Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigation on the electrical explosion of single aluminum wire in vacuum

Wang Kun Shi Zong-Qian Shi Yuan-Jie Bai Jun Li Yang Wu Zi-Qian Qiu Ai-Ci Jia Shen-Li

Experimental investigation on the electrical explosion of single aluminum wire in vacuum

Wang Kun, Shi Zong-Qian, Shi Yuan-Jie, Bai Jun, Li Yang, Wu Zi-Qian, Qiu Ai-Ci, Jia Shen-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The electrical explosion of single wire occurs in many application fields, such as wire-array Z-pinch, synthesis of the nanopowder, high-intensity magnetic field source, etc. The initial stage of the electrical explosion of single wire has a critical influence on the stagnation and X-ray yield in the wire-array Z-pinch. The impressive result of X-ray yield from wire-array Z-pinch is a major motivation to promote the research in this field. Although numerous studies have been carried out to gain a deep insight into the physics of the electrical explosion of single wire, more experimental investigations are necessary to optimize the energy deposition and expansion rate. It is important to investigate the characteristics of the electrical explosion of single wire under the negative polarity pulsed-current, which is adopted in many Z-pinch facilities. In this paper, the electrical explosion of aluminum wire under negative polarity pulsed-current in vacuum is investigated. In the present experiments, the light emission is measured by the photomultiplier and streak camera. A laser probe EKSPLA-PL2251C (30 ps, 532 nm) is adopted to perform the shadowgraphy, schlieren and interferometry diagnostics. The radial knife-edge schlieren scheme is employed to translate the regions with plasma refractivity and gas-type refractivity. The interferometry is constructed based on Mach-Zehnder interferometer. The shadowgram, schlieren image and interferogram are recorded by Canon cameras. The typical waveforms of the voltage, current and light emission from the electrical explosion of 15 m-diameter, 2 cm-long aluminum wire are derived. The energy deposition at the instant of voltage collapse is about 2.4 eV/atom (vaporization energy is about 4 eV/atom). In order to increase the energy deposited into the wire, the 15 m-diameter, 2 cm-long aluminum wire with 2 m polyimide coating is exploded with the same electrical parameters. The energy deposition in the coated wire is about 5 eV/atom. From the shadowgram of the electrical explosion of uncoated aluminum wire, the expansion velocity of the high-density region can be estimated to be about 2.2 km/s. However, the expansion velocity of the high-density region of the polyimide-coated aluminum wire is about 5 km/s. The schlieren images show that the wire is exploded into a binary structure, i.e., a high-density core surrounded by the low-density corona. It should be noted that the energy deposition in the coated wire is larger than the vaporization energy, indicating that the aluminum wire is totally in gaseous state. Thus, the plasma region in the schlieren image of electrical explosion of coated wire is not distinct. The core-corona structure is depressed by the insulating coatings to a certain extent. The configuration of the parallel wire is adopted to estimate the expansion velocity of the plasma shell. The expansion velocity of the low-density plasma is about 5.8 km/s. Two-dimensional distribution of the phase shift is derived through the interferogram. The central part of the gas-type material with a radius of 0.1 cm exhibits a large positive phase shift, while the peripheral plasma shows a small negative phase shift. The three-dimensional atomic density distribution is reconstructed in the gas-type distribution area in which the contribution of electrons is negligible. In our experiments, the energy deposition of the electrical explosion of uncoated wire ranges from 2 to 4 eV/atom. This may be caused by the initial conditions of the wire surface and the connection between the wire and electrode. Further research should be carried out for a better understanding of this phenomenon.
      Corresponding author: Shi Zong-Qian, zqshi@mail.xjtu.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 51322706, 51237006, 51325705), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0428), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Xu R K, Li Z H, Yang J L, Xu Z P, Ding N, Guo C, Jiang S L, Ning J M, Xia G X, Li L B, Song F J, Chen J C 2005 Chin. Phys. 14 1613

    [2]

    Bi X S, Zhu L, Yang F L 2012 Acta Phys. Sin. 61 078105 (in Chinese) [毕学松, 朱亮, 杨富龙 2012 物理学报 61 078105]

