Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of standard vacuum noise at low frequencies

Xue Jia Qin Ji-Liang Zhang Yu-Chi Li Gang Zhang Peng-Fei Zhang Tian-Cai Peng Kun-Chi

Measurement of standard vacuum noise at low frequencies

Xue Jia, Qin Ji-Liang, Zhang Yu-Chi, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai, Peng Kun-Chi
PDF
Get Citation
  • Vacuum fluctuation at audio frequencies is very important and interesting in many research fields, such as the gravitational wave detection, ultra-weak magnetic field measurement, and the research of quantum metrology, etc. Since the generation of squeezed light in 1985, most of the squeezed light have been generated and measured at radio frequencies (~MHz) as there has not been much technical noise at higher frequencies. In the Michelson-interferometer-based gravitational wave detection, the detection band has frequencies from a few to tens of thousands Hz. Measuring vacuum noise at such low frequencies is a challenge since we have to stabilize and control all the audio noises and the interferences from a variety of mechanical and electronic noises, therefore a very high classical noise suppression is needed when the measurement time increases. In order to measure the squeezed light of low frequencies, the standard vacuum noise at audio frequencies must be measured. In this paper, a balanced homodyne detection system for measuring the low-frequency quantum vacuum noises is reported. It is not trivial to extend the detected frequency to very low analysis frequencies. Through a self-made self-subtraction balanced homodyne configuration, which can eliminate the DC component of each photocurrent from the photodiode and the classical common-mode technical noise, the standard vacuum noise has been detected. The linearity of the vacuum noise power has been validated by varying the local oscillator power, showing that the saturation power of light incidence is about 3.2 mW. When the incident-light power is 400 W, the standard vacuum noise is 11 dB higher than the electronic noise at 80 Hz. In the regime of about 80 Hz to 400 kHz, the linearity of the standard noise power as a function of incident laser power is verified. However, when the measurement is carried out at even lower frequencies, for example, 50 Hz, we may encounter some excess and non-stationary noises and find that the measured noise power is not proportional to the incident light power any more. These non-stationary noises are the main technical obstacle at low frequencies. The average common mode rejection ratio in the test frequency range from 10 Hz to 400 kHz is 55 dB and its maximum 63 dB at 100 Hz is obtained, implying a high suppression of the technical noise. This self-made homodyne vacuum noise detector can be widely used for precision measurement in quantum metrology and quantum optics.
      Corresponding author: Zhang Yu-Chi, yczhang@sxu.edu.cn;tczhang@sxu.edu.cn ; Zhang Tian-Cai, yczhang@sxu.edu.cn;tczhang@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91336107, 61227902, 61275210) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014021011-2).
    [1]

    Caves C M 1981 Phys. Rev. D 23 1693

    [2]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [3]

    Chelkowski S 2007 Ph. D. Dissertation (Hannover: Gottfried Wilhelm Leibniz Universitt)

    [4]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 104 093602

    [5]

    Wolfgramm F, Cer A, Beduini F A, Predojević A, Koschorreck M, 2010 Phys. Rev. Lett. 105 053601

    [6]

    Horrom T, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803

    [7]

    Banaszek K, Demkowicz-Dobrzański R, Walmsley I A 2009 Nat. Photon. 3 673

    [8]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409

    [9]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [10]

    Zhang T C, Zhang J X, Xie C D, Peng K C 1998 Acta Phys. Sin. 7 340 (Overseas Edition)

    [11]

    Zhang T C, Li T Y, Effenterre D V, Xie C D, Peng K C 1998 Acta Phys. Sin. 47 1498 (in Chinese) [张天才, 李廷鱼, Effenterre D V, 谢常德, 彭堃墀 1998 物理学报 47 1498]

    [12]

    Dong R F, Zhang J X, Zhang T C, Zhang J, Xie C D, Peng K C 2001 Acta Phys. Sin. 50 462 (in Chinese) [董瑞芳, 张俊香, 张天才, 张 靖, 谢常德, 彭堃墀 2001 物理学报 50 462]

    [13]

    Zhou Q Q, Liu J L, Zhang K S 2010 Acta Sin. Quantum Opt. 16 152 (in Chinese) [周倩倩, 刘建丽, 张宽收 2010 量子光学学报 16 152]

    [14]

    Wang J J, Jia X J, Peng K C 2012 Acta Opt. Sin. 31 0127001 (in Chinese) [王金晶, 贾晓军, 彭堃墀 2012 光学学报 31 0127001]

    [15]

    McKenzie K 2008 Ph. D. Dissertation (Canberra: Australian National University)

    [16]

    Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371

    [17]

    Vahlbruch H 2008 Ph. D. Dissertation (Hannover: The Albert Einstein Institute and the Institute of Gravitational Physics of Leibniz Universitt Hannover)

    [18]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Class. Quantum Grav. 29 145015

    [19]

    Dwyer S E 2013 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [20]

    The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [21]

    Stefszky M S 2012 Ph. D. Dissertation (Canberra: Australian National University)

    [22]

