998 Physical Review B 57 9141

    [84]

    Shaklee K L, Leheny R F 1971 Appl. Phys. Lett. 18 475

    [85]

    McGehee M D, Gupta R, Veenstra S, Miller E K, Diaz-Garcia M A, Heeger A J 1998 Physical Review B 58 7035

    [86]

    Xia R D, Heliotis G, Bradley D D C 2003 Appl. Phys. Lett. 82 3599

    [87]

    Berggren M, Dodabalapur A, Slusher R E, Bao Z 1997 Nature 389 466

    [88]

    Moses D 1992 Appl. Phys. Lett. 60 3215

    [89]

    Xia R D, Heliotis G, Hou Y B, Bradley D D C 2003 Org. Electron. 4 165

    [90]

    Kogelnik H, Shank C V 1972 J. Appl. Phys. 43 2327

    [91]

    Rabe T, Gerlach K, Riedl T, Johannes H H, Kowalsky W, Niederhofer J, Gries W, Wang J, Weimann T, Hinze P, Galbrecht F, Scherf U 2006 Appl. Phys. Lett. 89 081115

    [92]

    Riedl T, Rabe T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P, Nehls B, Farrell T, Scherf U 2006 Appl. Phys. Lett. 88 241116

    [93]

    Pisignano D, Anni M, Gigli G, Cingolani R, Barbarella G, Favaretto L, Sotgiu G B V 2003 Synth. Met. 137 1057

    [94]

    Pisignano D, Persano L, Visconti P, Cingolani R, Gigli G, Barbarella G, Favaretto L 2003 Appl. Phys. Lett. 83 2545

    [95]

    Riechel S, Lemmer U, Feldmann J, Berleb S, Muckl A G, Brutting W, Gombert A, Wittwer V 2001 Opt. Lett. 26 593

    [96]

    Schneider D, Rabe T, Riedl T, Dobbertin T, Kroger M, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P 2005 J. Appl. Phys. 98 043104

    [97]

    Baumann K, Stoeferle T, Moll N, Raino G, Mahrt R F, Wahlbrink T, Bolten J, Scherf U 2010 J. Opt. 12 065003

    [98]

    Baumann K, Stoferle T, Moll N, Mahrt R F, Wahlbrink T, Bolten J, Mollenhauer T, Moormann C, Scherf U 2007 Appl. Phys. Lett. 91 171108

    [99]

    Heliotis G, Xia R D, Turnbull G A, Andrew P, Barnes W L, Samuel I D W, Bradley D D C 2004 Adv. Funct. Mater. 14 91

    [100]

    Turnbull G A, Andrew P, Barnes W L, Samuel I D W 2003 Appl. Phys. Lett. 82 313

    [101]

    Huang W, Chen L, Xuan L 2014 Rsc Advances 4 38606

    [102]

    Tsutsumi N, Ishibashi T 2009 Opt. Express 17 21698

    [103]

    Vasdekis A E, Tsiminis G, Ribierre J C, O'Faolain L, Krauss T F, Turnbull G A, Samuel I D W 2006 Opt. Express 14 9211

    [104]

    Bulovic V, Kozlov V G, Khalfin V B, Forrest S R 1998 Science 279 553

    [105]

    Schulzgen A, Spiegelberg C, Morrell M M, Mendes S B, Kippelen B, Peyghambarian N, Nabor M F, Mash E A, Allemand P M 1998 Appl. Phys. Lett. 72 269

    [106]

    Persano L, Camposeo A, Del Carro P, Mele E, Cingolani R, Pisignano D 2006 Appl. Phys. Lett. 89 121111

    [107]

    Sakata H, Takeuchi H 2008 Appl. Phys. Lett. 92 113310

    [108]

    Canazza G, Scotognella F, Lanzani G, De Silvestri S, Zavelani-Rossi M, Comoretto D 2014 Laser Phys. Lett. 11 035804

    [109]

    Liao Z, Zhou Y, Cui Y, Yang Y, Wang Z, Qian G 2014 Applied Physics B-Lasers and Optics 115 583

    [110]

    Frolov S V, Vardeny Z V, Yoshino K 1998 Appl. Phys. Lett. 72 1802

    [111]

    Scholten K, Fan X, Zellers E T 2014 Lab. Chip 14 3873

    [112]