    [3]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2013 Chin. Phys. B 22 045206

    [4]

    Clrouin J, Noiret P, Blottiau P, Recoules V, Siberchicot B, Renaudin P, Blancard C, Faussurier G, Holst B, Starrett C E 2012 Phys. Plasmas 19 082702

    [5]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [6]

    Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seamen J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, McKenney J L, Mock R C, Vargas M, Wagoner T, Peterson D L 1998 Phys. Plasmas 5 2105

    [7]

    Beg F N, Lebedev S V, Bland S N, Chittenden J P, Dangor A E, Haines M G 2002 Phys. Plasmas 9 375

    [8]

    Wu J, Li X W, Wang K, Li Z H, Yang Z F, Shi Z Q, Jia S L, Qiu A C 2014 Phys. Plasmas 21 112708

    [9]

    Chittenden J P, Lebedev S V, Ruiz-Camacho J, Beg F N, Bland S N, Jennings C A, Bell A R, Haines M G, Pikuz S A, Shelkovenko T A, Hammer D A 2000 Phys. Rev. E 61 4370

    [10]

    Ding N 2002 China Nuclear Science and Technology Report 00 170 (in Chinese) [丁宁 2002 中国核科技报告 00 170]

    [11]

    Sarkisov G S, Rosenthal S E, Struve K W 2008 Phy. Rev. E 77 056406

    [12]

    Tkachenko S I, Mingaleev A R, Pikuz S A, Romanova V M, Khattatov T M, Shelkovenko T A, Ol'khovskaya O G, Gasilov V A, Kalinin Y G 2012 Plasma Phys. Rep 38 1

    [13]

    Sarkisov G S, Sasorov P V, Struve K W, McDaniel D H 2004 J. Appl. Phys. 96 1674

    [14]

    Zhao J P, Zhang Q G, Yan W Y, Liu X D, Liu L C, Zhou Q, Qiu A C 2013 IEEE Trans. Plasma Sci. 41 2207

    [15]

    Zhao T, Zou X B, Zhang R, Wang X X 2010 Chin. Phys. B 19 075205

    [16]

    Wu J, Li X W, Li Y, Yang Z F, Shi Z Q, Jia S L, Qiu A C 2014 Acta Phys. Sin. 63 125206 (in Chinese) [吴坚, 李兴文, 李阳, 杨泽锋, 史宗谦, 贾申利, 邱爱慈 2014 物理学报 63 125206]

    [17]

    Sinars D B, Hu M, Chandler K M, Shelkovenko T A, Pikuz S A, Greenly J B, Hammer D A, Kusse B R 2001 Phys. Plasmas 8 216

    [18]

    Sarkisov G S, Struve K W, McDaniel D H 2004 Phys. Plasmas 11 4573

    [19]

    Duselis P U, Vaughan J A, Kusse B R 2004 Phys. Plasmas 11 4025

    [20]

    Sinars D B, Shelkovenko T A, Pikuz S A, Hu M, Romanova V M, Chandler K M, Greenly J B, Hammer D A, Kusse B R 2000 Phys. Plasmas 7 429

    [21]

    Li Y, Sheng L, Wu J, Li X W, Zhao J Z, Zhang M, Yuan Y, Peng B D 2014 Phys. Plasmas 21 102513

    [22]

    Sarkisov G S, Rosenthal S E, Struve K W, McDaniel D H 2005 Phys. Rev. Lett. 94 035004

    [23]

    Beilis I I, Baksht R B, Oreshkin V I, Russkikh A G, Chaikovskii S A, Labetskii A Y, Ratakhin N A, Shishlov A V 2008 Phys. Plasmas 15 013501

    [24]

    Sarkisov G S, Sasorov P V, Struve K W, McDaniel D H, Gribov A N, Oleinik G M 2002 Phy. Rev. E 66 046413

    [25]

    Sarkisov G S, Rosenthal S E, Cochrane K R, Struve K W, Deeney C, McDaniel D H 2005 Phy. Rev. E 71 046404

