Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sound propagation in deep water with a sloping bottom

Hu Zhi-Guo Li Zheng-Lin Zhang Ren-He Ren Yun Qin Ji-Xing He Li

Sound propagation in deep water with a sloping bottom

Hu Zhi-Guo, Li Zheng-Lin, Zhang Ren-He, Ren Yun, Qin Ji-Xing, He Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Variation of bathymetry has a large effect on the sound propagation in deep water. An acoustic propagation experiment is carried out in the South China Sea. Some different propagation phenomena are observed for two different tracks in the flat bottom and the sloping bottom environments. Numerical analysis based on the parabolic equation model RAM (range-dependent acoustic model) is performed to explain the causes of the differences. The experimental and numerical results show that the transmission losses (TLs) decrease down to about 5 dB above the slope due to the reflection of the bottom, with a high-intensity region appearing below the sea surface. When a sea hill with a height of 320 m, which is less than 1/10 of water depth, exists in the incident range of sound beams on bottom first time, the sound beams are blocked due to the reflection of the sea hill. Then their propagating directions are changed, which makes an inverted-triangle shadow zone appearing in the reflection area of the sea hill. Compared with the TL results in the flat bottom environment, TLs increase up to about 8 dB in the corresponding area of the first shadow zone, and the abnormal TL effects can reach a maximal depth of 1500 m. Consequently, the shadow amplification effect caused by a small variation of bathymetry in deep water for long-range/large-depth sound propagation should receive enough attention. Furthermore, the convergence-zone structure in the sloping environment is different from that in deep water with flat bottom. The first convergence zone caused by refractions from the water above the axis of sound channel disappears. There are only the sound beams refracted back from water below the axis of sound channel. The numerical simulations show that the reflection-blockage of sound beams caused by the sloping bottom is significant. When the source is located somewhere above the slope, sound beams with large grazing angles can be reflected by the sloping bottom, and only some sound beams with small grazing angles can be refracted in the water without touching the slope and then come into the depth range of the vertical line array (VLA), forming the first part of the convergence zone refracted back from water. As the source moves farther from the VLA, the reflection-blockage of the sloping bottom becomes stronger. Sound beams are all reflected by the slope at a depth of about 3000 m, and they go through below the VLA, which leads to the absence of the first convergence zone caused by refractions from the water above the axis of sound channel. Therefore, the accuracy of bathymetry is meaningful for the sound propagation and target detection in deep water.
      Corresponding author: Li Zheng-Lin, lzhl@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012, 41561144006, 11174312, 11404366).
    [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p33

    [2]

    Collis J M, Siegmann W L, Jensen F B Zampolli M, Ksel E T, Collins M D 2008 J. Acoust. Soc. Am. 123 51

    [3]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188

    [4]

    Zhang R H, Liu H, He Y, Akulichev V A 1994 Acta Acust. 19 408 (in Chinese) [张仁和, 刘红, 何怡, Akulichev V A 1994 声学学报 19 408]

    [5]

    Zhang R H, He Y, Liu H, Akulichev V A 1995 J. Sound Vib. 184 439

    [6]

    Li Q Q, Li Z L, Zhang R H 2011 Chin. Phys. Lett. 28 034303

    [7]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349

    [8]

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acust. 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425]

    [9]

    Peng Z H, Zhang R H 2005 Acta Acust. 30 97 (in Chinese) [彭朝晖, 张仁和 2005 声学学报 30 97]

    [10]

    Zhang Z M, Li Z L, Dai Q X Tech. Acoust. 26 998 (in Chinese) [张镇迈, 李整林, 戴琼兴 2007 声学技术 26 998]

    [11]

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese) [秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]

    [12]

    Northrop J, Lougbrid M S, Werner E W 1968 J. Geophys. Res. 73 3905

    [13]

    Dosso S E, Chapman N R 1987 J. Acoust. Soc. Am. 81 258

    [14]

    Tappert F D, Spiesberger J L, Wolfson M A 2002 J. Acoust. Soc. Am. 111 757

    [15]

    Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE SeattleA Global Responsibility: the Global Ocean is an Uncommon Resource Demanding Common Responsibility Seattle, USA, September 20-23, 2010 p1

    [16]

    Qin J X, Zhang R H, Luo W Y, Peng Z H, Liu J H, Wang D J 2014 Sci. China: Phys. Mech. Astron. 57 1031

    [17]

    Northrop J 1970 J. Acoust. Soc. Am. 48 417

    [18]

    Nutile D A, Guthrie A N 1979 J. Acoust. Soc. Am. 66 1813

    [19]

    Chapman N R, Ebbeson G R 1983 J. Acoust. Soc. Am. 73 1979

    [20]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology)

    [21]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [22]