    Ramos-Ortiz G, Spiegelberg C, Peyghambarian N, Kippelen B 2000 Appl. Phys. Lett. 77 2783

    [113]

    Baktur R, Pearson L W, Ballato J 2007 J. Appl. Phys. 101 043102

    [114]

    Wang X, Liao Q, Kong Q, Zhang Y, Xu Z, Lu X, Fu H 2014 Angewandte Chemie-International Edition 53 5863

    [115]

    Frolov S V, Fujii A, Chinn D, Vardeny Z V, Yoshino K, Gregory R V 1998 Appl. Phys. Lett. 72 2811

    [116]

    Dou S X, Toussaere E, Ben-Messaoud T, Potter A, Josse D, Kranzelbinder G, Zyss J 2002 Appl. Phys. Lett. 80 165

    [117]

    Lebental M, Lauret J S, Zyss J, Schmit C, Bogomolny E 2007 Phys. Rev. A 75 033806

    [118]

    Lebental M, Djellali N, Arnaud C, Lauret J S, Zyss J, Dubertrand R, Schmit C, Bogomolny E 2007 Phys. Rev. A 76 023830

    [119]

    Lu S-Y, Fang H-H, Feng J, Xia H, Zhang T-Q, Chen Q-D, Sun H-B 2014 J. Lightwave Technol. 32 2415

    [120]

    Berggren M, Dodabalapur A, Bao Z N, Slusher R E 1997 Adv. Mater. 9 968

    [121]

    Rabbani-Haghighi H, Forget S, Chenais S, Siove A 2010 Opt. Lett. 35 1968

    [122]

    Kuznetsov M, Hakimi F, Sprague R, Mooradian A 1997 IEEE Photonics Technol. Lett. 9 1063

    [123]

    Rabbani-Haghighi H, Forget S, Siove A, Chenais S 2011 European Physical Journal-Applied Physics 56 34108

    [124]

    Schon J H, Kloc C, Dodabalapur A, Batlogg B 2000 Science 289 599

    [125]

    Bao Z, Batlogg B, Berg S, Dodabalapur A, Haddon R C, Hwang H, Kloc C, Meng H, Schon J H 2002 Science (New York, N.Y.) 298 961

    [126]

    Yokoyama D, Moriwake M, Adachi C 2008 J. Appl. Phys. 103 123104

    [127]

    Tian Y, Gan Z, Zhou Z, Lynch D W, Shinar J, Kang J-h, Park Q H 2007 Appl. Phys. Lett. 91 143504

    [128]

    Liu X, Li H, Song C, Liao Y, Tian M 2009 Opt. Lett. 34 503

    [129]

    Samuel I D W, Namdas E B, Turnbull G A 2009 Nat. Photonics 3 546

    [130]

    Nakanotani H, Adachi C, Watanabe S, Katoh R 2007 Appl. Phys. Lett. 90 231109

    [131]

    Baldo M A, Holmes R J, Forrest S R 2002 Physical Review B 66 035321

    [132]

    Tessler N, Pinner D J, Cleave V, Ho P K H, Friend R H, Yahioglu G, Barny P L, Gray J, de Souza M, Rumbles G 2000 Synth. Met. 115 57

    [133]

    Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503

    [134]

    Holzer W, Penzkofer A, Tsuboi T 2005 Chem. Phys. 308 93

    [135]

    Kozlov V G, Parthasarathy G, Burrows P E, Khalfin V B, Wang J, Chou S Y, Forrest S R 2000 IEEE J. Quantum Electron. 36 18

    [136]

    McGehee M D, Heeger A J 2000 Adv. Mater. 12 1655

    [137]

    Tessler N, Harrison N T, Friend R H 1998 Adv. Mater. 10 64

    [138]

    Namdas E B, Ledochowitsch P, Yuen J D, Moses D, Heeger A J 2008 Appl. Phys. Lett. 92 183304

    [139]

    Andrew P, Turnbull G A, Samuel I D W, Barnes W L 2002 Appl. Phys. Lett. 81 954

    [140]

    Reufer M, Riechel S, Lupton J M, Feldmann J, Lemmer U, Schneider D, Benstem T, Dobbertin T, Kowalsky W, Gombert A, Forberich K, Wittwer V, Scherf U 2004 Appl. Phys. Lett. 84 3262

    [141]