    [26]

    Shi Z Q, Wang K, Li Y, Shi Y J, Wu J, Jia S L 2014 Phys. Plasmas 21 032702

    [27]

    Oreshkin V I 2009 Tech. Phys. Lett 35 36

    [28]

    Wang K, Shi Z Q, Shi Y J, Bai J, Wu J, Jia S L 2015 Phys. Plasmas 22 062709

    [29]

    Lee Y T, More R M 1984 Phys. Fluids 27 1273

    [30]

    Desjarlais M P 2001 Contrib. Plasma Phys. 41 267

    [31]

    Hu M, Kusse B R 2004 Phys. Plasmas 11 1145

    [32]

    Hipp M, Woisetschlager J, Reiterer P, Neger T 2004 Measurement 36 53

  • [1]

    Xu R K, Li Z H, Yang J L, Xu Z P, Ding N, Guo C, Jiang S L, Ning J M, Xia G X, Li L B, Song F J, Chen J C 2005 Chin. Phys. 14 1613

    [2]

    Bi X S, Zhu L, Yang F L 2012 Acta Phys. Sin. 61 078105 (in Chinese) [毕学松, 朱亮, 杨富龙 2012 物理学报 61 078105]

    [3]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2013 Chin. Phys. B 22 045206

    [4]

    Clrouin J, Noiret P, Blottiau P, Recoules V, Siberchicot B, Renaudin P, Blancard C, Faussurier G, Holst B, Starrett C E 2012 Phys. Plasmas 19 082702

    [5]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [6]

    Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seamen J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, McKenney J L, Mock R C, Vargas M, Wagoner T, Peterson D L 1998 Phys. Plasmas 5 2105

    [7]

    Beg F N, Lebedev S V, Bland S N, Chittenden J P, Dangor A E, Haines M G 2002 Phys. Plasmas 9 375

    [8]

    Wu J, Li X W, Wang K, Li Z H, Yang Z F, Shi Z Q, Jia S L, Qiu A C 2014 Phys. Plasmas 21 112708

    [9]

    Chittenden J P, Lebedev S V, Ruiz-Camacho J, Beg F N, Bland S N, Jennings C A, Bell A R, Haines M G, Pikuz S A, Shelkovenko T A, Hammer D A 2000 Phys. Rev. E 61 4370

    [10]

    Ding N 2002 China Nuclear Science and Technology Report 00 170 (in Chinese) [丁宁 2002 中国核科技报告 00 170]

    [11]

    Sarkisov G S, Rosenthal S E, Struve K W 2008 Phy. Rev. E 77 056406

    [12]

    Tkachenko S I, Mingaleev A R, Pikuz S A, Romanova V M, Khattatov T M, Shelkovenko T A, Ol'khovskaya O G, Gasilov V A, Kalinin Y G 2012 Plasma Phys. Rep 38 1

    [13]

    Sarkisov G S, Sasorov P V, Struve K W, McDaniel D H 2004 J. Appl. Phys. 96 1674

    [14]

    Zhao J P, Zhang Q G, Yan W Y, Liu X D, Liu L C, Zhou Q, Qiu A C 2013 IEEE Trans. Plasma Sci. 41 2207

    [15]

    Zhao T, Zou X B, Zhang R, Wang X X 2010 Chin. Phys. B 19 075205

    [16]

    Wu J, Li X W, Li Y, Yang Z F, Shi Z Q, Jia S L, Qiu A C 2014 Acta Phys. Sin. 63 125206 (in Chinese) [吴坚, 李兴文, 李阳, 杨泽锋, 史宗谦, 贾申利, 邱爱慈 2014 物理学报 63 125206]

    [17]

    Sinars D B, Hu M, Chandler K M, Shelkovenko T A, Pikuz S A, Greenly J B, Hammer D A, Kusse B R 2001 Phys. Plasmas 8 216

    [18]

    Sarkisov G S, Struve K W, McDaniel D H 2004 Phys. Plasmas 11 4573

    [19]