    Collins M D, Westwood E K 1991 J. Acoust. Soc. Am. 89 1068

    [23]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [24]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990

  • [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p33

    [2]

    Collis J M, Siegmann W L, Jensen F B Zampolli M, Ksel E T, Collins M D 2008 J. Acoust. Soc. Am. 123 51

    [3]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188

    [4]

    Zhang R H, Liu H, He Y, Akulichev V A 1994 Acta Acust. 19 408 (in Chinese) [张仁和, 刘红, 何怡, Akulichev V A 1994 声学学报 19 408]

    [5]

    Zhang R H, He Y, Liu H, Akulichev V A 1995 J. Sound Vib. 184 439

    [6]

    Li Q Q, Li Z L, Zhang R H 2011 Chin. Phys. Lett. 28 034303

    [7]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349

    [8]

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acust. 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425]

    [9]

    Peng Z H, Zhang R H 2005 Acta Acust. 30 97 (in Chinese) [彭朝晖, 张仁和 2005 声学学报 30 97]

    [10]

    Zhang Z M, Li Z L, Dai Q X Tech. Acoust. 26 998 (in Chinese) [张镇迈, 李整林, 戴琼兴 2007 声学技术 26 998]

    [11]

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese) [秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]

    [12]

    Northrop J, Lougbrid M S, Werner E W 1968 J. Geophys. Res. 73 3905

    [13]

    Dosso S E, Chapman N R 1987 J. Acoust. Soc. Am. 81 258

    [14]

    Tappert F D, Spiesberger J L, Wolfson M A 2002 J. Acoust. Soc. Am. 111 757

    [15]

    Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE SeattleA Global Responsibility: the Global Ocean is an Uncommon Resource Demanding Common Responsibility Seattle, USA, September 20-23, 2010 p1

    [16]

    Qin J X, Zhang R H, Luo W Y, Peng Z H, Liu J H, Wang D J 2014 Sci. China: Phys. Mech. Astron. 57 1031

    [17]

    Northrop J 1970 J. Acoust. Soc. Am. 48 417

    [18]

    Nutile D A, Guthrie A N 1979 J. Acoust. Soc. Am. 66 1813

    [19]

    Chapman N R, Ebbeson G R 1983 J. Acoust. Soc. Am. 73 1979

    [20]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology)

    [21]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [22]

    Collins M D, Westwood E K 1991 J. Acoust. Soc. Am. 89 1068

    [23]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [24]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990