    Goerrn P, Rabe T, Riedl T, Kowalsky W 2007 Appl. Phys. Lett. 91 041113

    [142]

    Wallikewitz B H, de la Rosa M, Kremer J H W M, Hertel D, Meerholz K 2010 Adv. Mater. 22 531

    [143]

    Lattante S, Romano F, Caricato A P, Martino M, Anni M 2006 Appl. Phys. Lett. 89 031108

    [144]

    Yamamoto H, Oyamada T, Sasabe H, Adachi C 2004 Appl. Phys. Lett. 84 1401

    [145]

    Rabe T, Goerrn P, Lehnhardt M, Tilgner M, Riedl T, Kowalsky W 2009 Phys. Rev. Lett. 102 137401

    [146]

    Muccini M 2006 Nat. Mater. 5 605

    [147]

    Tanase C, Meijer E J, Blom P W M, de Leeuw D M 2003 Phys. Rev. Lett. 91 216601

    [148]

    Takenobu T, Bisri S Z, Takahashi T, Yahiro M, Adachi C, Iwasa Y 2008 Phys. Rev. Lett. 100 066601

    [149]

    Capelli R, Toffanin S, Generali G, Usta H, Facchetti A, Muccini M 2010 Nat. Mater. 9 496

    [150]

    Lehnhardt M, Riedl T, Rabe T, Kowalsky W 2011 Org. Electron. 12 486

    [151]

    Bisri S Z, Takenobu T, Iwasa Y 2014 Journal of Materials Chemistry C 2 2827

    [152]

    Yang Y, Turnbull G A, Samuel I D W 2008 Appl. Phys. Lett. 92 163306

    [153]

    Tsiminis G, Wang Y, Kanibolotsky A L, Inigo A R, Skabara P J, Samuel I D W, Turnbull G A 2013 Adv. Mater. 25 2826

    [154]

    Tsiminis G, Wang Y, Shaw P E, Kanibolotsky A L, Perepichka I F, Dawson M D, Skabara P J, Turnbull G A, Samuel I D W 2009 Appl. Phys. Lett. 94 243304

    [155]

    Pisignano D, Persano L, Mele E, Visconti P, Cingolani R, Gigli G, Barbarella G, Favaretto L 2005 Opt. Lett. 30 260

    [156]

    Karnutsch C, Pflumm C, Heliotis G, deMello J C, Bradley D D C, Wang J, Weimann T, Haug V, Gaertner C, Lemmer U 2007 Appl. Phys. Lett. 90 131104

    [157]

    Tsiminis G, Ruseckas A, Samuel I D W, Turnbull G A 2009 Appl. Phys. Lett. 94 253304

    [158]

    Mo Y Q, Tian R Y, Shi W, Cao Y 2005 Chem. Commun. 4925

    [159]

    Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J, Rabe T, Riedl T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P 2005 Appl. Phys. Lett. 87 161103

    [160]

    Del Carro P, Camposeo A, Stabile R, Mele E, Persano L, Cingolani R, Pisignano D 2006 Appl. Phys. Lett. 89 201105

    [161]

    Yuyama S, Nakajima T, Yamashita K, Oe K 2008 Appl. Phys. Lett. 93 023306

    [162]

    Casalboni M, De Matteis F, Merlo V, Prosposito P, Russo R, Schutzmann S 2003 Appl. Phys. Lett. 83 416

    [163]

    Chandra S, Allik T H, Hutchinson J A, Fox J, Swim C 1997 Opt. Lett. 22 209

    [164]

    Forget S, Rabbani-Haghighi H, Diffalah N, Siove A, Chenais S 2011 Appl. Phys. Lett. 98 131102

    [165]

    Schuette B, Gothe H, Hintschich S I, Sudzius M, Froeb H, Lyssenko V G, Leo K 2008 Appl. Phys. Lett. 92 163309

    [166]

    Mhibik O, Leang T, Siove A, Forget S, S C 2013 Appl. Phys. Lett. 102 041112

    [167]

    Schneider D, Rabe T, Riedl T, Dobbertin T, Kroger M, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P 2004 Appl. Phys. Lett. 85 1886

    [168]

    Wenger B, Tetreault N, Welland M E, Friend R H 2010 Appl. Phys. Lett. 97 193303

    [169]

    Goerrn P, Lehnhardt M, Kowalsky W, Riedl T, Wagner S 2011 Adv. Mater. 23 869

    [170]