    Duselis P U, Vaughan J A, Kusse B R 2004 Phys. Plasmas 11 4025

    [20]

    Sinars D B, Shelkovenko T A, Pikuz S A, Hu M, Romanova V M, Chandler K M, Greenly J B, Hammer D A, Kusse B R 2000 Phys. Plasmas 7 429

    [21]

    Li Y, Sheng L, Wu J, Li X W, Zhao J Z, Zhang M, Yuan Y, Peng B D 2014 Phys. Plasmas 21 102513

    [22]

    Sarkisov G S, Rosenthal S E, Struve K W, McDaniel D H 2005 Phys. Rev. Lett. 94 035004

    [23]

    Beilis I I, Baksht R B, Oreshkin V I, Russkikh A G, Chaikovskii S A, Labetskii A Y, Ratakhin N A, Shishlov A V 2008 Phys. Plasmas 15 013501

    [24]

    Sarkisov G S, Sasorov P V, Struve K W, McDaniel D H, Gribov A N, Oleinik G M 2002 Phy. Rev. E 66 046413

    [25]

    Sarkisov G S, Rosenthal S E, Cochrane K R, Struve K W, Deeney C, McDaniel D H 2005 Phy. Rev. E 71 046404

    [26]

    Shi Z Q, Wang K, Li Y, Shi Y J, Wu J, Jia S L 2014 Phys. Plasmas 21 032702

    [27]

    Oreshkin V I 2009 Tech. Phys. Lett 35 36

    [28]

    Wang K, Shi Z Q, Shi Y J, Bai J, Wu J, Jia S L 2015 Phys. Plasmas 22 062709

    [29]

    Lee Y T, More R M 1984 Phys. Fluids 27 1273

    [30]

    Desjarlais M P 2001 Contrib. Plasma Phys. 41 267

    [31]

    Hu M, Kusse B R 2004 Phys. Plasmas 11 1145

    [32]