    Rogalski A (translated by Zhou H X, Cheng Y F) 2014 Infrared Detectors (Beijing: China Machine Press) pp47, 48 (in Chinese) [罗格尔斯基 A 著 (周海宪, 程云芳 译) 2014 红外探测器(北京: 机械工业出版社)第47, 48页]

  • [1]

    Caves C M 1981 Phys. Rev. D 23 1693

    [2]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [3]

    Chelkowski S 2007 Ph. D. Dissertation (Hannover: Gottfried Wilhelm Leibniz Universitt)

    [4]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 104 093602

    [5]

    Wolfgramm F, Cer A, Beduini F A, Predojević A, Koschorreck M, 2010 Phys. Rev. Lett. 105 053601

    [6]

    Horrom T, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803

    [7]

    Banaszek K, Demkowicz-Dobrzański R, Walmsley I A 2009 Nat. Photon. 3 673

    [8]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409

    [9]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [10]

    Zhang T C, Zhang J X, Xie C D, Peng K C 1998 Acta Phys. Sin. 7 340 (Overseas Edition)

    [11]

    Zhang T C, Li T Y, Effenterre D V, Xie C D, Peng K C 1998 Acta Phys. Sin. 47 1498 (in Chinese) [张天才, 李廷鱼, Effenterre D V, 谢常德, 彭堃墀 1998 物理学报 47 1498]

    [12]

    Dong R F, Zhang J X, Zhang T C, Zhang J, Xie C D, Peng K C 2001 Acta Phys. Sin. 50 462 (in Chinese) [董瑞芳, 张俊香, 张天才, 张 靖, 谢常德, 彭堃墀 2001 物理学报 50 462]

    [13]

    Zhou Q Q, Liu J L, Zhang K S 2010 Acta Sin. Quantum Opt. 16 152 (in Chinese) [周倩倩, 刘建丽, 张宽收 2010 量子光学学报 16 152]

    [14]

    Wang J J, Jia X J, Peng K C 2012 Acta Opt. Sin. 31 0127001 (in Chinese) [王金晶, 贾晓军, 彭堃墀 2012 光学学报 31 0127001]

    [15]

    McKenzie K 2008 Ph. D. Dissertation (Canberra: Australian National University)

    [16]

    Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371

    [17]

    Vahlbruch H 2008 Ph. D. Dissertation (Hannover: The Albert Einstein Institute and the Institute of Gravitational Physics of Leibniz Universitt Hannover)

    [18]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Class. Quantum Grav. 29 145015

    [19]

    Dwyer S E 2013 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [20]

    The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [21]

    Stefszky M S 2012 Ph. D. Dissertation (Canberra: Australian National University)

    [22]

    Rogalski A (translated by Zhou H X, Cheng Y F) 2014 Infrared Detectors (Beijing: China Machine Press) pp47, 48 (in Chinese) [罗格尔斯基 A 著 (周海宪, 程云芳 译) 2014 红外探测器(北京: 机械工业出版社)第47, 48页]