    Klinkhammer S, Woggon T, Geyer U, Vannahme C, Dehm S, Mappes T, Lemmer U 2009 Applied Physics B-Lasers and Optics 97 787

    [171]

    Stroisch M, Woggon T, Teiwes-Morin C, Klinkhammer S, Forberich K, Gombert A, Gerken M, Lemmer U 2010 Opt. Express 18 5890

    [172]

    Diao Z, Xuan L, Liu L, Xia M, Hu L, Liu Y, Ma J 2014 Journal of Materials Chemistry C 2 6177

    [173]

    Riechel S, Kallinger C, Lemmer U, Feldmann J, Gombert A, Wittwer V, Scherf U 2000 Appl. Phys. Lett. 77 2310

    [174]

    Heliotis G, Xia R, Bradley D D C, Turnbull G A, Samuel I D W, Andrew P, Barnes W L 2004 J. Appl. Phys. 96 6959

    [175]

    Meerheim R, Walzer K, Pfeiffer M, Leo K 2006 Appl. Phys. Lett. 89 061111

    [176]

    Richardson S, Gaudin O P M, Turnbull G A, Samuel I D W 2007 Appl. Phys. Lett. 91 261104

    [177]

    Guilhabert B, Laurand N, Herrnsdorf J, Chen Y, Mackintosh A R, Kanibolotsky A L, Gu E, Skabara P J, Pethrick R A, Dawson M D 2010 J. Opt. 12 035503