    Hipp M, Woisetschlager J, Reiterer P, Neger T 2004 Measurement 36 53

  • [1] Wang Kun, Shi Zong-Qian, Shi Yuan-Jie, Zhao Zhi-Gang, Zhang Dong. Characteristics of electrical explosion of single wire in a vacuum and in the air. Acta Physica Sinica, 2017, 66(18): 185203. doi: 10.7498/aps.66.185203
    [2] Sheng Liang, Wang Liang-Ping, Li Yang, Peng Bo-Dong, Zhang Mei, Wu Jian, Wang Pei-Wei, Wei Fu-Li, Yuan Yuan. One-dimensional imaging diagnostics of imploding dynamics for planar wire array Z pinch. Acta Physica Sinica, 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [3] Sheng Liang, Peng Bo-Dong, Yuan Yuan, Zhang Mei, Li Kui-Nian, Zhang Xin-Jun, Zhao Chen, Zhao Ji-Zhen, Li Mo, Wang Pei-Wei, Li Yang. Laser shadowgraphy diagnostics for insulated-ordinary mixed planar wire array Z pinches. Acta Physica Sinica, 2014, 63(23): 235205. doi: 10.7498/aps.63.235205
    [4] Meng Shi-Jian, Huang Zhan-Chang, Ning Jia-Min, Hu Qing-Yuan, Ye Fan, Qin Yi, Xu Ze-Ping, Xu Rong-Kun. Shock X-ray emission image measurement in Z-pinch dynamic hohlraum. Acta Physica Sinica, 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [5] Meng Shi-Jian, Li Zheng-Hong, Qin Yi, Ye Fan, Xu Rong-Kun. X-ray continuum spectra for diagnosing plasma temperaturein aluminum wire array Z-pinches. Acta Physica Sinica, 2011, 60(4): 045211. doi: 10.7498/aps.60.045211
    [6] Wang Liang-Ping, Han Juan-Juan, Wu Jian, Guo Ning, Wu Gang, Li Yan, Qiu Ai-Ci. Simulation of planar wire array Z-pinch based on single wire behavior. Acta Physica Sinica, 2010, 59(12): 8685-8691. doi: 10.7498/aps.59.8685
    [7] JIANG WEN-MIAN, ZHANG JIE, XIA JIANG-FAN, TENG HAO, WEI ZHI-YI, LI YU-TONG, CHEN LI-MING. OBSERVATION OF THE TRANSVERSE PINCH OF THE EXPANSION OF AN FEMTOSECOND LASER-PLA SMA. Acta Physica Sinica, 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
    [8] Chen Zhong-Wang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z. Acta Physica Sinica, 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [9] Ye Fan, Xue Fei-Biao, Chu Yan-Yun, Si Fen-Ni, Hu Qing-Yuan, Ning Jia-Min, Zhou Lin, Yang Jian-Lun, Xu Rong-Kun, Li Zheng-Hong, Xu Ze-Ping. Experimental study on current division of nested wire array Z pinches. Acta Physica Sinica, 2013, 62(17): 175203. doi: 10.7498/aps.62.175203
    [10] Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping. Electromagnetic pulse emission produced by Z pinch implosions. Acta Physica Sinica, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [11] V. P. Smirnov, Yu. G. Kalinin, A. S. Kingsep, A. S. Chernenko, E. V. Grabovsky, Ning Cheng, Li Zheng-Hong, Hua Xin-Sheng, Xu Rong-Kun, Peng Xian-Jue, Xu Ze-Ping, Yang Jian-Lun, Guo Cun, Jiang Shi-Lun, Feng Shu-Ping, Yang Li-Bing, Yan Cheng-Li, Song Feng-Jun. Experimental studies of Z-pinches of mixed wire array with aluminum and tungsten. Acta Physica Sinica, 2004, 53(7): 2244-2249. doi: 10.7498/aps.53.2244
    [12] Huang Xian-Bin, Yang Li-Bing, Gu Yuan-Chao, Deng Jian-Jun, Zhou Rong-Guo, Zou Jie, Zhou Shao-Tong, Zhang Si-Qun, Chen Guang-Hua, Chang Li-Hua, Li Feng-Ping, Ouyang Kai, Li Jun, Yang Liang, Wang Xiong. Experimental studies of the argon-puff Z-pinch implosion process. Acta Physica Sinica, 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [13] Zhang Yang, Ding Ning. The effect of axial flow on the stability in the Z-pinch. Acta Physica Sinica, 2006, 55(5): 2333-2339. doi: 10.7498/aps.55.2333
    [14] Ning Cheng, Ding Ning, Liu Quan, Yang Zhen-Hua. Studies of implosion processes of nested tungsten wire-array Z-pinch. Acta Physica Sinica, 2006, 55(7): 3488-3493. doi: 10.7498/aps.55.3488
    [15] Ning Cheng, Ding Ning, Yang Zhen-Hua. Physical analysis of the certain results in Z-pinch experiments on the “Qiang Guang-I” generator. Acta Physica Sinica, 2007, 56(1): 338-345. doi: 10.7498/aps.56.338
    [16] Lü Min, Wu Gang, Qiu Ai-Ci, Kuai Bin, Wang Liang-Ping, Cong Pei-Tian, Qiu Meng-Tong, Lei Tian-Shi, Sun Tie-Ping, Guo Ning, Han Juan-Juan, Zhang Xin-Jun, Huang Tao, Zhang Guo-Wei, Qiao Kai-Lai. Experimental study on K-shell radiation production of aluminum wire array Z-pinch at Qiangguang-I facility. Acta Physica Sinica, 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [17] Guo Fan, Li Yong-Dong, Wang Hong-Guang, Liu Chun-Liang, Hu Yi-Xiang, Zhang Peng-Fei, Ma Meng. Particle-in-cell simulation of outer magnetically insulated transmission line of Z-pinch accelerator. Acta Physica Sinica, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [18] Sheng Liang, Qiu Meng-Tong, Hei Dong-Wei, Qiu Ai-Ci, Cong Pei-Tian, Wang Liang-Ping, Wei Fu-Li. Research of implosion dynamics for wire array Z pinch. Acta Physica Sinica, 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [19] Gao Qi, Wu Ze-Qing, Zhang Chuan-Fei, Li Zheng-Hong, Xu Rong-Kun, Zu Xiao-Tao. The nonlocal thermal equilibrium simulation of Z-pinch Al plasma radiation. Acta Physica Sinica, 2012, 61(1): 015201. doi: 10.7498/aps.61.015201
    [20] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
  • Citation:
Metrics
  • Abstract views:  939
  • PDF Downloads:  257
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2015
  • Accepted Date:  22 September 2015
  • Published Online:  05 January 2016