  • [1] Zhang Yan, Yu Xu-Dong, Di Ke, Li Wei, Zhang Jing. Locking the phase of balanced homodyne detection system for squeezed light. Acta Physica Sinica, 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [2] Liu Zeng-Jun, Zhai Ze-Hui, Sun Heng-Xin, Gao Jiang-Rui. Generation of low-frequency squeezed states. Acta Physica Sinica, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [3] Zhai Shi-Long, Wang Yuan-Bo, Zhao Xiao-Peng. A kind of tunable acoustic metamaterial for low frequency absorption. Acta Physica Sinica, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [4] Wang Ying, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [5] Wang Fei, Huang Yi-Wang, Sun Qi-Hang. Effect of gas bubble volume fraction on low-frequency acoustic characteristic of sandy sediment. Acta Physica Sinica, 2017, 66(19): 194302. doi: 10.7498/aps.66.194302
    [6] Yang Guang, Lian Bao-Wang, Nie Min. Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol. Acta Physica Sinica, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [7] Huang Jian-Heng, Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Noise analysis of hard X-ray differential phasecontrast imaging. Acta Physica Sinica, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [8] Lu Cui-Ping, Yuan Chun-Hua, Zhang Wei-Ping. The property of quantum noise in active Raman gain medium. Acta Physica Sinica, 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [9] Guan Jia, Gu Yi-Sheng, Zhu Cheng-Jie, Yang Ya-Ping. Low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium. Acta Physica Sinica, 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [10] Bi Si-Wen, Wang Li, Wang Guo-Guo. Multimode squeezed light generation in a three-plane-mirror confocal cavity. Acta Physica Sinica, 2010, 59(1): 87-91. doi: 10.7498/aps.59.87
    [11] Shao Hui-Li, Li Dong, Yan Xue, Chen Li-Qing, Yuan Chun-Hua. Generation of two-mode photon-atom quadrature squeezing based on enhanced raman scattering. Acta Physica Sinica, 2014, 63(1): 014202. doi: 10.7498/aps.63.014202
    [12] Wan Lin, Liu Su-Mei, Liu San-Qiu. . Acta Physica Sinica, 2002, 51(1): 84-90. doi: 10.7498/aps.51.84
    [13] Chen Jin-Jian, Han Zheng-Fu, Zhao Yi-Bo, Gui You-Zhen, Guo Guang-Can. The effect of balanced homodyne detection on continuous variable quantum key distribution. Acta Physica Sinica, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [14] Liu Jian-Qiang, Wang Xu-Yang, Bai Zeng-Liang, Li Yong-Min. Highprecision auto-balance of the time-domain pulsed homodyne detector. Acta Physica Sinica, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [15] Chen Wen-Hao, Du Lei, Yin Xue-Song, Kang Li, Wang Fang, Chen Song. Investigation on the low-freauency noise physical models and the defects' characterization of the PbS infrared dectector. Acta Physica Sinica, 2011, 60(10): 107202. doi: 10.7498/aps.60.107202
    [16] YAO XI-XIAN, XIAO WAN-RU. INTERMITTENCY AND LOW FREQUENCY NOISE IN JOSEPHSON JUNCTION. Acta Physica Sinica, 1988, 37(2): 295-300. doi: 10.7498/aps.37.295
    [17] SHI JING, MEI XUE-FEI, TIAN DE-CHENG, TIAN MING-LIANG, MAO ZHI-QIANG, ZHANG YU-HENG. LOW FREQUENCY VOLTAGE NOISE IN IMPURITY- DOPED BLUE BRONZES. Acta Physica Sinica, 1994, 43(4): 632-636. doi: 10.7498/aps.43.632
    [18] Wang Dang-Hui, Xu Tian-Han, Wang Rong, Luo She-Ji, Yao Ting-Zhen. Research on emission transition mechanisms of InGaN/GaN multiple quantum well light-emitting diodes using low-frequency current noise. Acta Physica Sinica, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [19] Gong Hai-Mei, Huang Yang-Cheng, Liu Da-Fu, Liang Jin-Sui. Low frequency noise study on short wavelength HgCdTe photodiodes. Acta Physica Sinica, 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
    [20] Li Rui, Zhai Ze-Hui, Zhao Shu-Jin, Gao Jiang-Rui. Experimental investigation of displacement measurement with homodyne detection. Acta Physica Sinica, 2010, 59(11): 7724-7728. doi: 10.7498/aps.59.7724
  • Citation:
Metrics
  • Abstract views:  434
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  11 December 2015
  • Accepted Date:  29 December 2015
  • Published Online:  20 February 2016

Measurement of standard vacuum noise at low frequencies

    Corresponding author: Zhang Yu-Chi, yczhang@sxu.edu.cn;tczhang@sxu.edu.cn
    Corresponding author: Zhang Tian-Cai, yczhang@sxu.edu.cn;tczhang@sxu.edu.cn
  • 1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
  • 2. College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 91336107, 61227902, 61275210) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014021011-2).

Abstract: Vacuum fluctuation at audio frequencies is very important and interesting in many research fields, such as the gravitational wave detection, ultra-weak magnetic field measurement, and the research of quantum metrology, etc. Since the generation of squeezed light in 1985, most of the squeezed light have been generated and measured at radio frequencies (~MHz) as there has not been much technical noise at higher frequencies. In the Michelson-interferometer-based gravitational wave detection, the detection band has frequencies from a few to tens of thousands Hz. Measuring vacuum noise at such low frequencies is a challenge since we have to stabilize and control all the audio noises and the interferences from a variety of mechanical and electronic noises, therefore a very high classical noise suppression is needed when the measurement time increases. In order to measure the squeezed light of low frequencies, the standard vacuum noise at audio frequencies must be measured. In this paper, a balanced homodyne detection system for measuring the low-frequency quantum vacuum noises is reported. It is not trivial to extend the detected frequency to very low analysis frequencies. Through a self-made self-subtraction balanced homodyne configuration, which can eliminate the DC component of each photocurrent from the photodiode and the classical common-mode technical noise, the standard vacuum noise has been detected. The linearity of the vacuum noise power has been validated by varying the local oscillator power, showing that the saturation power of light incidence is about 3.2 mW. When the incident-light power is 400 W, the standard vacuum noise is 11 dB higher than the electronic noise at 80 Hz. In the regime of about 80 Hz to 400 kHz, the linearity of the standard noise power as a function of incident laser power is verified. However, when the measurement is carried out at even lower frequencies, for example, 50 Hz, we may encounter some excess and non-stationary noises and find that the measured noise power is not proportional to the incident light power any more. These non-stationary noises are the main technical obstacle at low frequencies. The average common mode rejection ratio in the test frequency range from 10 Hz to 400 kHz is 55 dB and its maximum 63 dB at 100 Hz is obtained, implying a high suppression of the technical noise. This self-made homodyne vacuum noise detector can be widely used for precision measurement in quantum metrology and quantum optics.

Reference (22)

Catalog

    /

    返回文章
    返回