  • [1] Cao Jin, Jiang Xue-Yin, Zhang Zhi-Lin. Research of tricolor microcavity top-emitting organic light-emitting devices with white emitting layer. Acta Physica Sinica, 2007, 56(6): 3493-3498. doi: 10.7498/aps.56.3493
    [2] Cao Jin, Liu Xiang, Zhang Xiao-Bo, Wei Fu-Xiang, Zhu Wen-Qing, Jiang Xue-Yin, Zhang Zhi-Lin, Xu Shao-Hong. Top-emitting organic light-emitting devices with cavity effect. Acta Physica Sinica, 2007, 56(2): 1088-1092. doi: 10.7498/aps.56.1088
    [3] Jiang Wen-Long, Cong Lin, Meng Zhao-Hui, Wang Jin, Han Qiang, Meng Fan-Chao, Wang Li-Zhong, Ding Gui-Ying, Zhang Gang. The role of magnetic fields on organic light-emitting devices based on aluminum tris(8-hydroxyquinoline) (Alq3) at room temperature. Acta Physica Sinica, 2010, 59(5): 3571-3576. doi: 10.7498/aps.59.3571
    [4] Wang Zhen, He Zheng-Hong, Tan Xing-Wen, Tao Min-Long, Li Guo-Qing, Xiong Zu-Hong. Magnetic field effects on organic electroluminescence. Acta Physica Sinica, 2007, 56(5): 2979-2985. doi: 10.7498/aps.56.2979
    [5] He Wan-Jun, Yao Bao-Quan, Wang Yue-Zhu, Ju You-Lun. Determination of thermal focal length of diode laser end-pumped solid-state amplifier. Acta Physica Sinica, 2007, 56(6): 3240-3245. doi: 10.7498/aps.56.3240
    [6] Shang Lian-Ju. 1.34μm Nd:YVO4 laser end-pumped by a diode-laser with flat-concave cavity type. Acta Physica Sinica, 2003, 52(10): 2476-2480. doi: 10.7498/aps.52.2476
    [7] QIAN REN-YUAN, JIN XIANG-FENG, ZHOU SHU-QIN. A.C.CONDUCTANCE OF ORGANIC SOLID THIN FILMS. Acta Physica Sinica, 1980, 179(8): 992-999. doi: 10.7498/aps.29.992
    [8] Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong. Light-induced magnetoconductance effect in organic light-emitting diodes. Acta Physica Sinica, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [9] YI WEN-HUI, WANG MIN-QIANG, REN LI-YONG, YAO BAO-LI, HOU XUN. EXPERIMENT AND THEORY ON DIFFRACTION FROM LASER-INDUCED PHASE-HOLE IN POLYMER FI LM. Acta Physica Sinica, 2000, 49(10): 1973-1977. doi: 10.7498/aps.49.1973
    [10] Yang Yang, Chen Shu-Fen, Xie Jun, Chen Chun-Yan, Shao Ming, Guo Xu, Huang Wei. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [11] Li Hong-Yu, Zhao Ke, Pan Rui-Qin, Sun Yuan-Hong, Wang Chuan-Kui. Dynamical behavior of ultrashort pulse laser in para-nitroaniline molecules. Acta Physica Sinica, 2005, 54(5): 2072-2078. doi: 10.7498/aps.54.2072
    [12] Deng Shu-Peng, Li Wen-Cui, Huang Wen-Bin, Liu Yong-Gang, Peng Zeng-Hui, Lu Xing-Hai, Xuan Li. All-organic two-dimensional photonic crystal laser based on holographic polymer dispersed liquid crystals. Acta Physica Sinica, 2011, 60(8): 086103. doi: 10.7498/aps.60.086103
    [13] Chi Lang, Fei Hong-Tao, Wang Teng, Yi Jian-Peng, Fang Yue-Ting, Xia Rui-Dong. A highly sensitive chemosensor for solution based on organic semiconductor laser gain media. Acta Physica Sinica, 2016, 65(6): 064202. doi: 10.7498/aps.65.064202
    [14] Liu Li-Juan, Kong Xiao-Bo, Liu Yong-Gang, Xuan Li. Enhancement of conversion efficiency for an organic semiconductor laser based on a holographic polymer dispersed liquid crystal. Acta Physica Sinica, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [15] He Shou-Jie, Duan Ping-Guang, Li Xia, Han Yu-Hong, Wang Long, Ha Jing. Conical bubble sonoluminescence in organic solution. Acta Physica Sinica, 2009, 58(1): 602-606. doi: 10.7498/aps.58.602
    [16] Wang Xu-Peng, Mi Bao-Xiu, Gao Zhi-Qiang, Guo Qing, Huang Wei. Progress of white organic light-emitting device. Acta Physica Sinica, 2011, 60(8): 087808. doi: 10.7498/aps.60.087808
    [17] Zhang Yong, Liu Ya-Li, Jiao Wei, Chen Lin, Xiong Zu-Hong. Magnetoconductance effect in organic light-emitting devices. Acta Physica Sinica, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [18] Peng Jing-Cui, Li Hong-Jian, Qu Shu, Zhao Chu-Jun, Luo Xiao-Hua, Xu Xue-Mei. Effects of organic/organic interface on recombination efficiency in double-layer organic diodes. Acta Physica Sinica, 2004, 53(1): 286-290. doi: 10.7498/aps.53.286
    [19] OUYANG MIN, HOU SHI-MIN, LIN LIN, LIU WEI-MIN, XUE ZENG-QUAN, WU QUAN-DE, XIA ZONG-JU, ZOU YING-HUA. STUDY OF STRUCTURE OF METALLIC CLUSTERS EMBEDDED IN ORGANIC THIN FILM (I). Acta Physica Sinica, 1998, 47(5): 802-806. doi: 10.7498/aps.47.802
    [20] OUYANG MIN, HOU SHI-MIN, LIN LIN, LIU WEI-MIN, XUE ZENG-QUAN, WU QUAN-DE, XIA ZONG-JU, ZOU YING-HUA. STUDY OF ELECTRICAL AND OPTICAL PROPERTIES OF METALLIC CLUSTERS EMBEDDED IN ORGANIC THIN FILM (II). Acta Physica Sinica, 1998, 47(5): 829-834. doi: 10.7498/aps.47.829
  • Citation:
Metrics
  • Abstract views:  2006
  • PDF Downloads:  891
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2014
  • Accepted Date:  15 November 2014
  • Published Online:  05 May 2015

Current reflearch and future development of organic laser materials and devices

  • 1. Key Laboratory for Organic Electronics and Information Displays Institute of Advanced Materials(IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts Telecommunications, Nanjing 210023, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61376023, 61136003), the National Basic Resesarch program of China(Grant No. 2015CB932203), the Program for Changjiang Scholars and Innovative Research Teams in the Universities of Jiangsu Province, China (Grant No. IRT1148), the Priority Academic Program Development Fund of Jiangsu Higher Education Institutions (PAPD) and the Natural Science Foundation of Nanjing University of Posts and Telecommunications, China (Grant Nos. NY212013, NY212034).