Experimental investigation on the electrical explosion of single aluminum wire in vacuum

    Corresponding author: Shi Zong-Qian, zqshi@mail.xjtu.edu.cn
  • 1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;
  • 2. State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China
Fund Project:  Project supported by the National Science Foundation of China (Grant Nos. 51322706, 51237006, 51325705), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0428), and the Fundamental Research Funds for the Central Universities, China.

Abstract: The electrical explosion of single wire occurs in many application fields, such as wire-array Z-pinch, synthesis of the nanopowder, high-intensity magnetic field source, etc. The initial stage of the electrical explosion of single wire has a critical influence on the stagnation and X-ray yield in the wire-array Z-pinch. The impressive result of X-ray yield from wire-array Z-pinch is a major motivation to promote the research in this field. Although numerous studies have been carried out to gain a deep insight into the physics of the electrical explosion of single wire, more experimental investigations are necessary to optimize the energy deposition and expansion rate. It is important to investigate the characteristics of the electrical explosion of single wire under the negative polarity pulsed-current, which is adopted in many Z-pinch facilities. In this paper, the electrical explosion of aluminum wire under negative polarity pulsed-current in vacuum is investigated. In the present experiments, the light emission is measured by the photomultiplier and streak camera. A laser probe EKSPLA-PL2251C (30 ps, 532 nm) is adopted to perform the shadowgraphy, schlieren and interferometry diagnostics. The radial knife-edge schlieren scheme is employed to translate the regions with plasma refractivity and gas-type refractivity. The interferometry is constructed based on Mach-Zehnder interferometer. The shadowgram, schlieren image and interferogram are recorded by Canon cameras. The typical waveforms of the voltage, current and light emission from the electrical explosion of 15 m-diameter, 2 cm-long aluminum wire are derived. The energy deposition at the instant of voltage collapse is about 2.4 eV/atom (vaporization energy is about 4 eV/atom). In order to increase the energy deposited into the wire, the 15 m-diameter, 2 cm-long aluminum wire with 2 m polyimide coating is exploded with the same electrical parameters. The energy deposition in the coated wire is about 5 eV/atom. From the shadowgram of the electrical explosion of uncoated aluminum wire, the expansion velocity of the high-density region can be estimated to be about 2.2 km/s. However, the expansion velocity of the high-density region of the polyimide-coated aluminum wire is about 5 km/s. The schlieren images show that the wire is exploded into a binary structure, i.e., a high-density core surrounded by the low-density corona. It should be noted that the energy deposition in the coated wire is larger than the vaporization energy, indicating that the aluminum wire is totally in gaseous state. Thus, the plasma region in the schlieren image of electrical explosion of coated wire is not distinct. The core-corona structure is depressed by the insulating coatings to a certain extent. The configuration of the parallel wire is adopted to estimate the expansion velocity of the plasma shell. The expansion velocity of the low-density plasma is about 5.8 km/s. Two-dimensional distribution of the phase shift is derived through the interferogram. The central part of the gas-type material with a radius of 0.1 cm exhibits a large positive phase shift, while the peripheral plasma shows a small negative phase shift. The three-dimensional atomic density distribution is reconstructed in the gas-type distribution area in which the contribution of electrons is negligible. In our experiments, the energy deposition of the electrical explosion of uncoated wire ranges from 2 to 4 eV/atom. This may be caused by the initial conditions of the wire surface and the connection between the wire and electrode. Further research should be carried out for a better understanding of this phenomenon.

Reference (32)

Catalog

    /

    返回文章
    返回