  • [1] Zhang Peng,  Li Zheng-Lin,  Wu Li-Xin,  Zhang Ren-He,  Qin Ji-Xing. Characteristics of convergence zone formed by bottom reflection in deep water. Acta Physica Sinica, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [2] Li Sheng-Hao, Li Zheng-Lin, Li Wen, Qin Ji-Xing. Horizontal refraction effects of seamounts on sound propagation in deep water. Acta Physica Sinica, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [3] Wang Long-Hao, Qin Ji-Xing, Fu De-Long, Li Zheng-Lin, Liu Jian-Jun, Weng Jin-Bao. Bottom reverberation for large receiving depth in deep water. Acta Physica Sinica, 2019, 68(13): 134303. doi: 10.7498/aps.68.20181883
    [4] Effects of swells on sound propagation in a surface duct environment in shallow water. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20201549
    [5] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Propagation of nonlinear waves in the bubbly liquids. Acta Physica Sinica, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [6] Fan Yu-Zhe, Chen Bao-Wei, Li Hai-Sen, Xu Chao. Linear-wave propagation in liquids containing bubbly clusters. Acta Physica Sinica, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [7] Yao Mei-Juan, Lu Li-Cheng, Sun Bing-Wen, Guo Sheng-Ming, Ma Li. Effects of wind-generated bubbles layer on sound propagation underneath rough sea surface in shallow water. Acta Physica Sinica, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [8] Qiao Hou, He Zeng, Zhang Heng-Kun, Peng Wei-Cai, Jiang Wen. Sound transmission in two-dimensional periodic poroelastic structures. Acta Physica Sinica, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [9] Study on lower turning point convegence zone in deep water with an incomplete channel. Acta Physica Sinica, 2020, (0): . doi: 10.7498/aps.70.20201375
    [10] Han Zhi-Bin, Peng Zhao-Hui, Liu Xiong-Hou. Analysis of sound field distribution of angle dimension in deep ocean bottom bounce area and its application to active sonar vertical beam pitch. Acta Physica Sinica, 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [11] The Analysis on Acoustic field distribution of angle dimension in deep ocean bottom bounce area and the application on sonar vertical beam pitch. Acta Physica Sinica, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [12] Sun Mei, Zhou Shi-Hong, Li Zheng-Lin. Analysis of sound propagation in the direct-arrival zone in deep water with a vector sensor and its application. Acta Physica Sinica, 2016, 65(9): 094302. doi: 10.7498/aps.65.094302
    [13] Sound propagation in shallow water environment with the presence of the periodic rough bottom. Acta Physica Sinica, 2020, (0): . doi: 10.7498/aps.70.20201233
    [14] Sun Mei, Zhou Shi-Hong. Complex acoustic intensity with deep receiver in the direct-arrival zone in deep water and sound-ray-arrival-angle estimation. Acta Physica Sinica, 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [15] Song Sha-Sha, Meng Jun-Min, Song Shi-Yan, Wang Jing, Wang Jian-Bu. Numerical simulation of internal waves propagation in deep sea by nonlinear Schr?dinger equation. Acta Physica Sinica, 2010, 59(9): 6339-6344. doi: 10.7498/aps.59.6339
    [16] Wang Jing, Ma Rui-Ling, Wang Long, Meng Jun-Min. Numerical simulation of the spread of internal waves see from deep sea to shallow sea from the mixed model. Acta Physica Sinica, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [17] Gao Bo, Yang Shi-E, Piao Sheng-Chun. Propagation theory for bi-static long-range bottom reverberation in shallow water waveguide. Acta Physica Sinica, 2012, 61(5): 054305. doi: 10.7498/aps.61.054305
    [18] Yang Kun-De, Ma Yuan-Liang. A geoacoustic inversion method based on bottom reflection signals. Acta Physica Sinica, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [19] Li Zheng-Lin, Dong Fan-Chen, Hu Zhi-Guo, Wu Shuang-Lin. Vertical correlations of sound field at large depths in deep water. Acta Physica Sinica, 2019, 68(13): 134305. doi: 10.7498/aps.68.20190134
    [20] Zhou Tian, Li Hai-Sen, Zhu Jian-Jun, Wei Yu-Kuo. A geoacoustic estimation scheme based on bottom backscatter signals from multiple angles. Acta Physica Sinica, 2014, 63(8): 084302. doi: 10.7498/aps.63.084302
  • Citation:
Metrics
  • Abstract views:  1356
  • PDF Downloads:  254
  • Cited By: 0
Publishing process
  • Received Date:  09 June 2015
  • Accepted Date:  18 August 2015
  • Published Online:  05 January 2016

Sound propagation in deep water with a sloping bottom

    Corresponding author: Li Zheng-Lin, lzhl@mail.ioa.ac.cn
  • 1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
  • 2. Haikou Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Haikou 570105, China;
  • 3. College of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012, 41561144006, 11174312, 11404366).

Abstract: Variation of bathymetry has a large effect on the sound propagation in deep water. An acoustic propagation experiment is carried out in the South China Sea. Some different propagation phenomena are observed for two different tracks in the flat bottom and the sloping bottom environments. Numerical analysis based on the parabolic equation model RAM (range-dependent acoustic model) is performed to explain the causes of the differences. The experimental and numerical results show that the transmission losses (TLs) decrease down to about 5 dB above the slope due to the reflection of the bottom, with a high-intensity region appearing below the sea surface. When a sea hill with a height of 320 m, which is less than 1/10 of water depth, exists in the incident range of sound beams on bottom first time, the sound beams are blocked due to the reflection of the sea hill. Then their propagating directions are changed, which makes an inverted-triangle shadow zone appearing in the reflection area of the sea hill. Compared with the TL results in the flat bottom environment, TLs increase up to about 8 dB in the corresponding area of the first shadow zone, and the abnormal TL effects can reach a maximal depth of 1500 m. Consequently, the shadow amplification effect caused by a small variation of bathymetry in deep water for long-range/large-depth sound propagation should receive enough attention. Furthermore, the convergence-zone structure in the sloping environment is different from that in deep water with flat bottom. The first convergence zone caused by refractions from the water above the axis of sound channel disappears. There are only the sound beams refracted back from water below the axis of sound channel. The numerical simulations show that the reflection-blockage of sound beams caused by the sloping bottom is significant. When the source is located somewhere above the slope, sound beams with large grazing angles can be reflected by the sloping bottom, and only some sound beams with small grazing angles can be refracted in the water without touching the slope and then come into the depth range of the vertical line array (VLA), forming the first part of the convergence zone refracted back from water. As the source moves farther from the VLA, the reflection-blockage of the sloping bottom becomes stronger. Sound beams are all reflected by the slope at a depth of about 3000 m, and they go through below the VLA, which leads to the absence of the first convergence zone caused by refractions from the water above the axis of sound channel. Therefore, the accuracy of bathymetry is meaningful for the sound propagation and target detection in deep water.

Reference (24)

Catalog

    /

    返回文章
    返回