Abstract: Laser has been widely applied in the scientific and industrial areas, including materials, medicine, military and telecommunications, due to its extreflely well-defined frequency, narrow divergence and high intensity. In reflent fifty years, various laser sources have been developed. The laser output power, pulse duration, and attainable wavelengths have been greatly improved. To date, further optimization on laser is mainly focused on the three aspects: an effective gain medium capable of amplifying light, a convenient pump source, and a high efficient resonator (or cavity). Among these aspects, the gain medium plays a very important role in the generation of efficient and high-quality laser. Lots of laser materials have been explored and developed, among them, organic laser materials, small molecules or polymers based on -conjugated structure, have been attracting more and more attention in the current reflearch of high efficiency laser. Organic laser have advantages such as simple fabrication, low cost, easy integration, and so on. Although the organic lasers with optical pump source have been extensively reflearched, the issues how to achieve electrically pumped organic lasers, or the so-called organic laser diodes, still remain unsolved. Nevertheless, the prospects of organic laser are very promising, such as its application in spectroscopy, chemical sensor (e.g. trinitrotoluene or DNA sequences) and short-haul data communication. In this review, we try to draw a picture of the organic laser reflearch form its first appearence till the end of 2014, with emphasis on the latest progress and variation trends, instead of providing a complete survey of organic laser reflearch. In the first part of this paper, different types of organic materials used for lasers are briefly reviewed. First, basic rules for the selection of suitable materials for organic lasing are summaried as: 1) the appropriate energy level distribution for creating four-level systems; 2) a high-stimulated emission cross-section e, which should affect the gain and threshold; 3) an appropriate radius for host-guest blend if energy transfer system is applied; 4) the low stokes shift to reduce the pump energy converted into heat; 5) a low excited-state absorption to reduce the self-absorbance loss; 6) a low intersystem crossing rate and a low triplet-triplet absorption cross-section to eventually lower the triplet lifetime; 7) a high photoluminescence efficiency in solid-state, i.e. a low - packing; 8) the good stability against oxygen and moisture and photo stability against pump light. Such organic gain media are classified into dyes, semiconductors, and new-concept materials. The active host-guest system is also discussed, which is different from the dispersion chromophore in the inert matrix (e.g. PMMA). This energy transfer strategy has been well proved to be effective to improve the absorption of pump energy and move the absorption band away from the emission band. It is possible, therefore, to reduce the self-absorbance loss to lower the threshold of lasing. In the second part, different geometries and features of the most commonly used cavity are discussed to investigate the dynamic balance between the gain and loss inside the lasing operating system. We divide the resonator structures into the catalogs of planar waveguides, curved surface cavities, and vertical external cavity solid organic larers (VECSOL). The widely used types of planar waveguides are DFB and DBR. The lasing thresholds of these structures areflextreflely low and their emission wavelength can be tuned by changing the thickness of the organic layer or the period of the modulation. In the third part, current progress and future reflearch direction of the organic lasers are summarized. The challenge of electrically pumped organic laser (or organic laser diode) remains to be the major driving force for the scientific community to be devoted to the reflearch of organic lasers. Estimation of operating current based on the optical-pumped laser data is only 100 Acm-2. Actually, very high current densities of the order of kA cm-2 (even higher) have been realized both in pulsed OLEDs and light-emitting field-effect transistor (LEFET) devices. But lasing is still not observed. The extra losses brought about by electrical driving can be summarized as follows: 1) the electrodes used for electrical injection; 2) the charge carriers with broad absorption bands overlapping the emission; 3) the triplet excitons with longer lifetime and higher creation probability ratio. LEFET is now the most promising device structure of organic laser diodes. Unfortunately, LEFET is not applicable for dealing with the triplet trouble which is inherent in the organic materials. The proposition of new concept on directly pumped organic lasers seems to be an alternative way to solve this problem. Finally, we would like to describe the reflent progress in optically pumped organic lasers briefly. Efforts which have been made can be summarized as follows: lowering the lasing threshold, increasing the wavelength coverage (to the deep red or infrared and to the ultraviolet), improving the wavelength sensitivity, enhancing the lifetime of the devices, or improving the conversion efficiency, output power and beam quality. Although these progresses are realized under the condition of optical pumping, all these achievements are meaningful since they constitute the bases of future organic laser diodes.

Reference (177)

Catalog

    /

    返回文章
    返回